xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 25b892b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36 
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 
57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
58 EXPORT_PER_CPU_SYMBOL(cpu_number);
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 static int cpus_stuck_in_kernel;
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CPU_STOP,
73 	IPI_CPU_CRASH_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP,
77 	NR_IPI
78 };
79 
80 static int ipi_irq_base __read_mostly;
81 static int nr_ipi __read_mostly = NR_IPI;
82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
83 
84 static void ipi_setup(int cpu);
85 
86 #ifdef CONFIG_HOTPLUG_CPU
87 static void ipi_teardown(int cpu);
88 static int op_cpu_kill(unsigned int cpu);
89 #else
90 static inline int op_cpu_kill(unsigned int cpu)
91 {
92 	return -ENOSYS;
93 }
94 #endif
95 
96 
97 /*
98  * Boot a secondary CPU, and assign it the specified idle task.
99  * This also gives us the initial stack to use for this CPU.
100  */
101 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
102 {
103 	const struct cpu_operations *ops = get_cpu_ops(cpu);
104 
105 	if (ops->cpu_boot)
106 		return ops->cpu_boot(cpu);
107 
108 	return -EOPNOTSUPP;
109 }
110 
111 static DECLARE_COMPLETION(cpu_running);
112 
113 int __cpu_up(unsigned int cpu, struct task_struct *idle)
114 {
115 	int ret;
116 	long status;
117 
118 	/*
119 	 * We need to tell the secondary core where to find its stack and the
120 	 * page tables.
121 	 */
122 	secondary_data.task = idle;
123 	update_cpu_boot_status(CPU_MMU_OFF);
124 
125 	/* Now bring the CPU into our world */
126 	ret = boot_secondary(cpu, idle);
127 	if (ret) {
128 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
129 		return ret;
130 	}
131 
132 	/*
133 	 * CPU was successfully started, wait for it to come online or
134 	 * time out.
135 	 */
136 	wait_for_completion_timeout(&cpu_running,
137 				    msecs_to_jiffies(5000));
138 	if (cpu_online(cpu))
139 		return 0;
140 
141 	pr_crit("CPU%u: failed to come online\n", cpu);
142 	secondary_data.task = NULL;
143 	status = READ_ONCE(secondary_data.status);
144 	if (status == CPU_MMU_OFF)
145 		status = READ_ONCE(__early_cpu_boot_status);
146 
147 	switch (status & CPU_BOOT_STATUS_MASK) {
148 	default:
149 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
150 		       cpu, status);
151 		cpus_stuck_in_kernel++;
152 		break;
153 	case CPU_KILL_ME:
154 		if (!op_cpu_kill(cpu)) {
155 			pr_crit("CPU%u: died during early boot\n", cpu);
156 			break;
157 		}
158 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
159 		fallthrough;
160 	case CPU_STUCK_IN_KERNEL:
161 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
162 		if (status & CPU_STUCK_REASON_52_BIT_VA)
163 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
164 		if (status & CPU_STUCK_REASON_NO_GRAN) {
165 			pr_crit("CPU%u: does not support %luK granule\n",
166 				cpu, PAGE_SIZE / SZ_1K);
167 		}
168 		cpus_stuck_in_kernel++;
169 		break;
170 	case CPU_PANIC_KERNEL:
171 		panic("CPU%u detected unsupported configuration\n", cpu);
172 	}
173 
174 	return -EIO;
175 }
176 
177 static void init_gic_priority_masking(void)
178 {
179 	u32 cpuflags;
180 
181 	if (WARN_ON(!gic_enable_sre()))
182 		return;
183 
184 	cpuflags = read_sysreg(daif);
185 
186 	WARN_ON(!(cpuflags & PSR_I_BIT));
187 	WARN_ON(!(cpuflags & PSR_F_BIT));
188 
189 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
190 }
191 
192 /*
193  * This is the secondary CPU boot entry.  We're using this CPUs
194  * idle thread stack, but a set of temporary page tables.
195  */
196 asmlinkage notrace void secondary_start_kernel(void)
197 {
198 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
199 	struct mm_struct *mm = &init_mm;
200 	const struct cpu_operations *ops;
201 	unsigned int cpu = smp_processor_id();
202 
203 	/*
204 	 * All kernel threads share the same mm context; grab a
205 	 * reference and switch to it.
