xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 413d6ed3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36 
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 
57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
58 EXPORT_PER_CPU_SYMBOL(cpu_number);
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 static int cpus_stuck_in_kernel;
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CPU_STOP,
73 	IPI_CPU_CRASH_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP,
77 	NR_IPI
78 };
79 
80 static int ipi_irq_base __read_mostly;
81 static int nr_ipi __read_mostly = NR_IPI;
82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
83 
84 static void ipi_setup(int cpu);
85 
86 #ifdef CONFIG_HOTPLUG_CPU
87 static void ipi_teardown(int cpu);
88 static int op_cpu_kill(unsigned int cpu);
89 #else
90 static inline int op_cpu_kill(unsigned int cpu)
91 {
92 	return -ENOSYS;
93 }
94 #endif
95 
96 
97 /*
98  * Boot a secondary CPU, and assign it the specified idle task.
99  * This also gives us the initial stack to use for this CPU.
100  */
101 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
102 {
103 	const struct cpu_operations *ops = get_cpu_ops(cpu);
104 
105 	if (ops->cpu_boot)
106 		return ops->cpu_boot(cpu);
107 
108 	return -EOPNOTSUPP;
109 }
110 
111 static DECLARE_COMPLETION(cpu_running);
112 
113 int __cpu_up(unsigned int cpu, struct task_struct *idle)
114 {
115 	int ret;
116 	long status;
117 
118 	/*
119 	 * We need to tell the secondary core where to find its stack and the
120 	 * page tables.
121 	 */
122 	secondary_data.task = idle;
123 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
124 	update_cpu_boot_status(CPU_MMU_OFF);
125 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
126 
127 	/* Now bring the CPU into our world */
128 	ret = boot_secondary(cpu, idle);
129 	if (ret) {
130 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
131 		return ret;
132 	}
133 
134 	/*
135 	 * CPU was successfully started, wait for it to come online or
136 	 * time out.
137 	 */
138 	wait_for_completion_timeout(&cpu_running,
139 				    msecs_to_jiffies(5000));
140 	if (cpu_online(cpu))
141 		return 0;
142 
143 	pr_crit("CPU%u: failed to come online\n", cpu);
144 	secondary_data.task = NULL;
145 	secondary_data.stack = NULL;
146 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
147 	status = READ_ONCE(secondary_data.status);
148 	if (status == CPU_MMU_OFF)
149 		status = READ_ONCE(__early_cpu_boot_status);
150 
151 	switch (status & CPU_BOOT_STATUS_MASK) {
152 	default:
153 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
154 		       cpu, status);
155 		cpus_stuck_in_kernel++;
156 		break;
157 	case CPU_KILL_ME:
158 		if (!op_cpu_kill(cpu)) {
159 			pr_crit("CPU%u: died during early boot\n", cpu);
160 			break;
161 		}
162 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
163 		fallthrough;
164 	case CPU_STUCK_IN_KERNEL:
165 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
166 		if (status & CPU_STUCK_REASON_52_BIT_VA)
167 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
168 		if (status & CPU_STUCK_REASON_NO_GRAN) {
169 			pr_crit("CPU%u: does not support %luK granule\n",
170 				cpu, PAGE_SIZE / SZ_1K);
171 		}
172 		cpus_stuck_in_kernel++;
173 		break;
174 	case CPU_PANIC_KERNEL:
175 		panic("CPU%u detected unsupported configuration\n", cpu);
176 	}
177 
178 	return -EIO;
179 }
180 
181 static void init_gic_priority_masking(void)
182 {
183 	u32 cpuflags;
184 
185 	if (WARN_ON(!gic_enable_sre()))
186 		return;
187 
188 	cpuflags = read_sysreg(daif);
189 
190 	WARN_ON(!(cpuflags & PSR_I_BIT));
191 	WARN_ON(!(cpuflags & PSR_F_BIT));
192 
193 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
194 }
195 
196 /*
197  * This is the secondary CPU boot entry.  We're using this CPUs
198  * idle thread stack, but a set of temporary page tables.
199  */
200 asmlinkage notrace void secondary_start_kernel(void)
201 {
202 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
203 	struct mm_struct *mm = &init_mm;
204 	const struct cpu_operations *ops;
205 	unsigned int cpu;
206 
207 	cpu = task_cpu(current);
208 	set_my_cpu_offset(per_cpu_offset(cpu));
209 
210 	/*
211 	 * All kernel threads share the same mm context; grab a
212 	 * reference and switch to it.
