1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kvm_host.h> 36 37 #include <asm/alternative.h> 38 #include <asm/atomic.h> 39 #include <asm/cacheflush.h> 40 #include <asm/cpu.h> 41 #include <asm/cputype.h> 42 #include <asm/cpu_ops.h> 43 #include <asm/daifflags.h> 44 #include <asm/kvm_mmu.h> 45 #include <asm/mmu_context.h> 46 #include <asm/numa.h> 47 #include <asm/processor.h> 48 #include <asm/smp_plat.h> 49 #include <asm/sections.h> 50 #include <asm/tlbflush.h> 51 #include <asm/ptrace.h> 52 #include <asm/virt.h> 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ipi.h> 56 57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 58 EXPORT_PER_CPU_SYMBOL(cpu_number); 59 60 /* 61 * as from 2.5, kernels no longer have an init_tasks structure 62 * so we need some other way of telling a new secondary core 63 * where to place its SVC stack 64 */ 65 struct secondary_data secondary_data; 66 /* Number of CPUs which aren't online, but looping in kernel text. */ 67 static int cpus_stuck_in_kernel; 68 69 enum ipi_msg_type { 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNC, 72 IPI_CPU_STOP, 73 IPI_CPU_CRASH_STOP, 74 IPI_TIMER, 75 IPI_IRQ_WORK, 76 IPI_WAKEUP, 77 NR_IPI 78 }; 79 80 static int ipi_irq_base __read_mostly; 81 static int nr_ipi __read_mostly = NR_IPI; 82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly; 83 84 static void ipi_setup(int cpu); 85 86 #ifdef CONFIG_HOTPLUG_CPU 87 static void ipi_teardown(int cpu); 88 static int op_cpu_kill(unsigned int cpu); 89 #else 90 static inline int op_cpu_kill(unsigned int cpu) 91 { 92 return -ENOSYS; 93 } 94 #endif 95 96 97 /* 98 * Boot a secondary CPU, and assign it the specified idle task. 99 * This also gives us the initial stack to use for this CPU. 100 */ 101 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 102 { 103 const struct cpu_operations *ops = get_cpu_ops(cpu); 104 105 if (ops->cpu_boot) 106 return ops->cpu_boot(cpu); 107 108 return -EOPNOTSUPP; 109 } 110 111 static DECLARE_COMPLETION(cpu_running); 112 113 int __cpu_up(unsigned int cpu, struct task_struct *idle) 114 { 115 int ret; 116 long status; 117 118 /* 119 * We need to tell the secondary core where to find its stack and the 120 * page tables. 121 */ 122 secondary_data.task = idle; 123 update_cpu_boot_status(CPU_MMU_OFF); 124 125 /* Now bring the CPU into our world */ 126 ret = boot_secondary(cpu, idle); 127 if (ret) { 128 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 129 return ret; 130 } 131 132 /* 133 * CPU was successfully started, wait for it to come online or 134 * time out. 135 */ 136 wait_for_completion_timeout(&cpu_running, 137 msecs_to_jiffies(5000)); 138 if (cpu_online(cpu)) 139 return 0; 140 141 pr_crit("CPU%u: failed to come online\n", cpu); 142 secondary_data.task = NULL; 143 status = READ_ONCE(secondary_data.status); 144 if (status == CPU_MMU_OFF) 145 status = READ_ONCE(__early_cpu_boot_status); 146 147 switch (status & CPU_BOOT_STATUS_MASK) { 148 default: 149 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 150 cpu, status); 151 cpus_stuck_in_kernel++; 152 break; 153 case CPU_KILL_ME: 154 if (!op_cpu_kill(cpu)) { 155 pr_crit("CPU%u: died during early boot\n", cpu); 156 break; 157 } 158 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 159 fallthrough; 160 case CPU_STUCK_IN_KERNEL: 161 pr_crit("CPU%u: is stuck in kernel\n", cpu); 162 if (status & CPU_STUCK_REASON_52_BIT_VA) 163 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 164 if (status & CPU_STUCK_REASON_NO_GRAN) { 165 pr_crit("CPU%u: does not support %luK granule\n", 166 cpu, PAGE_SIZE / SZ_1K); 167 } 168 cpus_stuck_in_kernel++; 169 break; 170 case CPU_PANIC_KERNEL: 171 panic("CPU%u detected unsupported configuration\n", cpu); 172 } 173 174 return -EIO; 175 } 176 177 static void init_gic_priority_masking(void) 178 { 179 u32 cpuflags; 180 181 if (WARN_ON(!gic_enable_sre())) 182 return; 183 184 cpuflags = read_sysreg(daif); 185 186 WARN_ON(!