1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/acpi.h> 21 #include <linux/arm_sdei.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/spinlock.h> 25 #include <linux/sched/mm.h> 26 #include <linux/sched/hotplug.h> 27 #include <linux/sched/task_stack.h> 28 #include <linux/interrupt.h> 29 #include <linux/cache.h> 30 #include <linux/profile.h> 31 #include <linux/errno.h> 32 #include <linux/mm.h> 33 #include <linux/err.h> 34 #include <linux/cpu.h> 35 #include <linux/smp.h> 36 #include <linux/seq_file.h> 37 #include <linux/irq.h> 38 #include <linux/percpu.h> 39 #include <linux/clockchips.h> 40 #include <linux/completion.h> 41 #include <linux/of.h> 42 #include <linux/irq_work.h> 43 #include <linux/kexec.h> 44 45 #include <asm/alternative.h> 46 #include <asm/atomic.h> 47 #include <asm/cacheflush.h> 48 #include <asm/cpu.h> 49 #include <asm/cputype.h> 50 #include <asm/cpu_ops.h> 51 #include <asm/daifflags.h> 52 #include <asm/mmu_context.h> 53 #include <asm/numa.h> 54 #include <asm/pgtable.h> 55 #include <asm/pgalloc.h> 56 #include <asm/processor.h> 57 #include <asm/smp_plat.h> 58 #include <asm/sections.h> 59 #include <asm/tlbflush.h> 60 #include <asm/ptrace.h> 61 #include <asm/virt.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/ipi.h> 65 66 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 67 EXPORT_PER_CPU_SYMBOL(cpu_number); 68 69 /* 70 * as from 2.5, kernels no longer have an init_tasks structure 71 * so we need some other way of telling a new secondary core 72 * where to place its SVC stack 73 */ 74 struct secondary_data secondary_data; 75 /* Number of CPUs which aren't online, but looping in kernel text. */ 76 int cpus_stuck_in_kernel; 77 78 enum ipi_msg_type { 79 IPI_RESCHEDULE, 80 IPI_CALL_FUNC, 81 IPI_CPU_STOP, 82 IPI_CPU_CRASH_STOP, 83 IPI_TIMER, 84 IPI_IRQ_WORK, 85 IPI_WAKEUP 86 }; 87 88 #ifdef CONFIG_HOTPLUG_CPU 89 static int op_cpu_kill(unsigned int cpu); 90 #else 91 static inline int op_cpu_kill(unsigned int cpu) 92 { 93 return -ENOSYS; 94 } 95 #endif 96 97 98 /* 99 * Boot a secondary CPU, and assign it the specified idle task. 100 * This also gives us the initial stack to use for this CPU. 101 */ 102 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 103 { 104 if (cpu_ops[cpu]->cpu_boot) 105 return cpu_ops[cpu]->cpu_boot(cpu); 106 107 return -EOPNOTSUPP; 108 } 109 110 static DECLARE_COMPLETION(cpu_running); 111 112 int __cpu_up(unsigned int cpu, struct task_struct *idle) 113 { 114 int ret; 115 long status; 116 117 /* 118 * We need to tell the secondary core where to find its stack and the 119 * page tables. 120 */ 121 secondary_data.task = idle; 122 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 123 update_cpu_boot_status(CPU_MMU_OFF); 124 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 125 126 /* 127 * Now bring the CPU into our world. 128 */ 129 ret = boot_secondary(cpu, idle); 130 if (ret == 0) { 131 /* 132 * CPU was successfully started, wait for it to come online or 133 * time out. 134 */ 135 wait_for_completion_timeout(&cpu_running, 136 msecs_to_jiffies(1000)); 137 138 if (!cpu_online(cpu)) { 139 pr_crit("CPU%u: failed to come online\n", cpu); 140 ret = -EIO; 141 } 142 } else { 143 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 144 } 145 146 secondary_data.task = NULL; 147 secondary_data.stack = NULL; 148 status = READ_ONCE(secondary_data.status); 149 if (ret && status) { 150 151 if (status == CPU_MMU_OFF) 152 status = READ_ONCE(__early_cpu_boot_status); 153 154 switch (status) { 155 default: 156 