213 	 */
214 	mmgrab(mm);
215 	current->active_mm = mm;
216 
217 	/*
218 	 * TTBR0 is only used for the identity mapping at this stage. Make it
219 	 * point to zero page to avoid speculatively fetching new entries.
220 	 */
221 	cpu_uninstall_idmap();
222 
223 	if (system_uses_irq_prio_masking())
224 		init_gic_priority_masking();
225 
226 	rcu_cpu_starting(cpu);
227 	preempt_disable();
228 	trace_hardirqs_off();
229 
230 	/*
231 	 * If the system has established the capabilities, make sure
232 	 * this CPU ticks all of those. If it doesn't, the CPU will
233 	 * fail to come online.
234 	 */
235 	check_local_cpu_capabilities();
236 
237 	ops = get_cpu_ops(cpu);
238 	if (ops->cpu_postboot)
239 		ops->cpu_postboot();
240 
241 	/*
242 	 * Log the CPU info before it is marked online and might get read.
243 	 */
244 	cpuinfo_store_cpu();
245 
246 	/*
247 	 * Enable GIC and timers.
248 	 */
249 	notify_cpu_starting(cpu);
250 
251 	ipi_setup(cpu);
252 
253 	store_cpu_topology(cpu);
254 	numa_add_cpu(cpu);
255 
256 	/*
257 	 * OK, now it's safe to let the boot CPU continue.  Wait for
258 	 * the CPU migration code to notice that the CPU is online
259 	 * before we continue.
260 	 */
261 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
262 					 cpu, (unsigned long)mpidr,
263 					 read_cpuid_id());
264 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
265 	set_cpu_online(cpu, true);
266 	complete(&cpu_running);
267 
268 	local_daif_restore(DAIF_PROCCTX);
269 
270 	/*
271 	 * OK, it's off to the idle thread for us
272 	 */
273 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
274 }
275 
276 #ifdef CONFIG_HOTPLUG_CPU
277 static int op_cpu_disable(unsigned int cpu)
278 {
279 	const struct cpu_operations *ops = get_cpu_ops(cpu);
280 
281 	/*
282 	 * If we don't have a cpu_die method, abort before we reach the point
283 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
284 	 */
285 	if (!ops || !ops->cpu_die)
286 		return -EOPNOTSUPP;
287 
288 	/*
289 	 * We may need to abort a hot unplug for some other mechanism-specific
290 	 * reason.
291 	 */
292 	if (ops->cpu_disable)
293 		return ops->cpu_disable(cpu);
294 
295 	return 0;
296 }
297 
298 /*
299  * __cpu_disable runs on the processor to be shutdown.
300  */
301 int __cpu_disable(void)
302 {
303 	unsigned int cpu = smp_processor_id();
304 	int ret;
305 
306 	ret = op_cpu_disable(cpu);
307 	if (ret)
308 		return ret;
309 
310 	remove_cpu_topology(cpu);
311 	numa_remove_cpu(cpu);
312 
313 	/*
314 	 * Take this CPU offline.  Once we clear this, we can't return,
315 	 * and we must not schedule until we're ready to give up the cpu.
316 	 */
317 	set_cpu_online(cpu, false);
318 	ipi_teardown(cpu);
319 
320 	/*
321 	 * OK - migrate IRQs away from this CPU
322 	 */
323 	irq_migrate_all_off_this_cpu();
324 
325 	return 0;
326 }
327 
328 static int op_cpu_kill(unsigned int cpu)
329 {
330 	const struct cpu_operations *ops = get_cpu_ops(cpu);
331 
332 	/*
333 	 * If we have no means of synchronising with the dying CPU, then assume
334 	 * that it is really dead. We can only wait for an arbitrary length of
335 	 * time and hope that it's dead, so let's skip the wait and just hope.
336 	 */
337 	if (!ops->cpu_kill)
338 		return 0;
339 
340 	return ops->cpu_kill(cpu);
341 }
342 
343 /*
344  * called on the thread which is asking for a CPU to be shutdown -
345  * waits until shutdown has completed, or it is timed out.