(cpuflags & PSR_I_BIT)); 187 WARN_ON(!(cpuflags & PSR_F_BIT)); 188 189 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 190 } 191 192 /* 193 * This is the secondary CPU boot entry. We're using this CPUs 194 * idle thread stack, but a set of temporary page tables. 195 */ 196 asmlinkage notrace void secondary_start_kernel(void) 197 { 198 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 199 struct mm_struct *mm = &init_mm; 200 const struct cpu_operations *ops; 201 unsigned int cpu = smp_processor_id(); 202 203 /* 204 * All kernel threads share the same mm context; grab a 205 * reference and switch to it. 206 */ 207 mmgrab(mm); 208 current->active_mm = mm; 209 210 /* 211 * TTBR0 is only used for the identity mapping at this stage. Make it 212 * point to zero page to avoid speculatively fetching new entries. 213 */ 214 cpu_uninstall_idmap(); 215 216 if (system_uses_irq_prio_masking()) 217 init_gic_priority_masking(); 218 219 rcu_cpu_starting(cpu); 220 trace_hardirqs_off(); 221 222 /* 223 * If the system has established the capabilities, make sure 224 * this CPU ticks all of those. If it doesn't, the CPU will 225 * fail to come online. 226 */ 227 check_local_cpu_capabilities(); 228 229 ops = get_cpu_ops(cpu); 230 if (ops->cpu_postboot) 231 ops->cpu_postboot(); 232 233 /* 234 * Log the CPU info before it is marked online and might get read. 235 */ 236 cpuinfo_store_cpu(); 237 store_cpu_topology(cpu); 238 239 /* 240 * Enable GIC and timers. 241 */ 242 notify_cpu_starting(cpu); 243 244 ipi_setup(cpu); 245 246 numa_add_cpu(cpu); 247 248 /* 249 * OK, now it's safe to let the boot CPU continue. Wait for 250 * the CPU migration code to notice that the CPU is online 251 * before we continue. 252 */ 253 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 254 cpu, (unsigned long)mpidr, 255 read_cpuid_id()); 256 update_cpu_boot_status(CPU_BOOT_SUCCESS); 257 set_cpu_online(cpu, true); 258 complete(&cpu_running); 259 260 local_daif_restore(DAIF_PROCCTX); 261 262 /* 263 * OK, it's off to the idle thread for us 264 */ 265 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 266 } 267 268 #ifdef CONFIG_HOTPLUG_CPU 269 static int op_cpu_disable(unsigned int cpu) 270 { 271 const struct cpu_operations *ops = get_cpu_ops(cpu); 272 273 /* 274 * If we don't have a cpu_die method, abort before we reach the point 275 * of no return. CPU0 may not have an cpu_ops, so test for it. 276 */ 277 if (!ops || !ops->cpu_die) 278 return -EOPNOTSUPP; 279 280 /* 281 * We may need to abort a hot unplug for some other mechanism-specific 282 * reason. 283 */ 284 if (ops->cpu_disable) 285 return ops->cpu_disable(cpu); 286 287 return 0; 288 } 289 290 /* 291 * __cpu_disable runs on the processor to be shutdown. 292 */ 293 int __cpu_disable(void) 294 { 295 unsigned int cpu = smp_processor_id(); 296 int ret; 297 298 ret = op_cpu_disable(cpu); 299 if (ret) 300 return ret; 301 302 remove_cpu_topology(cpu); 303 numa_remove_cpu(cpu); 304 305 /* 306 * Take this CPU offline. Once we clear this, we can't return, 307 * and we must not schedule until we're ready to give up the cpu. 308 */ 309 set_cpu_online(cpu, false); 310 ipi_teardown(cpu); 311 312 /* 313 * OK - migrate IRQs away from this CPU 314 */ 315 irq_migrate_all_off_this_cpu(); 316 317 return 0; 318 } 319 320 static int op_cpu_kill(unsigned int cpu) 321 { 322 const struct cpu_operations *ops = get_cpu_ops(cpu); 323 324 /* 325 * If we have no means of synchronising with the dying CPU, then assume 326 * that it is really dead. We can only wait for an arbitrary length of 327 * time and hope that it's dead, so let's skip the wait and just hope. 328 */ 329 if (!ops->cpu_kill) 330 return 0; 331 332 return ops->cpu_kill(cpu); 333 } 334 335 /* 336 * called on the thread which is asking for a CPU to be shutdown - 337 * waits until shutdown has completed, or it is timed out. 338 */ 339 void __cpu_die(unsigned int cpu) 340 { 341 int err; 342 343 if (!cpu_wait_death(cpu, 5)) { 344 pr_crit("CPU%u: cpu didn't die\n", cpu); 345 return; 346 } 347 pr_debug("CPU%u: shutdown\n", cpu); 348 349 /* 350 * Now that the dying CPU is beyond the point of no return w.r.t. 351 * in-kernel synchronisation, try to get the firwmare to help us to 352 * verify that it has really left the kernel before we consider 353 * clobbering anything it might still be using. 