xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 2fa49589)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/arm_sdei.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/spinlock.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/hotplug.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/interrupt.h>
29 #include <linux/cache.h>
30 #include <linux/profile.h>
31 #include <linux/errno.h>
32 #include <linux/mm.h>
33 #include <linux/err.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/seq_file.h>
37 #include <linux/irq.h>
38 #include <linux/percpu.h>
39 #include <linux/clockchips.h>
40 #include <linux/completion.h>
41 #include <linux/of.h>
42 #include <linux/irq_work.h>
43 #include <linux/kexec.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/atomic.h>
47 #include <asm/cacheflush.h>
48 #include <asm/cpu.h>
49 #include <asm/cputype.h>
50 #include <asm/cpu_ops.h>
51 #include <asm/daifflags.h>
52 #include <asm/mmu_context.h>
53 #include <asm/numa.h>
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/processor.h>
57 #include <asm/smp_plat.h>
58 #include <asm/sections.h>
59 #include <asm/tlbflush.h>
60 #include <asm/ptrace.h>
61 #include <asm/virt.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/ipi.h>
65 
66 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
67 EXPORT_PER_CPU_SYMBOL(cpu_number);
68 
69 /*
70  * as from 2.5, kernels no longer have an init_tasks structure
71  * so we need some other way of telling a new secondary core
72  * where to place its SVC stack
73  */
74 struct secondary_data secondary_data;
75 /* Number of CPUs which aren't online, but looping in kernel text. */
76 int cpus_stuck_in_kernel;
77 
78 enum ipi_msg_type {
79 	IPI_RESCHEDULE,
80 	IPI_CALL_FUNC,
81 	IPI_CPU_STOP,
82 	IPI_CPU_CRASH_STOP,
83 	IPI_TIMER,
84 	IPI_IRQ_WORK,
85 	IPI_WAKEUP
86 };
87 
88 #ifdef CONFIG_HOTPLUG_CPU
89 static int op_cpu_kill(unsigned int cpu);
90 #else
91 static inline int op_cpu_kill(unsigned int cpu)
92 {
93 	return -ENOSYS;
94 }
95 #endif
96 
97 
98 /*
99  * Boot a secondary CPU, and assign it the specified idle task.
100  * This also gives us the initial stack to use for this CPU.
101  */
102 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
103 {
104 	if (cpu_ops[cpu]->cpu_boot)
105 		return cpu_ops[cpu]->cpu_boot(cpu);
106 
107 	return -EOPNOTSUPP;
108 }
109 
110 static DECLARE_COMPLETION(cpu_running);
111 
112 int __cpu_up(unsigned int cpu, struct task_struct *idle)
113 {
114 	int ret;
115 	long status;
116 
117 	/*
118 	 * We need to tell the secondary core where to find its stack and the
119 	 * page tables.
120 	 */
121 	secondary_data.task = idle;
122 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
123 	update_cpu_boot_status(CPU_MMU_OFF);
124 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
125 
126 	/*
127 	 * Now bring the CPU into our world.
128 	 */
129 	ret = boot_secondary(cpu, idle);
130 	if (ret == 0) {
131 		/*
132 		 * CPU was successfully started, wait for it to come online or
133 		 * time out.
134 		 */
135 		wait_for_completion_timeout(&cpu_running,
136 					    msecs_to_jiffies(1000));
137 
138 		if (!cpu_online(cpu)) {
139 			pr_crit("CPU%u: failed to come online\n", cpu);
140 			ret = -EIO;
141 		}
142 	} else {
143 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
144 		return ret;
145 	}
146 
147 	secondary_data.task = NULL;
148 	secondary_data.stack = NULL;
149 	status = READ_ONCE(secondary_data.status);
150 	if (ret && status) {
151 
152 		if (status == CPU_MMU_OFF)
153 			status = READ_ONCE(__early_cpu_boot_status);
154 
155 		switch (status & CPU_BOOT_STATUS_MASK) {
156 		default:
157 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
158 					cpu, status);
159 			break;
160 		case CPU_KILL_ME:
161 			if (!op_cpu_kill(cpu)) {
162 				pr_crit("CPU%u: died during early boot\n", cpu);
163 				break;
164 			}
165 			/* Fall through */
166 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
167 		case CPU_STUCK_IN_KERNEL:
168 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
169 			if (status & CPU_STUCK_REASON_52_BIT_VA)
170 				pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
171 			if (status & CPU_STUCK_REASON_NO_GRAN)
172 				pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
173 			cpus_stuck_in_kernel++;
174 			break;
175 		case CPU_PANIC_KERNEL:
176 			panic("CPU%u detected unsupported configuration\n", cpu);
177 		}
178 	}
179 
180 	return ret;
181 }
182 
183 /*
184  * This is the secondary CPU boot entry.  We're using this CPUs
185  * idle thread stack, but a set of temporary page tables.