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 157 cpu, status); 158 break; 159 case CPU_KILL_ME: 160 if (!op_cpu_kill(cpu)) { 161 pr_crit("CPU%u: died during early boot\n", cpu); 162 break; 163 } 164 /* Fall through */ 165 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 166 case CPU_STUCK_IN_KERNEL: 167 pr_crit("CPU%u: is stuck in kernel\n", cpu); 168 cpus_stuck_in_kernel++; 169 break; 170 case CPU_PANIC_KERNEL: 171 panic("CPU%u detected unsupported configuration\n", cpu); 172 } 173 } 174 175 return ret; 176 } 177 178 /* 179 * This is the secondary CPU boot entry. We're using this CPUs 180 * idle thread stack, but a set of temporary page tables. 181 */ 182 asmlinkage void secondary_start_kernel(void) 183 { 184 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 185 struct mm_struct *mm = &init_mm; 186 unsigned int cpu; 187 188 cpu = task_cpu(current); 189 set_my_cpu_offset(per_cpu_offset(cpu)); 190 191 /* 192 * All kernel threads share the same mm context; grab a 193 * reference and switch to it. 194 */ 195 mmgrab(mm); 196 current->active_mm = mm; 197 198 /* 199 * TTBR0 is only used for the identity mapping at this stage. Make it 200 * point to zero page to avoid speculatively fetching new entries. 201 */ 202 cpu_uninstall_idmap(); 203 204 preempt_disable(); 205 trace_hardirqs_off(); 206 207 /* 208 * If the system has established the capabilities, make sure 209 * this CPU ticks all of those. If it doesn't, the CPU will 210 * fail to come online. 211 */ 212 check_local_cpu_capabilities(); 213 214 if (cpu_ops[cpu]->cpu_postboot) 215 cpu_ops[cpu]->cpu_postboot(); 216 217 /* 218 * Log the CPU info before it is marked online and might get read. 219 */ 220 cpuinfo_store_cpu(); 221 222 /* 223 * Enable GIC and timers. 224 */ 225 notify_cpu_starting(cpu); 226 227 store_cpu_topology(cpu); 228 229 /* 230 * OK, now it's safe to let the boot CPU continue. Wait for 231 * the CPU migration code to notice that the CPU is online 232 * before we continue. 233 */ 234 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 235 cpu, (unsigned long)mpidr, 236 read_cpuid_id()); 237 update_cpu_boot_status(CPU_BOOT_SUCCESS); 238 set_cpu_online(cpu, true); 239 complete(&cpu_running); 240 241 local_daif_restore(DAIF_PROCCTX); 242 243 /* 244 * OK, it's off to the idle thread for us 245 */ 246 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 247 } 248 249 #ifdef CONFIG_HOTPLUG_CPU 250 static int op_cpu_disable(unsigned int cpu) 251 { 252 /* 253 * If we don't have a cpu_die method, abort before we reach the point 254 * of no return. CPU0 may not have an cpu_ops, so test for it. 255 */ 256 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 257 return -EOPNOTSUPP; 258 259 /* 260 * We may need to abort a hot unplug for some other mechanism-specific 261 * reason. 262 */ 263 if (cpu_ops[cpu]->cpu_disable) 264 return cpu_ops[cpu]->cpu_disable(cpu); 265 266 return 0; 267 } 268 269 /* 270 * __cpu_disable runs on the processor to be shutdown. 271 */ 272 int __cpu_disable(void) 273 { 274 unsigned int cpu = smp_processor_id(); 275 int ret; 276 277 ret = op_cpu_disable(cpu); 278 if (ret) 279 return ret; 280 281 /* 282 * Take this CPU offline. Once we clear this, we can't return, 283 * and we must not schedule until we're ready to give up the cpu. 284 */ 285 set_cpu_online(cpu, false); 286 287 /* 288 * OK - migrate IRQs away from this CPU 289 */ 290 irq_migrate_all_off_this_cpu(); 291 292 return 0; 293 } 294 295 static int op_cpu_kill(unsigned int cpu) 296 { 297 /* 298 * If we have no means of synchronising with