354 */ 355 err = op_cpu_kill(cpu); 356 if (err) 357 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 358 } 359 360 /* 361 * Called from the idle thread for the CPU which has been shutdown. 362 * 363 */ 364 void cpu_die(void) 365 { 366 unsigned int cpu = smp_processor_id(); 367 const struct cpu_operations *ops = get_cpu_ops(cpu); 368 369 idle_task_exit(); 370 371 local_daif_mask(); 372 373 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 374 (void)cpu_report_death(); 375 376 /* 377 * Actually shutdown the CPU. This must never fail. The specific hotplug 378 * mechanism must perform all required cache maintenance to ensure that 379 * no dirty lines are lost in the process of shutting down the CPU. 380 */ 381 ops->cpu_die(cpu); 382 383 BUG(); 384 } 385 #endif 386 387 static void __cpu_try_die(int cpu) 388 { 389 #ifdef CONFIG_HOTPLUG_CPU 390 const struct cpu_operations *ops = get_cpu_ops(cpu); 391 392 if (ops && ops->cpu_die) 393 ops->cpu_die(cpu); 394 #endif 395 } 396 397 /* 398 * Kill the calling secondary CPU, early in bringup before it is turned 399 * online. 400 */ 401 void cpu_die_early(void) 402 { 403 int cpu = smp_processor_id(); 404 405 pr_crit("CPU%d: will not boot\n", cpu); 406 407 /* Mark this CPU absent */ 408 set_cpu_present(cpu, 0); 409 rcu_report_dead(cpu); 410 411 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 412 update_cpu_boot_status(CPU_KILL_ME); 413 __cpu_try_die(cpu); 414 } 415 416 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 417 418 cpu_park_loop(); 419 } 420 421 static void __init hyp_mode_check(void) 422 { 423 if (is_hyp_mode_available()) 424 pr_info("CPU: All CPU(s) started at EL2\n"); 425 else if (is_hyp_mode_mismatched()) 426 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 427 "CPU: CPUs started in inconsistent modes"); 428 else 429 pr_info("CPU: All CPU(s) started at EL1\n"); 430 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 431 kvm_compute_layout(); 432 kvm_apply_hyp_relocations(); 433 } 434 } 435 436 void __init smp_cpus_done(unsigned int max_cpus) 437 { 438 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 439 setup_cpu_features(); 440 hyp_mode_check(); 441 apply_alternatives_all(); 442 mark_linear_text_alias_ro(); 443 } 444 445 void __init smp_prepare_boot_cpu(void) 446 { 447 /* 448 * The runtime per-cpu areas have been allocated by 449 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be 450 * freed shortly, so we must move over to the runtime per-cpu area. 451 */ 452 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 453 cpuinfo_store_boot_cpu(); 454 455 /* 456 * We now know enough about the boot CPU to apply the 457 * alternatives that cannot wait until interrupt handling 458 * and/or scheduling is enabled. 459 */ 460 apply_boot_alternatives(); 461 462 /* Conditionally switch to GIC PMR for interrupt masking */ 463 if (system_uses_irq_prio_masking()) 464 init_gic_priority_masking(); 465 466 kasan_init_hw_tags(); 467 } 468 469 /* 470 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 471 * entries and check for duplicates. If any is found just ignore the 472 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 473 * matching valid MPIDR values. 