206 	 */
207 	mmgrab(mm);
208 	current->active_mm = mm;
209 
210 	/*
211 	 * TTBR0 is only used for the identity mapping at this stage. Make it
212 	 * point to zero page to avoid speculatively fetching new entries.
213 	 */
214 	cpu_uninstall_idmap();
215 
216 	if (system_uses_irq_prio_masking())
217 		init_gic_priority_masking();
218 
219 	rcu_cpu_starting(cpu);
220 	trace_hardirqs_off();
221 
222 	/*
223 	 * If the system has established the capabilities, make sure
224 	 * this CPU ticks all of those. If it doesn't, the CPU will
225 	 * fail to come online.
226 	 */
227 	check_local_cpu_capabilities();
228 
229 	ops = get_cpu_ops(cpu);
230 	if (ops->cpu_postboot)
231 		ops->cpu_postboot();
232 
233 	/*
234 	 * Log the CPU info before it is marked online and might get read.
235 	 */
236 	cpuinfo_store_cpu();
237 
238 	/*
239 	 * Enable GIC and timers.
240 	 */
241 	notify_cpu_starting(cpu);
242 
243 	ipi_setup(cpu);
244 
245 	store_cpu_topology(cpu);
246 	numa_add_cpu(cpu);
247 
248 	/*
249 	 * OK, now it's safe to let the boot CPU continue.  Wait for
250 	 * the CPU migration code to notice that the CPU is online
251 	 * before we continue.
252 	 */
253 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
254 					 cpu, (unsigned long)mpidr,
255 					 read_cpuid_id());
256 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
257 	set_cpu_online(cpu, true);
258 	complete(&cpu_running);
259 
260 	local_daif_restore(DAIF_PROCCTX);
261 
262 	/*
263 	 * OK, it's off to the idle thread for us
264 	 */
265 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
266 }
267 
268 #ifdef CONFIG_HOTPLUG_CPU
269 static int op_cpu_disable(unsigned int cpu)
270 {
271 	const struct cpu_operations *ops = get_cpu_ops(cpu);
272 
273 	/*
274 	 * If we don't have a cpu_die method, abort before we reach the point
275 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
276 	 */
277 	if (!ops || !ops->cpu_die)
278 		return -EOPNOTSUPP;
279 
280 	/*
281 	 * We may need to abort a hot unplug for some other mechanism-specific
282 	 * reason.
283 	 */
284 	if (ops->cpu_disable)
285 		return ops->cpu_disable(cpu);
286 
287 	return 0;
288 }
289 
290 /*
291  * __cpu_disable runs on the processor to be shutdown.
292  */
293 int __cpu_disable(void)
294 {
295 	unsigned int cpu = smp_processor_id();
296 	int ret;
297 
298 	ret = op_cpu_disable(cpu);
299 	if (ret)
300 		return ret;
301 
302 	remove_cpu_topology(cpu);
303 	numa_remove_cpu(cpu);
304 
305 	/*
306 	 * Take this CPU offline.  Once we clear this, we can't return,
307 	 * and we must not schedule until we're ready to give up the cpu.
308 	 */
309 	set_cpu_online(cpu, false);
310 	ipi_teardown(cpu);
311 
312 	/*
313 	 * OK - migrate IRQs away from this CPU
314 	 */
315 	irq_migrate_all_off_this_cpu();
316 
317 	return 0;
318 }
319 
320 static int op_cpu_kill(unsigned int cpu)
321 {
322 	const struct cpu_operations *ops = get_cpu_ops(cpu);
323 
324 	/*
325 	 * If we have no means of synchronising with the dying CPU, then assume
326 	 * that it is really dead. We can only wait for an arbitrary length of
327 	 * time and hope that it's dead, so let's skip the wait and just hope.
328 	 */
329 	if (!ops->cpu_kill)
330 		return 0;
331 
332 	return ops->cpu_kill(cpu);
333 }
334 
335 /*
336  * called on the thread which is asking for a CPU to be shutdown -
337  * waits until shutdown has completed, or it is timed out.
338  */
339 void __cpu_die(unsigned int cpu)
340 {
341 	int err;
342 
343 	if (!cpu_wait_death(cpu, 5)) {
344 		pr_crit("CPU%u: cpu didn't die\n", cpu);
345 		return;
346 	}
347 	pr_debug("CPU%u: shutdown\n", cpu);
348 
349 	/*
350 	 * Now that the dying CPU is beyond the point of no return w.r.t.