346  */
347 void __cpu_die(unsigned int cpu)
348 {
349 	int err;
350 
351 	if (!cpu_wait_death(cpu, 5)) {
352 		pr_crit("CPU%u: cpu didn't die\n", cpu);
353 		return;
354 	}
355 	pr_notice("CPU%u: shutdown\n", cpu);
356 
357 	/*
358 	 * Now that the dying CPU is beyond the point of no return w.r.t.
359 	 * in-kernel synchronisation, try to get the firwmare to help us to
360 	 * verify that it has really left the kernel before we consider
361 	 * clobbering anything it might still be using.
362 	 */
363 	err = op_cpu_kill(cpu);
364 	if (err)
365 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
366 }
367 
368 /*
369  * Called from the idle thread for the CPU which has been shutdown.
370  *
371  */
372 void cpu_die(void)
373 {
374 	unsigned int cpu = smp_processor_id();
375 	const struct cpu_operations *ops = get_cpu_ops(cpu);
376 
377 	idle_task_exit();
378 
379 	local_daif_mask();
380 
381 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
382 	(void)cpu_report_death();
383 
384 	/*
385 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
386 	 * mechanism must perform all required cache maintenance to ensure that
387 	 * no dirty lines are lost in the process of shutting down the CPU.
388 	 */
389 	ops->cpu_die(cpu);
390 
391 	BUG();
392 }
393 #endif
394 
395 static void __cpu_try_die(int cpu)
396 {
397 #ifdef CONFIG_HOTPLUG_CPU
398 	const struct cpu_operations *ops = get_cpu_ops(cpu);
399 
400 	if (ops && ops->cpu_die)
401 		ops->cpu_die(cpu);
402 #endif
403 }
404 
405 /*
406  * Kill the calling secondary CPU, early in bringup before it is turned
407  * online.
408  */
409 void cpu_die_early(void)
410 {
411 	int cpu = smp_processor_id();
412 
413 	pr_crit("CPU%d: will not boot\n", cpu);
414 
415 	/* Mark this CPU absent */
416 	set_cpu_present(cpu, 0);
417 	rcu_report_dead(cpu);
418 
419 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
420 		update_cpu_boot_status(CPU_KILL_ME);
421 		__cpu_try_die(cpu);
422 	}
423 
424 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
425 
426 	cpu_park_loop();
427 }
428 
429 static void __init hyp_mode_check(void)
430 {
431 	if (is_hyp_mode_available())
432 		pr_info("CPU: All CPU(s) started at EL2\n");
433 	else if (is_hyp_mode_mismatched())
434 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
435 			   "CPU: CPUs started in inconsistent modes");
436 	else
437 		pr_info("CPU: All CPU(s) started at EL1\n");
438 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
439 		kvm_compute_layout();
440 		kvm_apply_hyp_relocations();
441 	}
442 }
443 
444 void __init smp_cpus_done(unsigned int max_cpus)
445 {
446 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
447 	setup_cpu_features();
448 	hyp_mode_check();
449 	apply_alternatives_all();
450 	mark_linear_text_alias_ro();
451 }
452 
453 void __init smp_prepare_boot_cpu(void)
454 {
455 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
456 	cpuinfo_store_boot_cpu();
457 
458 	/*
459 	 * We now know enough about the boot CPU to apply the
460 	 * alternatives that cannot wait until interrupt handling
461 	 * and/or scheduling is enabled.
462 	 */
463 	apply_boot_alternatives();
464 
465 	/* Conditionally switch to GIC PMR for interrupt masking */
466 	if (system_uses_irq_prio_masking())
467 		init_gic_priority_masking();
468 
469 	kasan_init_hw_tags();
470 }
471 
472 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
473 {
474 	const __be32 *cell;
475 	u64 hwid;
476 
477 	/*
478 	 * A cpu node with missing "reg" property is
479 	 * considered invalid to build a cpu_logical_map
480 	 * entry.
481 	 */
482 	cell = of_get_property(dn, "reg", NULL);
483 	if (!cell) {
484 		pr_err("%pOF: missing reg property\n", dn);
485 		return INVALID_HWID;
486 	}
487 
488 	hwid = of_read_number(cell, of_n_addr_cells(dn));
489 	/*
490 	 * Non affinity bits must be set to 0 in the DT
491 	 */
492 	if (hwid & ~MPIDR_HWID_BITMASK) {
493 		pr_err("%pOF: invalid reg property\n", dn);
494 		return INVALID_HWID;
495 	}
496 	return hwid;
497 }
498 
499 /*
500  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
501  * entries and check for duplicates. If any is found just ignore the
502  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
503  * matching valid MPIDR values.