474 */ 475 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 476 { 477 unsigned int i; 478 479 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 480 if (cpu_logical_map(i) == hwid) 481 return true; 482 return false; 483 } 484 485 /* 486 * Initialize cpu operations for a logical cpu and 487 * set it in the possible mask on success 488 */ 489 static int __init smp_cpu_setup(int cpu) 490 { 491 const struct cpu_operations *ops; 492 493 if (init_cpu_ops(cpu)) 494 return -ENODEV; 495 496 ops = get_cpu_ops(cpu); 497 if (ops->cpu_init(cpu)) 498 return -ENODEV; 499 500 set_cpu_possible(cpu, true); 501 502 return 0; 503 } 504 505 static bool bootcpu_valid __initdata; 506 static unsigned int cpu_count = 1; 507 508 #ifdef CONFIG_ACPI 509 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 510 511 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 512 { 513 return &cpu_madt_gicc[cpu]; 514 } 515 516 /* 517 * acpi_map_gic_cpu_interface - parse processor MADT entry 518 * 519 * Carry out sanity checks on MADT processor entry and initialize 520 * cpu_logical_map on success 521 */ 522 static void __init 523 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 524 { 525 u64 hwid = processor->arm_mpidr; 526 527 if (!(processor->flags & ACPI_MADT_ENABLED)) { 528 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 529 return; 530 } 531 532 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 533 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 534 return; 535 } 536 537 if (is_mpidr_duplicate(cpu_count, hwid)) { 538 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 539 return; 540 } 541 542 /* Check if GICC structure of boot CPU is available in the MADT */ 543 if (cpu_logical_map(0) == hwid) { 544 if (bootcpu_valid) { 545 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 546 hwid); 547 return; 548 } 549 bootcpu_valid = true; 550 cpu_madt_gicc[0] = *processor; 551 return; 552 } 553 554 if (cpu_count >= NR_CPUS) 555 return; 556 557 /* map the logical cpu id to cpu MPIDR */ 558 set_cpu_logical_map(cpu_count, hwid); 559 560 cpu_madt_gicc[cpu_count] = *processor; 561 562 /* 563 * Set-up the ACPI parking protocol cpu entries 564 * while initializing the cpu_logical_map to 565 * avoid parsing MADT entries multiple times for 566 * nothing (ie a valid cpu_logical_map entry should 567 * contain a valid parking protocol data set to 568 * initialize the cpu if the parking protocol is 569 * the only available enable method). 570 */ 571 acpi_set_mailbox_entry(cpu_count, processor); 572 573 cpu_count++; 574 } 575 576 static int __init 577 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 578 const unsigned long end) 579 { 580 struct acpi_madt_generic_interrupt *processor; 581 582 processor = (struct acpi_madt_generic_interrupt *)header; 583 if (BAD_MADT_GICC_ENTRY(processor, end)) 584 return -EINVAL; 585 586 acpi_table_print_madt_entry(&header->common); 587 588 acpi_map_gic_cpu_interface(processor); 589 590 return 0; 591 } 592 593 static void __init acpi_parse_and_init_cpus(void) 594 { 595 int i; 596 597 /* 598 * do a walk of MADT to determine how many CPUs 599 * we have including disabled CPUs, and get information 600 * we need for SMP init. 601 */ 602 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 603 acpi_parse_gic_cpu_interface, 0); 604 605 /* 606 * In ACPI, SMP and CPU NUMA information is provided in separate 607 * static tables, namely the MADT and the SRAT. 608 * 609 * Thus, it is simpler to first create the cpu logical map through 610 * an MADT walk and then map the logical cpus to their node ids 611 * as separate steps. 