the dying CPU, then assume 299 * that it is really dead. We can only wait for an arbitrary length of 300 * time and hope that it's dead, so let's skip the wait and just hope. 301 */ 302 if (!cpu_ops[cpu]->cpu_kill) 303 return 0; 304 305 return cpu_ops[cpu]->cpu_kill(cpu); 306 } 307 308 /* 309 * called on the thread which is asking for a CPU to be shutdown - 310 * waits until shutdown has completed, or it is timed out. 311 */ 312 void __cpu_die(unsigned int cpu) 313 { 314 int err; 315 316 if (!cpu_wait_death(cpu, 5)) { 317 pr_crit("CPU%u: cpu didn't die\n", cpu); 318 return; 319 } 320 pr_notice("CPU%u: shutdown\n", cpu); 321 322 /* 323 * Now that the dying CPU is beyond the point of no return w.r.t. 324 * in-kernel synchronisation, try to get the firwmare to help us to 325 * verify that it has really left the kernel before we consider 326 * clobbering anything it might still be using. 327 */ 328 err = op_cpu_kill(cpu); 329 if (err) 330 pr_warn("CPU%d may not have shut down cleanly: %d\n", 331 cpu, err); 332 } 333 334 /* 335 * Called from the idle thread for the CPU which has been shutdown. 336 * 337 */ 338 void cpu_die(void) 339 { 340 unsigned int cpu = smp_processor_id(); 341 342 idle_task_exit(); 343 344 local_daif_mask(); 345 346 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 347 (void)cpu_report_death(); 348 349 /* 350 * Actually shutdown the CPU. This must never fail. The specific hotplug 351 * mechanism must perform all required cache maintenance to ensure that 352 * no dirty lines are lost in the process of shutting down the CPU. 353 */ 354 cpu_ops[cpu]->cpu_die(cpu); 355 356 BUG(); 357 } 358 #endif 359 360 /* 361 * Kill the calling secondary CPU, early in bringup before it is turned 362 * online. 363 */ 364 void cpu_die_early(void) 365 { 366 int cpu = smp_processor_id(); 367 368 pr_crit("CPU%d: will not boot\n", cpu); 369 370 /* Mark this CPU absent */ 371 set_cpu_present(cpu, 0); 372 373 #ifdef CONFIG_HOTPLUG_CPU 374 update_cpu_boot_status(CPU_KILL_ME); 375 /* Check if we can park ourselves */ 376 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 377 cpu_ops[cpu]->cpu_die(cpu); 378 #endif 379 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 380 381 cpu_park_loop(); 382 } 383 384 static void __init hyp_mode_check(void) 385 { 386 if (is_hyp_mode_available()) 387 pr_info("CPU: All CPU(s) started at EL2\n"); 388 else if (is_hyp_mode_mismatched()) 389 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 390 "CPU: CPUs started in inconsistent modes"); 391 else 392 pr_info("CPU: All CPU(s) started at EL1\n"); 393 } 394 395 void __init smp_cpus_done(unsigned int max_cpus) 396 { 397 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 398 setup_cpu_features(); 399 hyp_mode_check(); 400 apply_alternatives_all(); 401 mark_linear_text_alias_ro(); 402 } 403 404 void __init smp_prepare_boot_cpu(void) 405 { 406 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 407 /* 408 * Initialise the static keys early as they may be enabled by the 409 * cpufeature code. 410 */ 411 jump_label_init(); 412 cpuinfo_store_boot_cpu(); 413 } 414 415 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 416 { 417 const __be32 *cell; 418 u64 hwid; 419 420 /* 421 * A cpu node with missing "reg" property is 422 * considered invalid to build a cpu_logical_map 423 * entry. 