504  */
505 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
506 {
507 	unsigned int i;
508 
509 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
510 		if (cpu_logical_map(i) == hwid)
511 			return true;
512 	return false;
513 }
514 
515 /*
516  * Initialize cpu operations for a logical cpu and
517  * set it in the possible mask on success
518  */
519 static int __init smp_cpu_setup(int cpu)
520 {
521 	const struct cpu_operations *ops;
522 
523 	if (init_cpu_ops(cpu))
524 		return -ENODEV;
525 
526 	ops = get_cpu_ops(cpu);
527 	if (ops->cpu_init(cpu))
528 		return -ENODEV;
529 
530 	set_cpu_possible(cpu, true);
531 
532 	return 0;
533 }
534 
535 static bool bootcpu_valid __initdata;
536 static unsigned int cpu_count = 1;
537 
538 #ifdef CONFIG_ACPI
539 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
540 
541 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
542 {
543 	return &cpu_madt_gicc[cpu];
544 }
545 
546 /*
547  * acpi_map_gic_cpu_interface - parse processor MADT entry
548  *
549  * Carry out sanity checks on MADT processor entry and initialize
550  * cpu_logical_map on success
551  */
552 static void __init
553 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
554 {
555 	u64 hwid = processor->arm_mpidr;
556 
557 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
558 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
559 		return;
560 	}
561 
562 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
563 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
564 		return;
565 	}
566 
567 	if (is_mpidr_duplicate(cpu_count, hwid)) {
568 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
569 		return;
570 	}
571 
572 	/* Check if GICC structure of boot CPU is available in the MADT */
573 	if (cpu_logical_map(0) == hwid) {
574 		if (bootcpu_valid) {
575 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
576 			       hwid);
577 			return;
578 		}
579 		bootcpu_valid = true;
580 		cpu_madt_gicc[0] = *processor;
581 		return;
582 	}
583 
584 	if (cpu_count >= NR_CPUS)
585 		return;
586 
587 	/* map the logical cpu id to cpu MPIDR */
588 	set_cpu_logical_map(cpu_count, hwid);
589 
590 	cpu_madt_gicc[cpu_count] = *processor;
591 
592 	/*
593 	 * Set-up the ACPI parking protocol cpu entries
594 	 * while initializing the cpu_logical_map to
595 	 * avoid parsing MADT entries multiple times for
596 	 * nothing (ie a valid cpu_logical_map entry should
597 	 * contain a valid parking protocol data set to
598 	 * initialize the cpu if the parking protocol is
599 	 * the only available enable method).
600 	 */
601 	acpi_set_mailbox_entry(cpu_count, processor);
602 
603 	cpu_count++;
604 }
605 
606 static int __init
607 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
608 			     const unsigned long end)
609 {
610 	struct acpi_madt_generic_interrupt *processor;
611 
612 	processor = (struct acpi_madt_generic_interrupt *)header;
613 	if (BAD_MADT_GICC_ENTRY(processor, end))
614 		return -EINVAL;
615 
616 	acpi_table_print_madt_entry(&header->common);
617 
618 	acpi_map_gic_cpu_interface(processor);
619 
620 	return 0;
621 }
622 
623 static void __init acpi_parse_and_init_cpus(void)
624 {
625 	int i;
626 
627 	/*
628 	 * do a walk of MADT to determine how many CPUs
629 	 * we have including disabled CPUs, and get information
630 	 * we need for SMP init.
631 	 */
632 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
633 				      acpi_parse_gic_cpu_interface, 0);
634 
635 	/*
636 	 * In ACPI, SMP and CPU NUMA information is provided in separate
637 	 * static tables, namely the MADT and the SRAT.
638 	 *
639 	 * Thus, it is simpler to first create the cpu logical map through
640 	 * an MADT walk and then map the logical cpus to their node ids
641 	 * as separate steps.