351 	 * in-kernel synchronisation, try to get the firwmare to help us to
352 	 * verify that it has really left the kernel before we consider
353 	 * clobbering anything it might still be using.
354 	 */
355 	err = op_cpu_kill(cpu);
356 	if (err)
357 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
358 }
359 
360 /*
361  * Called from the idle thread for the CPU which has been shutdown.
362  *
363  */
364 void cpu_die(void)
365 {
366 	unsigned int cpu = smp_processor_id();
367 	const struct cpu_operations *ops = get_cpu_ops(cpu);
368 
369 	idle_task_exit();
370 
371 	local_daif_mask();
372 
373 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
374 	(void)cpu_report_death();
375 
376 	/*
377 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
378 	 * mechanism must perform all required cache maintenance to ensure that
379 	 * no dirty lines are lost in the process of shutting down the CPU.
380 	 */
381 	ops->cpu_die(cpu);
382 
383 	BUG();
384 }
385 #endif
386 
387 static void __cpu_try_die(int cpu)
388 {
389 #ifdef CONFIG_HOTPLUG_CPU
390 	const struct cpu_operations *ops = get_cpu_ops(cpu);
391 
392 	if (ops && ops->cpu_die)
393 		ops->cpu_die(cpu);
394 #endif
395 }
396 
397 /*
398  * Kill the calling secondary CPU, early in bringup before it is turned
399  * online.
400  */
401 void cpu_die_early(void)
402 {
403 	int cpu = smp_processor_id();
404 
405 	pr_crit("CPU%d: will not boot\n", cpu);
406 
407 	/* Mark this CPU absent */
408 	set_cpu_present(cpu, 0);
409 	rcu_report_dead(cpu);
410 
411 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
412 		update_cpu_boot_status(CPU_KILL_ME);
413 		__cpu_try_die(cpu);
414 	}
415 
416 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
417 
418 	cpu_park_loop();
419 }
420 
421 static void __init hyp_mode_check(void)
422 {
423 	if (is_hyp_mode_available())
424 		pr_info("CPU: All CPU(s) started at EL2\n");
425 	else if (is_hyp_mode_mismatched())
426 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
427 			   "CPU: CPUs started in inconsistent modes");
428 	else
429 		pr_info("CPU: All CPU(s) started at EL1\n");
430 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
431 		kvm_compute_layout();
432 		kvm_apply_hyp_relocations();
433 	}
434 }
435 
436 void __init smp_cpus_done(unsigned int max_cpus)
437 {
438 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
439 	setup_cpu_features();
440 	hyp_mode_check();
441 	apply_alternatives_all();
442 	mark_linear_text_alias_ro();
443 }
444 
445 void __init smp_prepare_boot_cpu(void)
446 {
447 	/*
448 	 * The runtime per-cpu areas have been allocated by
449 	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
450 	 * freed shortly, so we must move over to the runtime per-cpu area.
451 	 */
452 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
453 	cpuinfo_store_boot_cpu();
454 
455 	/*
456 	 * We now know enough about the boot CPU to apply the
457 	 * alternatives that cannot wait until interrupt handling
458 	 * and/or scheduling is enabled.
459 	 */
460 	apply_boot_alternatives();
461 
462 	/* Conditionally switch to GIC PMR for interrupt masking */
463 	if (system_uses_irq_prio_masking())
464 		init_gic_priority_masking();
465 
466 	kasan_init_hw_tags();
467 }
468 
469 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
470 {
471 	const __be32 *cell;
472 	u64 hwid;
473 
474 	/*
475 	 * A cpu node with missing "reg" property is
476 	 * considered invalid to build a cpu_logical_map
477 	 * entry.
478 	 */
479 	cell = of_get_property(dn, "reg", NULL);
480 	if (!cell) {
481 		pr_err("%pOF: missing reg property\n", dn);
482 		return INVALID_HWID;
483 	}
484 
485 	hwid = of_read_number(cell, of_n_addr_cells(dn));
486 	/*
487 	 * Non affinity bits must be set to 0 in the DT
488 	 */
489 	if (hwid & ~MPIDR_HWID_BITMASK) {
490 		pr_err("%pOF: invalid reg property\n", dn);
491 		return INVALID_HWID;
492 	}
493 	return hwid;
494 }
495 
496 /*
497  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
498  * entries and check for duplicates. If any is found just ignore the
499  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
500  * matching valid MPIDR values.