424 */ 425 cell = of_get_property(dn, "reg", NULL); 426 if (!cell) { 427 pr_err("%pOF: missing reg property\n", dn); 428 return INVALID_HWID; 429 } 430 431 hwid = of_read_number(cell, of_n_addr_cells(dn)); 432 /* 433 * Non affinity bits must be set to 0 in the DT 434 */ 435 if (hwid & ~MPIDR_HWID_BITMASK) { 436 pr_err("%pOF: invalid reg property\n", dn); 437 return INVALID_HWID; 438 } 439 return hwid; 440 } 441 442 /* 443 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 444 * entries and check for duplicates. If any is found just ignore the 445 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 446 * matching valid MPIDR values. 447 */ 448 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 449 { 450 unsigned int i; 451 452 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 453 if (cpu_logical_map(i) == hwid) 454 return true; 455 return false; 456 } 457 458 /* 459 * Initialize cpu operations for a logical cpu and 460 * set it in the possible mask on success 461 */ 462 static int __init smp_cpu_setup(int cpu) 463 { 464 if (cpu_read_ops(cpu)) 465 return -ENODEV; 466 467 if (cpu_ops[cpu]->cpu_init(cpu)) 468 return -ENODEV; 469 470 set_cpu_possible(cpu, true); 471 472 return 0; 473 } 474 475 static bool bootcpu_valid __initdata; 476 static unsigned int cpu_count = 1; 477 478 #ifdef CONFIG_ACPI 479 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 480 481 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 482 { 483 return &cpu_madt_gicc[cpu]; 484 } 485 486 /* 487 * acpi_map_gic_cpu_interface - parse processor MADT entry 488 * 489 * Carry out sanity checks on MADT processor entry and initialize 490 * cpu_logical_map on success 491 */ 492 static void __init 493 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 494 { 495 u64 hwid = processor->arm_mpidr; 496 497 if (!(processor->flags & ACPI_MADT_ENABLED)) { 498 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 499 return; 500 } 501 502 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 503 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 504 return; 505 } 506 507 if (is_mpidr_duplicate(cpu_count, hwid)) { 508 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 509 return; 510 } 511 512 /* Check if GICC structure of boot CPU is available in the MADT */ 513 if (cpu_logical_map(0) == hwid) { 514 if (bootcpu_valid) { 515 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 516 hwid); 517 return; 518 } 519 bootcpu_valid = true; 520 cpu_madt_gicc[0] = *processor; 521 early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid)); 522 return; 523 } 524 525 if (cpu_count >= NR_CPUS) 526 return; 527 528 /* map the logical cpu id to cpu MPIDR */ 529 cpu_logical_map(cpu_count) = hwid; 530 531 cpu_madt_gicc[cpu_count] = *processor; 532 533 /* 534 * Set-up the ACPI parking protocol cpu entries 535 * while initializing the cpu_logical_map to 536 * avoid parsing MADT entries multiple times for 537 * nothing (ie a valid cpu_logical_map entry should 538 * contain a valid parking protocol data set to 539 * initialize the cpu if the parking protocol is 540 * the only available enable method). 541 */ 542 acpi_set_mailbox_entry(cpu_count, processor); 543 544 early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid)); 545 546 cpu_count++; 547 } 548 549 static int __init 550 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, 551 const unsigned long end) 552 { 553 struct acpi_madt_generic_interrupt *processor; 554 555 processor = (struct acpi_madt_generic_interrupt *)header; 556 if (BAD_MADT_GICC_ENTRY(processor, end)) 557 return -EINVAL; 558 559 acpi_table_print_madt_entry(header); 560 561 acpi_map_gic_cpu_interface(processor); 562 563 return 0; 564 } 565 #else 566 #define acpi_table_parse_madt(...) do { } while (0) 567 #endif 568 569 /* 570 * Enumerate the possible CPU set from the device tree and build the 571 * cpu logical map array containing MPIDR values related to logical 572 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 573 */ 574 static void __init of_parse_and_init_cpus(void) 575 { 576 struct device_node *dn; 577 578 for_each_node_by_type(dn, "cpu") { 579 u64 hwid = of_get_cpu_mpidr(dn); 580 581 if (hwid == INVALID_HWID) 582 goto next; 583 584 if (is_mpidr_duplicate(cpu_count, hwid)) { 585 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 586 dn); 587 goto next; 588 } 589 590 /* 591 * The numbering scheme requires that the boot CPU 592 * must be assigned logical id 0. Record it so that 593 * the logical map built from DT is validated and can 594 * be used. 595 */ 596 if (hwid == cpu_logical_map(0)) { 597 if (bootcpu_valid) { 598 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 599 dn); 600 goto next; 601 } 602 603 bootcpu_valid = true; 604 early_map_cpu_to_node(0, of_node_to_nid(dn)); 605 606 /* 607 * cpu_logical_map has already been 608 * initialized and the boot cpu doesn't need 609 * the enable-method so continue without 610 * incrementing cpu. 611 */ 612 continue; 613 } 614 615 if (cpu_count >= NR_CPUS) 616 goto next; 617 618 pr_debug("cpu logical map 0x%llx\n", hwid); 619 cpu_logical_map(cpu_count) = hwid; 620 621 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 622 next: 623 cpu_count++; 624 } 625 } 626 627 /* 628 * Enumerate the possible CPU set from the device tree or ACPI and build the 629 * cpu logical map array containing MPIDR values related to logical 630 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 631 */ 632 void __init smp_init_cpus(void) 633 { 634 int i; 635 636 if (acpi_disabled) 637 of_parse_and_init_cpus(); 638 else 639 /* 640 * do a walk of MADT to determine how many CPUs 641 * we have including disabled CPUs, and get information 642 * we need for SMP init 643 */ 644 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 645 acpi_parse_gic_cpu_interface, 0); 646 647 if (cpu_count > nr_cpu_ids) 648 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 649 cpu_count, nr_cpu_ids); 650 651 if (!bootcpu_valid) { 652 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 653 return; 654 } 655 656 /* 657 * We need to set the cpu_logical_map entries before enabling 658 * the cpus so that cpu processor description entries (DT cpu nodes 659 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 660 * with entries in cpu_logical_map while initializing the cpus. 661 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 662 */ 663 for (i = 1; i < nr_cpu_ids; i++) { 664 if (cpu_logical_map(i) != INVALID_HWID) { 665 if (smp_cpu_setup(i)) 666 cpu_logical_map(i) = INVALID_HWID; 667 } 668 } 669 } 670 671 void __init smp_prepare_cpus(unsigned int max_cpus) 672 { 673 int err; 674 unsigned int cpu; 675 unsigned int this_cpu; 676 677 init_cpu_topology(); 678 679 this_cpu = smp_processor_id(); 680 store_cpu_topology(this_cpu); 681 numa_store_cpu_info(this_cpu); 682 683 /* 684 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 685 * secondary CPUs present. 686 */ 687 if (max_cpus == 0) 688 return; 689 690 /* 691 * Initialise the present map (which describes the set of CPUs 692 * actually populated at the present time) and release the 693 * secondaries from the bootloader. 