612 */ 613 acpi_map_cpus_to_nodes(); 614 615 for (i = 0; i < nr_cpu_ids; i++) 616 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 617 } 618 #else 619 #define acpi_parse_and_init_cpus(...) do { } while (0) 620 #endif 621 622 /* 623 * Enumerate the possible CPU set from the device tree and build the 624 * cpu logical map array containing MPIDR values related to logical 625 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 626 */ 627 static void __init of_parse_and_init_cpus(void) 628 { 629 struct device_node *dn; 630 631 for_each_of_cpu_node(dn) { 632 u64 hwid = of_get_cpu_hwid(dn, 0); 633 634 if (hwid & ~MPIDR_HWID_BITMASK) 635 goto next; 636 637 if (is_mpidr_duplicate(cpu_count, hwid)) { 638 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 639 dn); 640 goto next; 641 } 642 643 /* 644 * The numbering scheme requires that the boot CPU 645 * must be assigned logical id 0. Record it so that 646 * the logical map built from DT is validated and can 647 * be used. 648 */ 649 if (hwid == cpu_logical_map(0)) { 650 if (bootcpu_valid) { 651 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 652 dn); 653 goto next; 654 } 655 656 bootcpu_valid = true; 657 early_map_cpu_to_node(0, of_node_to_nid(dn)); 658 659 /* 660 * cpu_logical_map has already been 661 * initialized and the boot cpu doesn't need 662 * the enable-method so continue without 663 * incrementing cpu. 664 */ 665 continue; 666 } 667 668 if (cpu_count >= NR_CPUS) 669 goto next; 670 671 pr_debug("cpu logical map 0x%llx\n", hwid); 672 set_cpu_logical_map(cpu_count, hwid); 673 674 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 675 next: 676 cpu_count++; 677 } 678 } 679 680 /* 681 * Enumerate the possible CPU set from the device tree or ACPI and build the 682 * cpu logical map array containing MPIDR values related to logical 683 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 684 */ 685 void __init smp_init_cpus(void) 686 { 687 int i; 688 689 if (acpi_disabled) 690 of_parse_and_init_cpus(); 691 else 692 acpi_parse_and_init_cpus(); 693 694 if (cpu_count > nr_cpu_ids) 695 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 696 cpu_count, nr_cpu_ids); 697 698 if (!bootcpu_valid) { 699 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 700 return; 701 } 702 703 /* 704 * We need to set the cpu_logical_map entries before enabling 705 * the cpus so that cpu processor description entries (DT cpu nodes 706 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 707 * with entries in cpu_logical_map while initializing the cpus. 708 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 709 */ 710 for (i = 1; i < nr_cpu_ids; i++) { 711 if (cpu_logical_map(i) != INVALID_HWID) { 712 if (smp_cpu_setup(i)) 713 set_cpu_logical_map(i, INVALID_HWID); 714 } 715 } 716 } 717 718 void __init smp_prepare_cpus(unsigned int max_cpus) 719 { 720 const struct cpu_operations *ops; 721 int err; 722 unsigned int cpu; 723 unsigned int this_cpu; 724 725 init_cpu_topology(); 726 727 this_cpu = smp_processor_id(); 728 store_cpu_topology(this_cpu); 729 numa_store_cpu_info(this_cpu); 730 numa_add_cpu(this_cpu); 731 732 /* 733 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 734 * secondary CPUs present. 735 */ 736 if (max_cpus == 0) 737 return; 738 739 /* 740 * Initialise the present map (which describes the set of CPUs 741 * actually populated at the present time) and release the 742 * secondaries from the bootloader. 743 */ 744 for_each_possible_cpu(cpu) { 745 746 per_cpu(cpu_number, cpu) = cpu; 747 748 if (cpu == smp_processor_id()) 749 continue; 750 751 ops = get_cpu_ops(cpu); 752 if (!ops) 753 continue; 754 755 err = ops->cpu_prepare(cpu); 756 if (err) 757 continue; 758 759 set_cpu_present(cpu, true); 760 numa_store_cpu_info(cpu); 761 } 762 } 763 764 static const char *ipi_types[NR_IPI] __tracepoint_string = { 765 [IPI_RESCHEDULE] = "Rescheduling interrupts", 766 [IPI_CALL_FUNC] = "Function call interrupts", 767 [IPI_CPU_STOP] = "CPU stop interrupts", 768 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", 769 [IPI_TIMER] = "Timer broadcast interrupts", 770 [IPI_IRQ_WORK] = "IRQ work interrupts", 771 [IPI_WAKEUP] = "CPU wake-up interrupts", 772 }; 773 774 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 775 776 unsigned long irq_err_count; 777 778 int arch_show_interrupts(struct