501  */
502 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
503 {
504 	unsigned int i;
505 
506 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
507 		if (cpu_logical_map(i) == hwid)
508 			return true;
509 	return false;
510 }
511 
512 /*
513  * Initialize cpu operations for a logical cpu and
514  * set it in the possible mask on success
515  */
516 static int __init smp_cpu_setup(int cpu)
517 {
518 	const struct cpu_operations *ops;
519 
520 	if (init_cpu_ops(cpu))
521 		return -ENODEV;
522 
523 	ops = get_cpu_ops(cpu);
524 	if (ops->cpu_init(cpu))
525 		return -ENODEV;
526 
527 	set_cpu_possible(cpu, true);
528 
529 	return 0;
530 }
531 
532 static bool bootcpu_valid __initdata;
533 static unsigned int cpu_count = 1;
534 
535 #ifdef CONFIG_ACPI
536 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
537 
538 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
539 {
540 	return &cpu_madt_gicc[cpu];
541 }
542 
543 /*
544  * acpi_map_gic_cpu_interface - parse processor MADT entry
545  *
546  * Carry out sanity checks on MADT processor entry and initialize
547  * cpu_logical_map on success
548  */
549 static void __init
550 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
551 {
552 	u64 hwid = processor->arm_mpidr;
553 
554 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
555 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
556 		return;
557 	}
558 
559 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
560 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
561 		return;
562 	}
563 
564 	if (is_mpidr_duplicate(cpu_count, hwid)) {
565 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
566 		return;
567 	}
568 
569 	/* Check if GICC structure of boot CPU is available in the MADT */
570 	if (cpu_logical_map(0) == hwid) {
571 		if (bootcpu_valid) {
572 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
573 			       hwid);
574 			return;
575 		}
576 		bootcpu_valid = true;
577 		cpu_madt_gicc[0] = *processor;
578 		return;
579 	}
580 
581 	if (cpu_count >= NR_CPUS)
582 		return;
583 
584 	/* map the logical cpu id to cpu MPIDR */
585 	set_cpu_logical_map(cpu_count, hwid);
586 
587 	cpu_madt_gicc[cpu_count] = *processor;
588 
589 	/*
590 	 * Set-up the ACPI parking protocol cpu entries
591 	 * while initializing the cpu_logical_map to
592 	 * avoid parsing MADT entries multiple times for
593 	 * nothing (ie a valid cpu_logical_map entry should
594 	 * contain a valid parking protocol data set to
595 	 * initialize the cpu if the parking protocol is
596 	 * the only available enable method).
597 	 */
598 	acpi_set_mailbox_entry(cpu_count, processor);
599 
600 	cpu_count++;
601 }
602 
603 static int __init
604 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
605 			     const unsigned long end)
606 {
607 	struct acpi_madt_generic_interrupt *processor;
608 
609 	processor = (struct acpi_madt_generic_interrupt *)header;
610 	if (BAD_MADT_GICC_ENTRY(processor, end))
611 		return -EINVAL;
612 
613 	acpi_table_print_madt_entry(&header->common);
614 
615 	acpi_map_gic_cpu_interface(processor);
616 
617 	return 0;
618 }
619 
620 static void __init acpi_parse_and_init_cpus(void)
621 {
622 	int i;
623 
624 	/*
625 	 * do a walk of MADT to determine how many CPUs
626 	 * we have including disabled CPUs, and get information
627 	 * we need for SMP init.
628 	 */
629 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
630 				      acpi_parse_gic_cpu_interface, 0);
631 
632 	/*
633 	 * In ACPI, SMP and CPU NUMA information is provided in separate
634 	 * static tables, namely the MADT and the SRAT.
635 	 *
636 	 * Thus, it is simpler to first create the cpu logical map through
637 	 * an MADT walk and then map the logical cpus to their node ids
638 	 * as separate steps.