694 */ 695 for_each_possible_cpu(cpu) { 696 697 per_cpu(cpu_number, cpu) = cpu; 698 699 if (cpu == smp_processor_id()) 700 continue; 701 702 if (!cpu_ops[cpu]) 703 continue; 704 705 err = cpu_ops[cpu]->cpu_prepare(cpu); 706 if (err) 707 continue; 708 709 set_cpu_present(cpu, true); 710 numa_store_cpu_info(cpu); 711 } 712 } 713 714 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 715 716 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 717 { 718 __smp_cross_call = fn; 719 } 720 721 static const char *ipi_types[NR_IPI] __tracepoint_string = { 722 #define S(x,s) [x] = s 723 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 724 S(IPI_CALL_FUNC, "Function call interrupts"), 725 S(IPI_CPU_STOP, "CPU stop interrupts"), 726 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 727 S(IPI_TIMER, "Timer broadcast interrupts"), 728 S(IPI_IRQ_WORK, "IRQ work interrupts"), 729 S(IPI_WAKEUP, "CPU wake-up interrupts"), 730 }; 731 732 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 733 { 734 trace_ipi_raise(target, ipi_types[ipinr]); 735 __smp_cross_call(target, ipinr); 736 } 737 738 void show_ipi_list(struct seq_file *p, int prec) 739 { 740 unsigned int cpu, i; 741 742 for (i = 0; i < NR_IPI; i++) { 743 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 744 prec >= 4 ? " " : ""); 745 for_each_online_cpu(cpu) 746 seq_printf(p, "%10u ", 747 __get_irq_stat(cpu, ipi_irqs[i])); 748 seq_printf(p, " %s\n", ipi_types[i]); 749 } 750 } 751 752 u64 smp_irq_stat_cpu(unsigned int cpu) 753 { 754 u64 sum = 0; 755 int i; 756 757 for (i = 0; i < NR_IPI; i++) 758 sum += __get_irq_stat(cpu, ipi_irqs[i]); 759 760 return sum; 761 } 762 763 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 764 { 765 smp_cross_call(mask, IPI_CALL_FUNC); 766 } 767 768 void arch_send_call_function_single_ipi(int cpu) 769 { 770 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 771 } 772 773 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 774 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 775 { 776 smp_cross_call(mask, IPI_WAKEUP); 777 } 778 #endif 779 780 #ifdef CONFIG_IRQ_WORK 781 void arch_irq_work_raise(void) 782 { 783 if (__smp_cross_call) 784 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 785 } 786 #endif 787 788 /* 789 * ipi_cpu_stop - handle IPI from smp_send_stop() 790 */ 791 static void ipi_cpu_stop(unsigned int cpu) 792 { 793 set_cpu_online(cpu, false); 794 795 local_daif_mask(); 796 sdei_mask_local_cpu(); 797 798 while (1) 799 cpu_relax(); 800 } 801 802 #ifdef CONFIG_KEXEC_CORE 803 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 804 #endif 805 806 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 807 { 808 #ifdef CONFIG_KEXEC_CORE 809 crash_save_cpu(regs, cpu); 810 811 atomic_dec(&waiting_for_crash_ipi); 812 813 local_irq_disable(); 814 sdei_mask_local_cpu(); 815 816 #ifdef CONFIG_HOTPLUG_CPU 817 if (cpu_ops[cpu]->cpu_die) 818 cpu_ops[cpu]->cpu_die(cpu); 819 #endif 820 821 /* just in case */ 822 cpu_park_loop(); 823 #endif 824 } 825 826 /* 827 * Main handler for inter-processor interrupts 828 */ 829 void handle_IPI(int ipinr, struct pt_regs *regs) 830 { 831 unsigned int cpu = smp_processor_id(); 832 struct pt_regs *old_regs = set_irq_regs(regs); 833 834 if ((unsigned)ipinr < NR_IPI) { 835 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 836 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 837 } 838 839 switch (ipinr) { 840 case IPI_RESCHEDULE: 841 scheduler_ipi(); 842 break; 843 844 case IPI_CALL_FUNC: 845 irq_enter(); 846 generic_smp_call_function_interrupt(); 847 irq_exit(); 848 break; 849 850 case IPI_CPU_STOP: 851 irq_enter(); 852 ipi_cpu_stop(cpu); 853 irq_exit(); 854 break; 855 856 case IPI_CPU_CRASH_STOP: 857 