1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/acpi.h> 21 #include <linux/delay.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/sched/mm.h> 25 #include <linux/sched/hotplug.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/interrupt.h> 28 #include <linux/cache.h> 29 #include <linux/profile.h> 30 #include <linux/errno.h> 31 #include <linux/mm.h> 32 #include <linux/err.h> 33 #include <linux/cpu.h> 34 #include <linux/smp.h> 35 #include <linux/seq_file.h> 36 #include <linux/irq.h> 37 #include <linux/percpu.h> 38 #include <linux/clockchips.h> 39 #include <linux/completion.h> 40 #include <linux/of.h> 41 #include <linux/irq_work.h> 42 43 #include <asm/alternative.h> 44 #include <asm/atomic.h> 45 #include <asm/cacheflush.h> 46 #include <asm/cpu.h> 47 #include <asm/cputype.h> 48 #include <asm/cpu_ops.h> 49 #include <asm/mmu_context.h> 50 #include <asm/numa.h> 51 #include <asm/pgtable.h> 52 #include <asm/pgalloc.h> 53 #include <asm/processor.h> 54 #include <asm/smp_plat.h> 55 #include <asm/sections.h> 56 #include <asm/tlbflush.h> 57 #include <asm/ptrace.h> 58 #include <asm/virt.h> 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ipi.h> 62 63 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 64 EXPORT_PER_CPU_SYMBOL(cpu_number); 65 66 /* 67 * as from 2.5, kernels no longer have an init_tasks structure 68 * so we need some other way of telling a new secondary core 69 * where to place its SVC stack 70 */ 71 struct secondary_data secondary_data; 72 /* Number of CPUs which aren't online, but looping in kernel text. */ 73 int cpus_stuck_in_kernel; 74 75 enum ipi_msg_type { 76 IPI_RESCHEDULE, 77 IPI_CALL_FUNC, 78 IPI_CPU_STOP, 79 IPI_TIMER, 80 IPI_IRQ_WORK, 81 IPI_WAKEUP 82 }; 83 84 #ifdef CONFIG_ARM64_VHE 85 86 /* Whether the boot CPU is running in HYP mode or not*/ 87 static bool boot_cpu_hyp_mode; 88 89 static inline void save_boot_cpu_run_el(void) 90 { 91 boot_cpu_hyp_mode = is_kernel_in_hyp_mode(); 92 } 93 94 static inline bool is_boot_cpu_in_hyp_mode(void) 95 { 96 return boot_cpu_hyp_mode; 97 } 98 99 /* 100 * Verify that a secondary CPU is running the kernel at the same 101 * EL as that of the boot CPU. 102 */ 103 void verify_cpu_run_el(void) 104 { 105 bool in_el2 = is_kernel_in_hyp_mode(); 106 bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode(); 107 108 if (in_el2 ^ boot_cpu_el2) { 109 pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n", 110 smp_processor_id(), 111 in_el2 ? 2 : 1, 112 boot_cpu_el2 ? 2 : 1); 113 cpu_panic_kernel(); 114 } 115 } 116 117 #else 118 static inline void save_boot_cpu_run_el(void) {} 119 #endif 120 121 #ifdef CONFIG_HOTPLUG_CPU 122 static int op_cpu_kill(unsigned int cpu); 123 #else 124 static inline int op_cpu_kill(unsigned int cpu) 125 { 126 return -ENOSYS; 127 } 128 #endif 129 130 131 /* 132 * Boot a secondary CPU, and assign it the specified idle task. 133 * This also gives us the initial stack to use for this CPU. 134 */ 135 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 136 { 137 if (cpu_ops[cpu]->cpu_boot) 138 return cpu_ops[cpu]->cpu_boot(cpu); 139 140 return -EOPNOTSUPP; 141 } 142 143 static DECLARE_COMPLETION(cpu_running); 144 145 int __cpu_up(unsigned int cpu, struct task_struct *idle) 146 { 147 int ret; 148 long status; 149 150 /* 151 * We need to tell the secondary core where to find its stack and the 152 * page tables. 153 */ 154 secondary_data.task = idle; 155 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 156 update_cpu_boot_status(CPU_MMU_OFF); 157 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 158 159 /* 160 * Now bring the CPU into our world. 