186  */
187 asmlinkage notrace void secondary_start_kernel(void)
188 {
189 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
190 	struct mm_struct *mm = &init_mm;
191 	unsigned int cpu;
192 
193 	cpu = task_cpu(current);
194 	set_my_cpu_offset(per_cpu_offset(cpu));
195 
196 	/*
197 	 * All kernel threads share the same mm context; grab a
198 	 * reference and switch to it.
199 	 */
200 	mmgrab(mm);
201 	current->active_mm = mm;
202 
203 	/*
204 	 * TTBR0 is only used for the identity mapping at this stage. Make it
205 	 * point to zero page to avoid speculatively fetching new entries.
206 	 */
207 	cpu_uninstall_idmap();
208 
209 	preempt_disable();
210 	trace_hardirqs_off();
211 
212 	/*
213 	 * If the system has established the capabilities, make sure
214 	 * this CPU ticks all of those. If it doesn't, the CPU will
215 	 * fail to come online.
216 	 */
217 	check_local_cpu_capabilities();
218 
219 	if (cpu_ops[cpu]->cpu_postboot)
220 		cpu_ops[cpu]->cpu_postboot();
221 
222 	/*
223 	 * Log the CPU info before it is marked online and might get read.
224 	 */
225 	cpuinfo_store_cpu();
226 
227 	/*
228 	 * Enable GIC and timers.
229 	 */
230 	notify_cpu_starting(cpu);
231 
232 	store_cpu_topology(cpu);
233 	numa_add_cpu(cpu);
234 
235 	/*
236 	 * OK, now it's safe to let the boot CPU continue.  Wait for
237 	 * the CPU migration code to notice that the CPU is online
238 	 * before we continue.
239 	 */
240 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
241 					 cpu, (unsigned long)mpidr,
242 					 read_cpuid_id());
243 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
244 	set_cpu_online(cpu, true);
245 	complete(&cpu_running);
246 
247 	local_daif_restore(DAIF_PROCCTX);
248 
249 	/*
250 	 * OK, it's off to the idle thread for us
251 	 */
252 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
253 }
254 
255 #ifdef CONFIG_HOTPLUG_CPU
256 static int op_cpu_disable(unsigned int cpu)
257 {
258 	/*
259 	 * If we don't have a cpu_die method, abort before we reach the point
260 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
261 	 */
262 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
263 		return -EOPNOTSUPP;
264 
265 	/*
266 	 * We may need to abort a hot unplug for some other mechanism-specific
267 	 * reason.
268 	 */
269 	if (cpu_ops[cpu]->cpu_disable)
270 		return cpu_ops[cpu]->cpu_disable(cpu);
271 
272 	return 0;
273 }
274 
275 /*
276  * __cpu_disable runs on the processor to be shutdown.
277  */
278 int __cpu_disable(void)
279 {
280 	unsigned int cpu = smp_processor_id();
281 	int ret;
282 
283 	ret = op_cpu_disable(cpu);
284 	if (ret)
285 		return ret;
286 
287 	remove_cpu_topology(cpu);
288 	numa_remove_cpu(cpu);
289 
290 	/*
291 	 * Take this CPU offline.  Once we clear this, we can't return,
292 	 * and we must not schedule until we're ready to give up the cpu.