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 858 irq_enter(); 859 ipi_cpu_crash_stop(cpu, regs); 860 861 unreachable(); 862 } 863 break; 864 865 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 866 case IPI_TIMER: 867 irq_enter(); 868 tick_receive_broadcast(); 869 irq_exit(); 870 break; 871 #endif 872 873 #ifdef CONFIG_IRQ_WORK 874 case IPI_IRQ_WORK: 875 irq_enter(); 876 irq_work_run(); 877 irq_exit(); 878 break; 879 #endif 880 881 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 882 case IPI_WAKEUP: 883 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 884 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 885 cpu); 886 break; 887 #endif 888 889 default: 890 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 891 break; 892 } 893 894 if ((unsigned)ipinr < NR_IPI) 895 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 896 set_irq_regs(old_regs); 897 } 898 899 void smp_send_reschedule(int cpu) 900 { 901 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 902 } 903 904 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 905 void tick_broadcast(const struct cpumask *mask) 906 { 907 smp_cross_call(mask, IPI_TIMER); 908 } 909 #endif 910 911 void smp_send_stop(void) 912 { 913 unsigned long timeout; 914 915 if (num_online_cpus() > 1) { 916 cpumask_t mask; 917 918 cpumask_copy(&mask, cpu_online_mask); 919 cpumask_clear_cpu(smp_processor_id(), &mask); 920 921 if (system_state <= SYSTEM_RUNNING) 922 pr_crit("SMP: stopping secondary CPUs\n"); 923 smp_cross_call(&mask, IPI_CPU_STOP); 924 } 925 926 /* Wait up to one second for other CPUs to stop */ 927 timeout = USEC_PER_SEC; 928 while (num_online_cpus() > 1 && timeout--) 929 udelay(1); 930 931 if (num_online_cpus() > 1) 932 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 933 cpumask_pr_args(cpu_online_mask)); 934 935 sdei_mask_local_cpu(); 936 } 937 938 #ifdef CONFIG_KEXEC_CORE 939 void crash_smp_send_stop(void) 940 { 941 static int cpus_stopped; 942 cpumask_t mask; 943 unsigned long timeout; 944 945 /* 946 * This function can be called twice in panic path, but obviously 947 * we execute this only once. 948 */ 949 if (cpus_stopped) 950 return; 951 952 cpus_stopped = 1; 953 954 if (num_online_cpus() == 1) { 955 sdei_mask_local_cpu(); 956 return; 957 } 958 959 cpumask_copy(&mask, cpu_online_mask); 960 cpumask_clear_cpu(smp_processor_id(), &mask); 961 962 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); 963 964 pr_crit("SMP: stopping secondary CPUs\n"); 965 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 966 967 /* Wait up to one second for other CPUs to stop */ 968 timeout = USEC_PER_SEC; 969 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 970 udelay(1); 971 972 if (atomic_read(&waiting_for_crash_ipi) > 0) 973 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 974 cpumask_pr_args(&mask)); 975 976 sdei_mask_local_cpu(); 977 } 978 979 bool smp_crash_stop_failed(void) 980 { 981 return (atomic_read(&waiting_for_crash_ipi) > 0); 982 } 983 #endif 984 985 /* 986 * not supported here 987 */ 988 int setup_profiling_timer(unsigned int multiplier) 989 { 990 return -EINVAL; 991 } 992 993 static bool have_cpu_die(void) 994 { 995 #ifdef CONFIG_HOTPLUG_CPU 996 int any_cpu = raw_smp_processor_id(); 997 998 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 999 return true; 1000 #endif 1001 return false; 1002 } 1003 1004 bool cpus_are_stuck_in_kernel(void) 1005 { 1006 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1007 1008 return !!cpus_stuck_in_kernel || smp_spin_tables; 1009 } 1010