seq_file *p, int prec) 779 { 780 unsigned int cpu, i; 781 782 for (i = 0; i < NR_IPI; i++) { 783 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 784 prec >= 4 ? " " : ""); 785 for_each_online_cpu(cpu) 786 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 787 seq_printf(p, " %s\n", ipi_types[i]); 788 } 789 790 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 791 return 0; 792 } 793 794 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 795 { 796 smp_cross_call(mask, IPI_CALL_FUNC); 797 } 798 799 void arch_send_call_function_single_ipi(int cpu) 800 { 801 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 802 } 803 804 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 805 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 806 { 807 smp_cross_call(mask, IPI_WAKEUP); 808 } 809 #endif 810 811 #ifdef CONFIG_IRQ_WORK 812 void arch_irq_work_raise(void) 813 { 814 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 815 } 816 #endif 817 818 static void local_cpu_stop(void) 819 { 820 set_cpu_online(smp_processor_id(), false); 821 822 local_daif_mask(); 823 sdei_mask_local_cpu(); 824 cpu_park_loop(); 825 } 826 827 /* 828 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 829 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 830 * CPUs that have already stopped themselves. 831 */ 832 void panic_smp_self_stop(void) 833 { 834 local_cpu_stop(); 835 } 836 837 #ifdef CONFIG_KEXEC_CORE 838 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 839 #endif 840 841 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 842 { 843 #ifdef CONFIG_KEXEC_CORE 844 crash_save_cpu(regs, cpu); 845 846 atomic_dec(&waiting_for_crash_ipi); 847 848 local_irq_disable(); 849 sdei_mask_local_cpu(); 850 851 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 852 __cpu_try_die(cpu); 853 854 /* just in case */ 855 cpu_park_loop(); 856 #endif 857 } 858 859 /* 860 * Main handler for inter-processor interrupts 861 */ 862 static void do_handle_IPI(int ipinr) 863 { 864 unsigned int cpu = smp_processor_id(); 865 866 if ((unsigned)ipinr < NR_IPI) 867 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 868 869 switch (ipinr) { 870 case IPI_RESCHEDULE: 871 scheduler_ipi(); 872 break; 873 874 case IPI_CALL_FUNC: 875 generic_smp_call_function_interrupt(); 876 break; 877 878 case IPI_CPU_STOP: 879 local_cpu_stop(); 880 break; 881 882 case IPI_CPU_CRASH_STOP: 883 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 884 ipi_cpu_crash_stop(cpu, get_irq_regs()); 885 886 unreachable(); 887 } 888 break; 889 890 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 891 case IPI_TIMER: 892 tick_receive_broadcast(); 893 break; 894 #endif 895 896 #ifdef CONFIG_IRQ_WORK 897 case IPI_IRQ_WORK: 898 irq_work_run(); 899 break; 900 #endif 901 902 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 903 case IPI_WAKEUP: 904 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 905 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 906 cpu); 907 break; 908 #endif 909 910 default: 911 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 912 break; 913 } 914 915 if ((unsigned)ipinr < NR_IPI) 916 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 917 } 918 919 static irqreturn_t ipi_handler(int irq, void *data) 920 { 921 do_handle_IPI(irq - ipi_irq_base); 922 return IRQ_HANDLED; 923 } 924 925 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 926 { 927 trace_ipi_raise(target, ipi_types[ipinr]); 928 __ipi_send_mask(ipi_desc[ipinr], target); 929 } 930 931 static void ipi_setup(int cpu) 932 { 933 int i; 934 935 if (WARN_ON_ONCE(!ipi_irq_base)) 936 return; 937 938 for (i = 0; i < nr_ipi; i++) 939 enable_percpu_irq(ipi_irq_base + i, 0); 940 } 941 942 #ifdef CONFIG_HOTPLUG_CPU 943 static void ipi_teardown(int cpu) 944 { 945 int i; 946 947 if (WARN_ON_ONCE(!ipi_irq_base)) 948 return; 949 950 for (i = 0; i < nr_ipi; i++) 951 