293 	 */
294 	set_cpu_online(cpu, false);
295 
296 	/*
297 	 * OK - migrate IRQs away from this CPU
298 	 */
299 	irq_migrate_all_off_this_cpu();
300 
301 	return 0;
302 }
303 
304 static int op_cpu_kill(unsigned int cpu)
305 {
306 	/*
307 	 * If we have no means of synchronising with the dying CPU, then assume
308 	 * that it is really dead. We can only wait for an arbitrary length of
309 	 * time and hope that it's dead, so let's skip the wait and just hope.
310 	 */
311 	if (!cpu_ops[cpu]->cpu_kill)
312 		return 0;
313 
314 	return cpu_ops[cpu]->cpu_kill(cpu);
315 }
316 
317 /*
318  * called on the thread which is asking for a CPU to be shutdown -
319  * waits until shutdown has completed, or it is timed out.
320  */
321 void __cpu_die(unsigned int cpu)
322 {
323 	int err;
324 
325 	if (!cpu_wait_death(cpu, 5)) {
326 		pr_crit("CPU%u: cpu didn't die\n", cpu);
327 		return;
328 	}
329 	pr_notice("CPU%u: shutdown\n", cpu);
330 
331 	/*
332 	 * Now that the dying CPU is beyond the point of no return w.r.t.
333 	 * in-kernel synchronisation, try to get the firwmare to help us to
334 	 * verify that it has really left the kernel before we consider
335 	 * clobbering anything it might still be using.
336 	 */
337 	err = op_cpu_kill(cpu);
338 	if (err)
339 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
340 			cpu, err);
341 }
342 
343 /*
344  * Called from the idle thread for the CPU which has been shutdown.
345  *
346  */
347 void cpu_die(void)
348 {
349 	unsigned int cpu = smp_processor_id();
350 
351 	idle_task_exit();
352 
353 	local_daif_mask();
354 
355 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
356 	(void)cpu_report_death();
357 
358 	/*
359 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
360 	 * mechanism must perform all required cache maintenance to ensure that
361 	 * no dirty lines are lost in the process of shutting down the CPU.
362 	 */
363 	cpu_ops[cpu]->cpu_die(cpu);
364 
365 	BUG();
366 }
367 #endif
368 
369 /*
370  * Kill the calling secondary CPU, early in bringup before it is turned
371  * online.
372  */
373 void cpu_die_early(void)
374 {
375 	int cpu = smp_processor_id();
376 
377 	pr_crit("CPU%d: will not boot\n", cpu);
378 
379 	/* Mark this CPU absent */
380 	set_cpu_present(cpu, 0);
381 
382 #ifdef CONFIG_HOTPLUG_CPU
383 	update_cpu_boot_status(CPU_KILL_ME);
384 	/* Check if we can park ourselves */
385 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
386 		cpu_ops[cpu]->cpu_die(cpu);
387 #endif
388 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
389 
390 	cpu_park_loop();
391 }
392 
393 static void __init hyp_mode_check(void)
394 {
395 	if (is_hyp_mode_available())
396 		pr_info("CPU: All CPU(s) started at EL2\n");
397 	else if (is_hyp_mode_mismatched())
398 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
399 			   "CPU: CPUs started in inconsistent modes");
400 	else
401 		pr_info("CPU: All CPU(s) started at EL1\n");
402 }
403 
404 void __init smp_cpus_done(unsigned int max_cpus)
405 {
406 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
407 	setup_cpu_features();
408 	hyp_mode_check();
409 	apply_alternatives_all();
410 	mark_linear_text_alias_ro();
411 }
412 
413 void __init smp_prepare_boot_cpu(void)
414 {
415 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
416 	/*
417 	 * Initialise the static keys early as they may be enabled by the
418 	 * cpufeature code.
419 	 */
420 	jump_label_init();
421 	cpuinfo_store_boot_cpu();
422 }
423 
424 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
425 {
426 	const __be32 *cell;
427 	u64 hwid;
428 
429 	/*
430 	 * A cpu node with missing "reg" property is
431 	 * considered invalid to build a cpu_logical_map
432 	 * entry.