639 	 */
640 	acpi_map_cpus_to_nodes();
641 
642 	for (i = 0; i < nr_cpu_ids; i++)
643 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
644 }
645 #else
646 #define acpi_parse_and_init_cpus(...)	do { } while (0)
647 #endif
648 
649 /*
650  * Enumerate the possible CPU set from the device tree and build the
651  * cpu logical map array containing MPIDR values related to logical
652  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
653  */
654 static void __init of_parse_and_init_cpus(void)
655 {
656 	struct device_node *dn;
657 
658 	for_each_of_cpu_node(dn) {
659 		u64 hwid = of_get_cpu_mpidr(dn);
660 
661 		if (hwid == INVALID_HWID)
662 			goto next;
663 
664 		if (is_mpidr_duplicate(cpu_count, hwid)) {
665 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
666 				dn);
667 			goto next;
668 		}
669 
670 		/*
671 		 * The numbering scheme requires that the boot CPU
672 		 * must be assigned logical id 0. Record it so that
673 		 * the logical map built from DT is validated and can
674 		 * be used.
675 		 */
676 		if (hwid == cpu_logical_map(0)) {
677 			if (bootcpu_valid) {
678 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
679 					dn);
680 				goto next;
681 			}
682 
683 			bootcpu_valid = true;
684 			early_map_cpu_to_node(0, of_node_to_nid(dn));
685 
686 			/*
687 			 * cpu_logical_map has already been
688 			 * initialized and the boot cpu doesn't need
689 			 * the enable-method so continue without
690 			 * incrementing cpu.
691 			 */
692 			continue;
693 		}
694 
695 		if (cpu_count >= NR_CPUS)
696 			goto next;
697 
698 		pr_debug("cpu logical map 0x%llx\n", hwid);
699 		set_cpu_logical_map(cpu_count, hwid);
700 
701 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
702 next:
703 		cpu_count++;
704 	}
705 }
706 
707 /*
708  * Enumerate the possible CPU set from the device tree or ACPI and build the
709  * cpu logical map array containing MPIDR values related to logical
710  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
711  */
712 void __init smp_init_cpus(void)
713 {
714 	int i;
715 
716 	if (acpi_disabled)
717 		of_parse_and_init_cpus();
718 	else
719 		acpi_parse_and_init_cpus();
720 
721 	if (cpu_count > nr_cpu_ids)
722 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
723 			cpu_count, nr_cpu_ids);
724 
725 	if (!bootcpu_valid) {
726 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
727 		return;
728 	}
729 
730 	/*
731 	 * We need to set the cpu_logical_map entries before enabling
732 	 * the cpus so that cpu processor description entries (DT cpu nodes
733 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
734 	 * with entries in cpu_logical_map while initializing the cpus.
735 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
736 	 */
737 	for (i = 1; i < nr_cpu_ids; i++) {
738 		if (cpu_logical_map(i) != INVALID_HWID) {
739 			if (smp_cpu_setup(i))
740 				set_cpu_logical_map(i, INVALID_HWID);
741 		}
742 	}
743 }
744 
745 void __init smp_prepare_cpus(unsigned int max_cpus)
746 {
747 	const struct cpu_operations *ops;
748 	int err;
749 	unsigned int cpu;
750 	unsigned int this_cpu;
751 
752 	init_cpu_topology();
753 
754 	this_cpu = smp_processor_id();
755 	store_cpu_topology(this_cpu);
756 	numa_store_cpu_info(this_cpu);
757 	numa_add_cpu(this_cpu);
758 
759 	/*
760 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
761 	 * secondary CPUs present.
762 	 */
763 	if (max_cpus == 0)
764 		return;
765 
766 	/*
767 	 * Initialise the present map (which describes the set of CPUs
768 	 * actually populated at the present time) and release the
769 	 * secondaries from the bootloader.