642 	 */
643 	acpi_map_cpus_to_nodes();
644 
645 	for (i = 0; i < nr_cpu_ids; i++)
646 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
647 }
648 #else
649 #define acpi_parse_and_init_cpus(...)	do { } while (0)
650 #endif
651 
652 /*
653  * Enumerate the possible CPU set from the device tree and build the
654  * cpu logical map array containing MPIDR values related to logical
655  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
656  */
657 static void __init of_parse_and_init_cpus(void)
658 {
659 	struct device_node *dn;
660 
661 	for_each_of_cpu_node(dn) {
662 		u64 hwid = of_get_cpu_mpidr(dn);
663 
664 		if (hwid == INVALID_HWID)
665 			goto next;
666 
667 		if (is_mpidr_duplicate(cpu_count, hwid)) {
668 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
669 				dn);
670 			goto next;
671 		}
672 
673 		/*
674 		 * The numbering scheme requires that the boot CPU
675 		 * must be assigned logical id 0. Record it so that
676 		 * the logical map built from DT is validated and can
677 		 * be used.
678 		 */
679 		if (hwid == cpu_logical_map(0)) {
680 			if (bootcpu_valid) {
681 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
682 					dn);
683 				goto next;
684 			}
685 
686 			bootcpu_valid = true;
687 			early_map_cpu_to_node(0, of_node_to_nid(dn));
688 
689 			/*
690 			 * cpu_logical_map has already been
691 			 * initialized and the boot cpu doesn't need
692 			 * the enable-method so continue without
693 			 * incrementing cpu.
694 			 */
695 			continue;
696 		}
697 
698 		if (cpu_count >= NR_CPUS)
699 			goto next;
700 
701 		pr_debug("cpu logical map 0x%llx\n", hwid);
702 		set_cpu_logical_map(cpu_count, hwid);
703 
704 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
705 next:
706 		cpu_count++;
707 	}
708 }
709 
710 /*
711  * Enumerate the possible CPU set from the device tree or ACPI and build the
712  * cpu logical map array containing MPIDR values related to logical
713  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
714  */
715 void __init smp_init_cpus(void)
716 {
717 	int i;
718 
719 	if (acpi_disabled)
720 		of_parse_and_init_cpus();
721 	else
722 		acpi_parse_and_init_cpus();
723 
724 	if (cpu_count > nr_cpu_ids)
725 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
726 			cpu_count, nr_cpu_ids);
727 
728 	if (!bootcpu_valid) {
729 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
730 		return;
731 	}
732 
733 	/*
734 	 * We need to set the cpu_logical_map entries before enabling
735 	 * the cpus so that cpu processor description entries (DT cpu nodes
736 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
737 	 * with entries in cpu_logical_map while initializing the cpus.
738 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
739 	 */
740 	for (i = 1; i < nr_cpu_ids; i++) {
741 		if (cpu_logical_map(i) != INVALID_HWID) {
742 			if (smp_cpu_setup(i))
743 				set_cpu_logical_map(i, INVALID_HWID);
744 		}
745 	}
746 }
747 
748 void __init smp_prepare_cpus(unsigned int max_cpus)
749 {
750 	const struct cpu_operations *ops;
751 	int err;
752 	unsigned int cpu;
753 	unsigned int this_cpu;
754 
755 	init_cpu_topology();
756 
757 	this_cpu = smp_processor_id();
758 	store_cpu_topology(this_cpu);
759 	numa_store_cpu_info(this_cpu);
760 	numa_add_cpu(this_cpu);
761 
762 	/*
763 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
764 	 * secondary CPUs present.
765 	 */
766 	if (max_cpus == 0)
767 		return;
768 
769 	/*
770 	 * Initialise the present map (which describes the set of CPUs
771 	 * actually populated at the present time) and release the
772 	 * secondaries from the bootloader.