433 	 */
434 	cell = of_get_property(dn, "reg", NULL);
435 	if (!cell) {
436 		pr_err("%pOF: missing reg property\n", dn);
437 		return INVALID_HWID;
438 	}
439 
440 	hwid = of_read_number(cell, of_n_addr_cells(dn));
441 	/*
442 	 * Non affinity bits must be set to 0 in the DT
443 	 */
444 	if (hwid & ~MPIDR_HWID_BITMASK) {
445 		pr_err("%pOF: invalid reg property\n", dn);
446 		return INVALID_HWID;
447 	}
448 	return hwid;
449 }
450 
451 /*
452  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
453  * entries and check for duplicates. If any is found just ignore the
454  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
455  * matching valid MPIDR values.
456  */
457 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
458 {
459 	unsigned int i;
460 
461 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
462 		if (cpu_logical_map(i) == hwid)
463 			return true;
464 	return false;
465 }
466 
467 /*
468  * Initialize cpu operations for a logical cpu and
469  * set it in the possible mask on success
470  */
471 static int __init smp_cpu_setup(int cpu)
472 {
473 	if (cpu_read_ops(cpu))
474 		return -ENODEV;
475 
476 	if (cpu_ops[cpu]->cpu_init(cpu))
477 		return -ENODEV;
478 
479 	set_cpu_possible(cpu, true);
480 
481 	return 0;
482 }
483 
484 static bool bootcpu_valid __initdata;
485 static unsigned int cpu_count = 1;
486 
487 #ifdef CONFIG_ACPI
488 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
489 
490 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
491 {
492 	return &cpu_madt_gicc[cpu];
493 }
494 
495 /*
496  * acpi_map_gic_cpu_interface - parse processor MADT entry
497  *
498  * Carry out sanity checks on MADT processor entry and initialize
499  * cpu_logical_map on success
500  */
501 static void __init
502 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
503 {
504 	u64 hwid = processor->arm_mpidr;
505 
506 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
507 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
508 		return;
509 	}
510 
511 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
512 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
513 		return;
514 	}
515 
516 	if (is_mpidr_duplicate(cpu_count, hwid)) {
517 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
518 		return;
519 	}
520 
521 	/* Check if GICC structure of boot CPU is available in the MADT */
522 	if (cpu_logical_map(0) == hwid) {
523 		if (bootcpu_valid) {
524 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
525 			       hwid);
526 			return;
527 		}
528 		bootcpu_valid = true;
529 		cpu_madt_gicc[0] = *processor;
530 		return;
531 	}
532 
533 	if (cpu_count >= NR_CPUS)
534 		return;
535 
536 	/* map the logical cpu id to cpu MPIDR */
537 	cpu_logical_map(cpu_count) = hwid;
538 
539 	cpu_madt_gicc[cpu_count] = *processor;
540 
541 	/*
542 	 * Set-up the ACPI parking protocol cpu entries
543 	 * while initializing the cpu_logical_map to
544 	 * avoid parsing MADT entries multiple times for
545 	 * nothing (ie a valid cpu_logical_map entry should
546 	 * contain a valid parking protocol data set to
547 	 * initialize the cpu if the parking protocol is
548 	 * the only available enable method).
549 	 */
550 	acpi_set_mailbox_entry(cpu_count, processor);
551 
552 	cpu_count++;
553 }
554 
555 static int __init
556 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
557 			     const unsigned long end)
558 {
559 	struct acpi_madt_generic_interrupt *processor;
560 
561 	processor = (struct acpi_madt_generic_interrupt *)header;
562 	if (BAD_MADT_GICC_ENTRY(processor, end))
563 		return -EINVAL;
564 
565 	acpi_table_print_madt_entry(header);
566 
567 	acpi_map_gic_cpu_interface(processor);
568 
569 	return 0;
570 }
571 
572 static void __init acpi_parse_and_init_cpus(void)
573 {
574 	int i;
575 
576 	/*
577 	 * do a walk of MADT to determine how many CPUs
578 	 * we have including disabled CPUs, and get information
579 	 * we need for SMP init.
580 	 */
581 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
582 				      acpi_parse_gic_cpu_interface, 0);
583 
584 	/*
585 	 * In ACPI, SMP and CPU NUMA information is provided in separate
586 	 * static tables, namely the MADT and the SRAT.