770 	 */
771 	for_each_possible_cpu(cpu) {
772 
773 		per_cpu(cpu_number, cpu) = cpu;
774 
775 		if (cpu == smp_processor_id())
776 			continue;
777 
778 		ops = get_cpu_ops(cpu);
779 		if (!ops)
780 			continue;
781 
782 		err = ops->cpu_prepare(cpu);
783 		if (err)
784 			continue;
785 
786 		set_cpu_present(cpu, true);
787 		numa_store_cpu_info(cpu);
788 	}
789 }
790 
791 static const char *ipi_types[NR_IPI] __tracepoint_string = {
792 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
793 	[IPI_CALL_FUNC]		= "Function call interrupts",
794 	[IPI_CPU_STOP]		= "CPU stop interrupts",
795 	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
796 	[IPI_TIMER]		= "Timer broadcast interrupts",
797 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
798 	[IPI_WAKEUP]		= "CPU wake-up interrupts",
799 };
800 
801 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
802 
803 unsigned long irq_err_count;
804 
805 int arch_show_interrupts(struct seq_file *p, int prec)
806 {
807 	unsigned int cpu, i;
808 
809 	for (i = 0; i < NR_IPI; i++) {
810 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
811 			   prec >= 4 ? " " : "");
812 		for_each_online_cpu(cpu)
813 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
814 		seq_printf(p, "      %s\n", ipi_types[i]);
815 	}
816 
817 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
818 	return 0;
819 }
820 
821 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
822 {
823 	smp_cross_call(mask, IPI_CALL_FUNC);
824 }
825 
826 void arch_send_call_function_single_ipi(int cpu)
827 {
828 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
829 }
830 
831 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
832 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
833 {
834 	smp_cross_call(mask, IPI_WAKEUP);
835 }
836 #endif
837 
838 #ifdef CONFIG_IRQ_WORK
839 void arch_irq_work_raise(void)
840 {
841 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
842 }
843 #endif
844 
845 static void local_cpu_stop(void)
846 {
847 	set_cpu_online(smp_processor_id(), false);
848 
849 	local_daif_mask();
850 	sdei_mask_local_cpu();
851 	cpu_park_loop();
852 }
853 
854 /*
855  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
856  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
857  * CPUs that have already stopped themselves.
858  */
859 void panic_smp_self_stop(void)
860 {
861 	local_cpu_stop();
862 }
863 
864 #ifdef CONFIG_KEXEC_CORE
865 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
866 #endif
867 
868 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
869 {
870 #ifdef CONFIG_KEXEC_CORE
871 	crash_save_cpu(regs, cpu);
872 
873 	atomic_dec(&waiting_for_crash_ipi);
874 
875 	local_irq_disable();
876 	sdei_mask_local_cpu();
877 
878 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
879 		__cpu_try_die(cpu);
880 
881 	/* just in case */
882 	cpu_park_loop();
883 #endif
884 }
885 
886 /*
887  * Main handler for inter-processor interrupts
888  */
889 static void do_handle_IPI(int ipinr)
890 {
891 	unsigned int cpu = smp_processor_id();
892 
893 	if ((unsigned)ipinr < NR_IPI)
894 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
895 
896 	switch (ipinr) {
897 	case IPI_RESCHEDULE:
898 		scheduler_ipi();
899 		break;
900 
901 	case IPI_CALL_FUNC:
902 		generic_smp_call_function_interrupt();
903 		break;
904 
905 	case IPI_CPU_STOP:
906 		local_cpu_stop();
907 		break;
908 
909 	case IPI_CPU_CRASH_STOP:
910 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
911 			ipi_cpu_crash_stop(cpu, get_irq_regs());
912 
913 			unreachable();
914 		}
915 		break;
916 
917 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
918 	case IPI_TIMER:
919 		tick_receive_broadcast();
920 		break;
921 #endif
922 
923 #ifdef CONFIG_IRQ_WORK
924 	case IPI_IRQ_WORK:
925 		irq_work_run();
926 		break;
927 #endif
928 
929 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
930 	case IPI_WAKEUP:
931 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
932 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
933 			  cpu);
934 		break;
935 #endif
936 
937 	default:
938 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
939 		break;
940 	}
941 
942 	if ((unsigned)ipinr < NR_IPI)
943 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
944 }
945 
946 static irqreturn_t ipi_handler(int irq, void *data)
947 {
948 	do_handle_IPI(irq - ipi_irq_base);
949 	return IRQ_HANDLED;
950 }
951 
952 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
953 {
954 	trace_ipi_raise(target, ipi_types[ipinr]);
955 	__ipi_send_mask(ipi_desc[ipinr], target);
956 }
957 
958 static void ipi_setup(int cpu)
959 {
960 	int i;
961 
962 	if (WARN_ON_ONCE(!ipi_irq_base))
963 		return;
964 
965 	for (i = 0; i < nr_ipi; i++)
966 		enable_percpu_irq(ipi_irq_base + i, 0);
967 }
968 
969 #ifdef CONFIG_HOTPLUG_CPU
970 static void ipi_teardown(int cpu)
971 {
972 	int i;
973 
974 	if (WARN_ON_ONCE(!ipi_irq_base))
975 		return;
976 
977 	for (i = 0; i < nr_ipi; i++)
978 		disable_percpu_irq(ipi_irq_base + i);
979 }
980 #endif
981 
982 void __init set_smp_ipi_range(int ipi_base, int n)
983 {
984 	int i;
985 
986 	WARN_ON(n < NR_IPI);
987 	nr_ipi = min(n, NR_IPI);
988 
989 	for (i = 0; i < nr_ipi; i++) {
990 		int err;
991 
992 		err = request_percpu_irq(ipi_base + i, ipi_handler,
993 					 "IPI", &cpu_number);
994 		WARN_ON(err);
995 
996 		ipi_desc[i] = irq_to_desc(ipi_base + i);
997 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
998 	}
999 
1000 	ipi_irq_base = ipi_base;
1001 
1002 	/* Setup the boot CPU immediately */
1003 	ipi_setup(smp_processor_id());
1004 }
1005 
1006 void smp_send_reschedule(int cpu)
1007 {
1008 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1009 }
1010 
1011 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1012 void tick_broadcast(const struct cpumask *mask)
1013 {
1014 	smp_cross_call(mask, IPI_TIMER);
1015 }
1016 #endif
1017 
1018 /*
1019  * The number of CPUs online, not counting this CPU (which may not be
1020  * fully online and so not counted in num_online_cpus()).