773 	 */
774 	for_each_possible_cpu(cpu) {
775 
776 		per_cpu(cpu_number, cpu) = cpu;
777 
778 		if (cpu == smp_processor_id())
779 			continue;
780 
781 		ops = get_cpu_ops(cpu);
782 		if (!ops)
783 			continue;
784 
785 		err = ops->cpu_prepare(cpu);
786 		if (err)
787 			continue;
788 
789 		set_cpu_present(cpu, true);
790 		numa_store_cpu_info(cpu);
791 	}
792 }
793 
794 static const char *ipi_types[NR_IPI] __tracepoint_string = {
795 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
796 	[IPI_CALL_FUNC]		= "Function call interrupts",
797 	[IPI_CPU_STOP]		= "CPU stop interrupts",
798 	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
799 	[IPI_TIMER]		= "Timer broadcast interrupts",
800 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
801 	[IPI_WAKEUP]		= "CPU wake-up interrupts",
802 };
803 
804 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
805 
806 unsigned long irq_err_count;
807 
808 int arch_show_interrupts(struct seq_file *p, int prec)
809 {
810 	unsigned int cpu, i;
811 
812 	for (i = 0; i < NR_IPI; i++) {
813 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
814 			   prec >= 4 ? " " : "");
815 		for_each_online_cpu(cpu)
816 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
817 		seq_printf(p, "      %s\n", ipi_types[i]);
818 	}
819 
820 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
821 	return 0;
822 }
823 
824 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
825 {
826 	smp_cross_call(mask, IPI_CALL_FUNC);
827 }
828 
829 void arch_send_call_function_single_ipi(int cpu)
830 {
831 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
832 }
833 
834 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
835 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
836 {
837 	smp_cross_call(mask, IPI_WAKEUP);
838 }
839 #endif
840 
841 #ifdef CONFIG_IRQ_WORK
842 void arch_irq_work_raise(void)
843 {
844 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
845 }
846 #endif
847 
848 static void local_cpu_stop(void)
849 {
850 	set_cpu_online(smp_processor_id(), false);
851 
852 	local_daif_mask();
853 	sdei_mask_local_cpu();
854 	cpu_park_loop();
855 }
856 
857 /*
858  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
859  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
860  * CPUs that have already stopped themselves.
861  */
862 void panic_smp_self_stop(void)
863 {
864 	local_cpu_stop();
865 }
866 
867 #ifdef CONFIG_KEXEC_CORE
868 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
869 #endif
870 
871 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
872 {
873 #ifdef CONFIG_KEXEC_CORE
874 	crash_save_cpu(regs, cpu);
875 
876 	atomic_dec(&waiting_for_crash_ipi);
877 
878 	local_irq_disable();
879 	sdei_mask_local_cpu();
880 
881 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
882 		__cpu_try_die(cpu);
883 
884 	/* just in case */
885 	cpu_park_loop();
886 #endif
887 }
888 
889 /*
890  * Main handler for inter-processor interrupts
891  */
892 static void do_handle_IPI(int ipinr)
893 {
894 	unsigned int cpu = smp_processor_id();
895 
896 	if ((unsigned)ipinr < NR_IPI)
897 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
898 
899 	switch (ipinr) {
900 	case IPI_RESCHEDULE:
901 		scheduler_ipi();
902 		break;
903 
904 	case IPI_CALL_FUNC:
905 		generic_smp_call_function_interrupt();
906 		break;
907 
908 	case IPI_CPU_STOP:
909 		local_cpu_stop();
910 		break;
911 
912 	case IPI_CPU_CRASH_STOP:
913 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
914 			ipi_cpu_crash_stop(cpu, get_irq_regs());
915 
916 			unreachable();
917 		}
918 		break;
919 
920 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
921 	case IPI_TIMER:
922 		tick_receive_broadcast();
923 		break;
924 #endif
925 
926 #ifdef CONFIG_IRQ_WORK
927 	case IPI_IRQ_WORK:
928 		irq_work_run();
929 		break;
930 #endif
931 
932 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
933 	case IPI_WAKEUP:
934 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
935 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
936 			  cpu);
937 		break;
938 #endif
939 
940 	default:
941 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
942 		break;
943 	}
944 
945 	if ((unsigned)ipinr < NR_IPI)
946 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
947 }
948 
949 static irqreturn_t ipi_handler(int irq, void *data)
950 {
951 	do_handle_IPI(irq - ipi_irq_base);
952 	return IRQ_HANDLED;
953 }
954 
955 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
956 {
957 	trace_ipi_raise(target, ipi_types[ipinr]);
958 	__ipi_send_mask(ipi_desc[ipinr], target);
959 }
960 
961 static void ipi_setup(int cpu)
962 {
963 	int i;
964 
965 	if (WARN_ON_ONCE(!ipi_irq_base))
966 		return;
967 
968 	for (i = 0; i < nr_ipi; i++)
969 		enable_percpu_irq(ipi_irq_base + i, 0);
970 }
971 
972 #ifdef CONFIG_HOTPLUG_CPU
973 static void ipi_teardown(int cpu)
974 {
975 	int i;
976 
977 	if (WARN_ON_ONCE(!ipi_irq_base))
978 		return;
979 
980 	for (i = 0; i < nr_ipi; i++)
981 		disable_percpu_irq(ipi_irq_base + i);
982 }
983 #endif
984 
985 void __init set_smp_ipi_range(int ipi_base, int n)
986 {
987 	int i;
988 
989 	WARN_ON(n < NR_IPI);
990 	nr_ipi = min(n, NR_IPI);
991 
992 	for (i = 0; i < nr_ipi; i++) {
993 		int err;
994 
995 		err = request_percpu_irq(ipi_base + i, ipi_handler,
996 					 "IPI", &cpu_number);
997 		WARN_ON(err);
998 
999 		ipi_desc[i] = irq_to_desc(ipi_base + i);
1000 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1001 	}
1002 
1003 	ipi_irq_base = ipi_base;
1004 
1005 	/* Setup the boot CPU immediately */
1006 	ipi_setup(smp_processor_id());
1007 }
1008 
1009 void smp_send_reschedule(int cpu)
1010 {
1011 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1012 }
1013 
1014 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1015 void tick_broadcast(const struct cpumask *mask)
1016 {
1017 	smp_cross_call(mask, IPI_TIMER);
1018 }
1019 #endif
1020 
1021 /*
1022  * The number of CPUs online, not counting this CPU (which may not be
1023  * fully online and so not counted in num_online_cpus()).