587 	 *
588 	 * Thus, it is simpler to first create the cpu logical map through
589 	 * an MADT walk and then map the logical cpus to their node ids
590 	 * as separate steps.
591 	 */
592 	acpi_map_cpus_to_nodes();
593 
594 	for (i = 0; i < nr_cpu_ids; i++)
595 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
596 }
597 #else
598 #define acpi_parse_and_init_cpus(...)	do { } while (0)
599 #endif
600 
601 /*
602  * Enumerate the possible CPU set from the device tree and build the
603  * cpu logical map array containing MPIDR values related to logical
604  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
605  */
606 static void __init of_parse_and_init_cpus(void)
607 {
608 	struct device_node *dn;
609 
610 	for_each_of_cpu_node(dn) {
611 		u64 hwid = of_get_cpu_mpidr(dn);
612 
613 		if (hwid == INVALID_HWID)
614 			goto next;
615 
616 		if (is_mpidr_duplicate(cpu_count, hwid)) {
617 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
618 				dn);
619 			goto next;
620 		}
621 
622 		/*
623 		 * The numbering scheme requires that the boot CPU
624 		 * must be assigned logical id 0. Record it so that
625 		 * the logical map built from DT is validated and can
626 		 * be used.
627 		 */
628 		if (hwid == cpu_logical_map(0)) {
629 			if (bootcpu_valid) {
630 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
631 					dn);
632 				goto next;
633 			}
634 
635 			bootcpu_valid = true;
636 			early_map_cpu_to_node(0, of_node_to_nid(dn));
637 
638 			/*
639 			 * cpu_logical_map has already been
640 			 * initialized and the boot cpu doesn't need
641 			 * the enable-method so continue without
642 			 * incrementing cpu.
643 			 */
644 			continue;
645 		}
646 
647 		if (cpu_count >= NR_CPUS)
648 			goto next;
649 
650 		pr_debug("cpu logical map 0x%llx\n", hwid);
651 		cpu_logical_map(cpu_count) = hwid;
652 
653 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
654 next:
655 		cpu_count++;
656 	}
657 }
658 
659 /*
660  * Enumerate the possible CPU set from the device tree or ACPI and build the
661  * cpu logical map array containing MPIDR values related to logical
662  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
663  */
664 void __init smp_init_cpus(void)
665 {
666 	int i;
667 
668 	if (acpi_disabled)
669 		of_parse_and_init_cpus();
670 	else
671 		acpi_parse_and_init_cpus();
672 
673 	if (cpu_count > nr_cpu_ids)
674 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
675 			cpu_count, nr_cpu_ids);
676 
677 	if (!bootcpu_valid) {
678 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
679 		return;
680 	}
681 
682 	/*
683 	 * We need to set the cpu_logical_map entries before enabling
684 	 * the cpus so that cpu processor description entries (DT cpu nodes
685 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
686 	 * with entries in cpu_logical_map while initializing the cpus.
687 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
688 	 */
689 	for (i = 1; i < nr_cpu_ids; i++) {
690 		if (cpu_logical_map(i) != INVALID_HWID) {
691 			if (smp_cpu_setup(i))
692 				cpu_logical_map(i) = INVALID_HWID;
693 		}
694 	}
695 }
696 
697 void __init smp_prepare_cpus(unsigned int max_cpus)
698 {
699 	int err;
700 	unsigned int cpu;
701 	unsigned int this_cpu;
702 
703 	init_cpu_topology();
704 
705 	this_cpu = smp_processor_id();
706 	store_cpu_topology(this_cpu);
707 	numa_store_cpu_info(this_cpu);
708 	numa_add_cpu(this_cpu);
709 
710 	/*
711 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
712 	 * secondary CPUs present.
713 	 */
714 	if (max_cpus == 0)
715 		return;
716 
717 	/*
718 	 * Initialise the present map (which describes the set of CPUs
719 	 * actually populated at the present time) and release the
720 	 * secondaries from the bootloader.