1021  */
1022 static inline unsigned int num_other_online_cpus(void)
1023 {
1024 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1025 
1026 	return num_online_cpus() - this_cpu_online;
1027 }
1028 
1029 void smp_send_stop(void)
1030 {
1031 	unsigned long timeout;
1032 
1033 	if (num_other_online_cpus()) {
1034 		cpumask_t mask;
1035 
1036 		cpumask_copy(&mask, cpu_online_mask);
1037 		cpumask_clear_cpu(smp_processor_id(), &mask);
1038 
1039 		if (system_state <= SYSTEM_RUNNING)
1040 			pr_crit("SMP: stopping secondary CPUs\n");
1041 		smp_cross_call(&mask, IPI_CPU_STOP);
1042 	}
1043 
1044 	/* Wait up to one second for other CPUs to stop */
1045 	timeout = USEC_PER_SEC;
1046 	while (num_other_online_cpus() && timeout--)
1047 		udelay(1);
1048 
1049 	if (num_other_online_cpus())
1050 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1051 			cpumask_pr_args(cpu_online_mask));
1052 
1053 	sdei_mask_local_cpu();
1054 }
1055 
1056 #ifdef CONFIG_KEXEC_CORE
1057 void crash_smp_send_stop(void)
1058 {
1059 	static int cpus_stopped;
1060 	cpumask_t mask;
1061 	unsigned long timeout;
1062 
1063 	/*
1064 	 * This function can be called twice in panic path, but obviously
1065 	 * we execute this only once.
1066 	 */
1067 	if (cpus_stopped)
1068 		return;
1069 
1070 	cpus_stopped = 1;
1071 
1072 	/*
1073 	 * If this cpu is the only one alive at this point in time, online or
1074 	 * not, there are no stop messages to be sent around, so just back out.
1075 	 */
1076 	if (num_other_online_cpus() == 0) {
1077 		sdei_mask_local_cpu();
1078 		return;
1079 	}
1080 
1081 	cpumask_copy(&mask, cpu_online_mask);
1082 	cpumask_clear_cpu(smp_processor_id(), &mask);
1083 
1084 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1085 
1086 	pr_crit("SMP: stopping secondary CPUs\n");
1087 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1088 
1089 	/* Wait up to one second for other CPUs to stop */
1090 	timeout = USEC_PER_SEC;
1091 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1092 		udelay(1);
1093 
1094 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1095 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1096 			cpumask_pr_args(&mask));
1097 
1098 	sdei_mask_local_cpu();
1099 }
1100 
1101 bool smp_crash_stop_failed(void)
1102 {
1103 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1104 }
1105 #endif
1106 
1107 /*
1108  * not supported here
1109  */
1110 int setup_profiling_timer(unsigned int multiplier)
1111 {
1112 	return -EINVAL;
1113 }
1114 
1115 static bool have_cpu_die(void)
1116 {
1117 #ifdef CONFIG_HOTPLUG_CPU
1118 	int any_cpu = raw_smp_processor_id();
1119 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1120 
1121 	if (ops && ops->cpu_die)
1122 		return true;
1123 #endif
1124 	return false;
1125 }
1126 
1127 bool cpus_are_stuck_in_kernel(void)
1128 {
1129 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1130 
1131 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1132 }
1133