1024  */
1025 static inline unsigned int num_other_online_cpus(void)
1026 {
1027 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1028 
1029 	return num_online_cpus() - this_cpu_online;
1030 }
1031 
1032 void smp_send_stop(void)
1033 {
1034 	unsigned long timeout;
1035 
1036 	if (num_other_online_cpus()) {
1037 		cpumask_t mask;
1038 
1039 		cpumask_copy(&mask, cpu_online_mask);
1040 		cpumask_clear_cpu(smp_processor_id(), &mask);
1041 
1042 		if (system_state <= SYSTEM_RUNNING)
1043 			pr_crit("SMP: stopping secondary CPUs\n");
1044 		smp_cross_call(&mask, IPI_CPU_STOP);
1045 	}
1046 
1047 	/* Wait up to one second for other CPUs to stop */
1048 	timeout = USEC_PER_SEC;
1049 	while (num_other_online_cpus() && timeout--)
1050 		udelay(1);
1051 
1052 	if (num_other_online_cpus())
1053 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1054 			cpumask_pr_args(cpu_online_mask));
1055 
1056 	sdei_mask_local_cpu();
1057 }
1058 
1059 #ifdef CONFIG_KEXEC_CORE
1060 void crash_smp_send_stop(void)
1061 {
1062 	static int cpus_stopped;
1063 	cpumask_t mask;
1064 	unsigned long timeout;
1065 
1066 	/*
1067 	 * This function can be called twice in panic path, but obviously
1068 	 * we execute this only once.
1069 	 */
1070 	if (cpus_stopped)
1071 		return;
1072 
1073 	cpus_stopped = 1;
1074 
1075 	/*
1076 	 * If this cpu is the only one alive at this point in time, online or
1077 	 * not, there are no stop messages to be sent around, so just back out.
1078 	 */
1079 	if (num_other_online_cpus() == 0) {
1080 		sdei_mask_local_cpu();
1081 		return;
1082 	}
1083 
1084 	cpumask_copy(&mask, cpu_online_mask);
1085 	cpumask_clear_cpu(smp_processor_id(), &mask);
1086 
1087 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1088 
1089 	pr_crit("SMP: stopping secondary CPUs\n");
1090 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1091 
1092 	/* Wait up to one second for other CPUs to stop */
1093 	timeout = USEC_PER_SEC;
1094 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1095 		udelay(1);
1096 
1097 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1098 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1099 			cpumask_pr_args(&mask));
1100 
1101 	sdei_mask_local_cpu();
1102 }
1103 
1104 bool smp_crash_stop_failed(void)
1105 {
1106 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1107 }
1108 #endif
1109 
1110 /*
1111  * not supported here
1112  */
1113 int setup_profiling_timer(unsigned int multiplier)
1114 {
1115 	return -EINVAL;
1116 }
1117 
1118 static bool have_cpu_die(void)
1119 {
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 	int any_cpu = raw_smp_processor_id();
1122 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1123 
1124 	if (ops && ops->cpu_die)
1125 		return true;
1126 #endif
1127 	return false;
1128 }
1129 
1130 bool cpus_are_stuck_in_kernel(void)
1131 {
1132 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1133 
1134 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1135 }
1136