disable_percpu_irq(ipi_irq_base + i); 952 } 953 #endif 954 955 void __init set_smp_ipi_range(int ipi_base, int n) 956 { 957 int i; 958 959 WARN_ON(n < NR_IPI); 960 nr_ipi = min(n, NR_IPI); 961 962 for (i = 0; i < nr_ipi; i++) { 963 int err; 964 965 err = request_percpu_irq(ipi_base + i, ipi_handler, 966 "IPI", &cpu_number); 967 WARN_ON(err); 968 969 ipi_desc[i] = irq_to_desc(ipi_base + i); 970 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 971 } 972 973 ipi_irq_base = ipi_base; 974 975 /* Setup the boot CPU immediately */ 976 ipi_setup(smp_processor_id()); 977 } 978 979 void smp_send_reschedule(int cpu) 980 { 981 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 982 } 983 984 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 985 void tick_broadcast(const struct cpumask *mask) 986 { 987 smp_cross_call(mask, IPI_TIMER); 988 } 989 #endif 990 991 /* 992 * The number of CPUs online, not counting this CPU (which may not be 993 * fully online and so not counted in num_online_cpus()). 994 */ 995 static inline unsigned int num_other_online_cpus(void) 996 { 997 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 998 999 return num_online_cpus() - this_cpu_online; 1000 } 1001 1002 void smp_send_stop(void) 1003 { 1004 unsigned long timeout; 1005 1006 if (num_other_online_cpus()) { 1007 cpumask_t mask; 1008 1009 cpumask_copy(&mask, cpu_online_mask); 1010 cpumask_clear_cpu(smp_processor_id(), &mask); 1011 1012 if (system_state <= SYSTEM_RUNNING) 1013 pr_crit("SMP: stopping secondary CPUs\n"); 1014 smp_cross_call(&mask, IPI_CPU_STOP); 1015 } 1016 1017 /* Wait up to one second for other CPUs to stop */ 1018 timeout = USEC_PER_SEC; 1019 while (num_other_online_cpus() && timeout--) 1020 udelay(1); 1021 1022 if (num_other_online_cpus()) 1023 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1024 cpumask_pr_args(cpu_online_mask)); 1025 1026 sdei_mask_local_cpu(); 1027 } 1028 1029 #ifdef CONFIG_KEXEC_CORE 1030 void crash_smp_send_stop(void) 1031 { 1032 static int cpus_stopped; 1033 cpumask_t mask; 1034 unsigned long timeout; 1035 1036 /* 1037 * This function can be called twice in panic path, but obviously 1038 * we execute this only once. 1039 */ 1040 if (cpus_stopped) 1041 return; 1042 1043 cpus_stopped = 1; 1044 1045 /* 1046 * If this cpu is the only one alive at this point in time, online or 1047 * not, there are no stop messages to be sent around, so just back out. 1048 */ 1049 if (num_other_online_cpus() == 0) { 1050 sdei_mask_local_cpu(); 1051 return; 1052 } 1053 1054 cpumask_copy(&mask, cpu_online_mask); 1055 cpumask_clear_cpu(smp_processor_id(), &mask); 1056 1057 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1058 1059 pr_crit("SMP: stopping secondary CPUs\n"); 1060 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1061 1062 /* Wait up to one second for other CPUs to stop */ 1063 timeout = USEC_PER_SEC; 1064 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1065 udelay(1); 1066 1067 if (atomic_read(&waiting_for_crash_ipi) > 0) 1068 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1069 cpumask_pr_args(&mask)); 1070 1071 sdei_mask_local_cpu(); 1072 } 1073 1074 bool smp_crash_stop_failed(void) 1075 { 1076 return (atomic_read(&waiting_for_crash_ipi) > 0); 1077 } 1078 #endif 1079 1080 /* 1081 * not supported here 1082 */ 1083 int setup_profiling_timer(unsigned int multiplier) 1084 { 1085 return -EINVAL; 1086 } 1087 1088 static bool have_cpu_die(void) 1089 { 1090 #ifdef CONFIG_HOTPLUG_CPU 1091 int any_cpu = raw_smp_processor_id(); 1092 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1093 1094 if (ops && ops->cpu_die) 1095 return true; 1096 #endif 1097 return false; 1098 } 1099 1100 bool cpus_are_stuck_in_kernel(void) 1101 { 1102 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1103 1104 return !!cpus_stuck_in_kernel || smp_spin_tables || 1105 is_protected_kvm_enabled(); 1106 } 1107