721 	 */
722 	for_each_possible_cpu(cpu) {
723 
724 		per_cpu(cpu_number, cpu) = cpu;
725 
726 		if (cpu == smp_processor_id())
727 			continue;
728 
729 		if (!cpu_ops[cpu])
730 			continue;
731 
732 		err = cpu_ops[cpu]->cpu_prepare(cpu);
733 		if (err)
734 			continue;
735 
736 		set_cpu_present(cpu, true);
737 		numa_store_cpu_info(cpu);
738 	}
739 }
740 
741 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
742 
743 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
744 {
745 	__smp_cross_call = fn;
746 }
747 
748 static const char *ipi_types[NR_IPI] __tracepoint_string = {
749 #define S(x,s)	[x] = s
750 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
751 	S(IPI_CALL_FUNC, "Function call interrupts"),
752 	S(IPI_CPU_STOP, "CPU stop interrupts"),
753 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
754 	S(IPI_TIMER, "Timer broadcast interrupts"),
755 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
756 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
757 };
758 
759 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
760 {
761 	trace_ipi_raise(target, ipi_types[ipinr]);
762 	__smp_cross_call(target, ipinr);
763 }
764 
765 void show_ipi_list(struct seq_file *p, int prec)
766 {
767 	unsigned int cpu, i;
768 
769 	for (i = 0; i < NR_IPI; i++) {
770 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
771 			   prec >= 4 ? " " : "");
772 		for_each_online_cpu(cpu)
773 			seq_printf(p, "%10u ",
774 				   __get_irq_stat(cpu, ipi_irqs[i]));
775 		seq_printf(p, "      %s\n", ipi_types[i]);
776 	}
777 }
778 
779 u64 smp_irq_stat_cpu(unsigned int cpu)
780 {
781 	u64 sum = 0;
782 	int i;
783 
784 	for (i = 0; i < NR_IPI; i++)
785 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
786 
787 	return sum;
788 }
789 
790 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
791 {
792 	smp_cross_call(mask, IPI_CALL_FUNC);
793 }
794 
795 void arch_send_call_function_single_ipi(int cpu)
796 {
797 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
798 }
799 
800 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
801 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
802 {
803 	smp_cross_call(mask, IPI_WAKEUP);
804 }
805 #endif
806 
807 #ifdef CONFIG_IRQ_WORK
808 void arch_irq_work_raise(void)
809 {
810 	if (__smp_cross_call)
811 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
812 }
813 #endif
814 
815 /*
816  * ipi_cpu_stop - handle IPI from smp_send_stop()
817  */
818 static void ipi_cpu_stop(unsigned int cpu)
819 {
820 	set_cpu_online(cpu, false);
821 
822 	local_daif_mask();
823 	sdei_mask_local_cpu();
824 
825 	while (1)
826 		cpu_relax();
827 }
828 
829 #ifdef CONFIG_KEXEC_CORE
830 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
831 #endif
832 
833 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
834 {
835 #ifdef CONFIG_KEXEC_CORE
836 	crash_save_cpu(regs, cpu);
837 
838 	atomic_dec(&waiting_for_crash_ipi);
839 
840 	local_irq_disable();
841 	sdei_mask_local_cpu();
842 
843 #ifdef CONFIG_HOTPLUG_CPU
844 	if (cpu_ops[cpu]->cpu_die)
845 		cpu_ops[cpu]->cpu_die(cpu);
846 #endif
847 
848 	/* just in case */
849 	cpu_park_loop();
850 #endif
851 }
852 
853 /*
854  * Main handler for inter-processor interrupts
855  */
856 void handle_IPI(int ipinr, struct pt_regs *regs)
857 {
858 	unsigned int cpu = smp_processor_id();
859 	struct pt_regs *old_regs = set_irq_regs(regs);
860 
861 	if ((unsigned)ipinr < NR_IPI) {
862 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
863 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
864 	}
865 
866 	switch (ipinr) {
867 	case IPI_RESCHEDULE:
868 		scheduler_ipi();
869 		break;
870 
871 	case IPI_CALL_FUNC:
872 		irq_enter();
873 		generic_smp_call_function_interrupt();
874 		irq_exit();
875 		break;
876 
877 	case IPI_CPU_STOP:
878 		irq_enter();
879 		ipi_cpu_stop(cpu);
880 		irq_exit();
881 		break;
882 
883 	case IPI_CPU_CRASH_STOP:
884 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
885 			irq_enter();
886 			ipi_cpu_crash_stop(cpu, regs);
887 
888 			unreachable();
889 		}
890 		break;
891 
892 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
893 	case IPI_TIMER:
894 		irq_enter();
895 		tick_receive_broadcast();
896 		irq_exit();
897 		break;
898 #endif
899 
900 #ifdef CONFIG_IRQ_WORK
901 	case IPI_IRQ_WORK:
902 		irq_enter();
903 		irq_work_run();
904 		irq_exit();
905 		break;
906 #endif
907 
908 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
909 	case IPI_WAKEUP:
910 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
911 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
912 			  cpu);
913 		break;
914 #endif
915 
916 	default:
917 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
918 		break;
919 	}
920 
921 	if ((unsigned)ipinr < NR_IPI)
922 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
923 	set_irq_regs(old_regs);
924 }
925 
926 void smp_send_reschedule(int cpu)
927 {
928 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
929 }
930 
931 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
932 void tick_broadcast(const struct cpumask *mask)
933 {
934 	smp_cross_call(mask, IPI_TIMER);
935 }
936 #endif
937 
938 void smp_send_stop(void)
939 {
940 	unsigned long timeout;
941 
942 	if (num_online_cpus() > 1) {
943 		cpumask_t mask;
944 
945 		cpumask_copy(&mask, cpu_online_mask);
946 		cpumask_clear_cpu(smp_processor_id(), &mask);
947 
948 		if (system_state <= SYSTEM_RUNNING)
949 			pr_crit("SMP: stopping secondary CPUs\n");
950 		smp_cross_call(&mask, IPI_CPU_STOP);
951 	}
952 
953 	/* Wait up to one second for other CPUs to stop */
954 	timeout = USEC_PER_SEC;
955 	while (num_online_cpus() > 1 && timeout--)
956 		udelay(1);
957 
958 	if (num_online_cpus() > 1)
959 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
960 			   cpumask_pr_args(cpu_online_mask));
961 
962 	sdei_mask_local_cpu();
963 }
964 
965 #ifdef CONFIG_KEXEC_CORE
966 void crash_smp_send_stop(void)
967 {
968 	static int cpus_stopped;
969 	cpumask_t mask;
970 	unsigned long timeout;
971 
972 	/*
973 	 * This function can be called twice in panic path, but obviously
974 	 * we execute this only once.
975 	 */
976 	if (cpus_stopped)
977 		return;
978 
979 	cpus_stopped = 1;
980 
981 	if (num_online_cpus() == 1) {
982 		sdei_mask_local_cpu();
983 		return;
984 	}
985 
986 	cpumask_copy(&mask, cpu_online_mask);
987 	cpumask_clear_cpu(smp_processor_id(), &mask);
988 
989 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
990 
991 	pr_crit("SMP: stopping secondary CPUs\n");
992 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
993 
994 	/* Wait up to one second for other CPUs to stop */
995 	timeout = USEC_PER_SEC;
996 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
997 		udelay(1);
998 
999 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1000 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1001 			   cpumask_pr_args(&mask));
1002 
1003 	sdei_mask_local_cpu();
1004 }
1005 
1006 bool smp_crash_stop_failed(void)
1007 {
1008 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1009 }
1010 #endif
1011 
1012 /*
1013  * not supported here
1014  */
1015 int setup_profiling_timer(unsigned int multiplier)
1016 {
1017 	return -EINVAL;
1018 }
1019 
1020 static bool have_cpu_die(void)
1021 {
1022 #ifdef CONFIG_HOTPLUG_CPU
1023 	int any_cpu = raw_smp_processor_id();
1024 
1025 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1026 		return true;
1027 #endif
1028 	return false;
1029 }
1030 
1031 bool cpus_are_stuck_in_kernel(void)
1032 {
1033 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1034 
1035 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1036 }
1037