161 */ 162 ret = boot_secondary(cpu, idle); 163 if (ret == 0) { 164 /* 165 * CPU was successfully started, wait for it to come online or 166 * time out. 167 */ 168 wait_for_completion_timeout(&cpu_running, 169 msecs_to_jiffies(1000)); 170 171 if (!cpu_online(cpu)) { 172 pr_crit("CPU%u: failed to come online\n", cpu); 173 ret = -EIO; 174 } 175 } else { 176 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 177 } 178 179 secondary_data.task = NULL; 180 secondary_data.stack = NULL; 181 status = READ_ONCE(secondary_data.status); 182 if (ret && status) { 183 184 if (status == CPU_MMU_OFF) 185 status = READ_ONCE(__early_cpu_boot_status); 186 187 switch (status) { 188 default: 189 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 190 cpu, status); 191 break; 192 case CPU_KILL_ME: 193 if (!op_cpu_kill(cpu)) { 194 pr_crit("CPU%u: died during early boot\n", cpu); 195 break; 196 } 197 /* Fall through */ 198 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 199 case CPU_STUCK_IN_KERNEL: 200 pr_crit("CPU%u: is stuck in kernel\n", cpu); 201 cpus_stuck_in_kernel++; 202 break; 203 case CPU_PANIC_KERNEL: 204 panic("CPU%u detected unsupported configuration\n", cpu); 205 } 206 } 207 208 return ret; 209 } 210 211 /* 212 * This is the secondary CPU boot entry. We're using this CPUs 213 * idle thread stack, but a set of temporary page tables. 214 */ 215 asmlinkage void secondary_start_kernel(void) 216 { 217 struct mm_struct *mm = &init_mm; 218 unsigned int cpu; 219 220 cpu = task_cpu(current); 221 set_my_cpu_offset(per_cpu_offset(cpu)); 222 223 /* 224 * All kernel threads share the same mm context; grab a 225 * reference and switch to it. 226 */ 227 mmgrab(mm); 228 current->active_mm = mm; 229 230 /* 231 * TTBR0 is only used for the identity mapping at this stage. Make it 232 * point to zero page to avoid speculatively fetching new entries. 233 */ 234 cpu_uninstall_idmap(); 235 236 preempt_disable(); 237 trace_hardirqs_off(); 238 239 /* 240 * If the system has established the capabilities, make sure 241 * this CPU ticks all of those. If it doesn't, the CPU will 242 * fail to come online. 243 */ 244 check_local_cpu_capabilities(); 245 246 if (cpu_ops[cpu]->cpu_postboot) 247 cpu_ops[cpu]->cpu_postboot(); 248 249 /* 250 * Log the CPU info before it is marked online and might get read. 251 */ 252 cpuinfo_store_cpu(); 253 254 /* 255 * Enable GIC and timers. 256 */ 257 notify_cpu_starting(cpu); 258 259 store_cpu_topology(cpu); 260 261 /* 262 * OK, now it's safe to let the boot CPU continue. Wait for 263 * the CPU migration code to notice that the CPU is online 264 * before we continue. 265 */ 266 pr_info("CPU%u: Booted secondary processor [%08x]\n", 267 cpu, read_cpuid_id()); 268 update_cpu_boot_status(CPU_BOOT_SUCCESS); 269 set_cpu_online(cpu, true); 270 complete(&cpu_running); 271 272 local_irq_enable(); 273 local_async_enable(); 274 275 /* 276 * OK, it's off to the idle thread for us 277 */ 278 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 279 } 280 281 #ifdef CONFIG_HOTPLUG_CPU 282 static int op_cpu_disable(unsigned int cpu) 283 { 284 /* 285 * If we don't have a cpu_die method, abort before we reach the point 286 * of no return. CPU0 may not have an cpu_ops, so test for it. 287 */ 288 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 289 return -EOPNOTSUPP; 290 291 /* 292 * We may need to abort a hot unplug for some other mechanism-specific 293 * reason. 294 */ 295 if (cpu_ops[cpu]->cpu_disable) 296 return cpu_ops[cpu]->cpu_disable(cpu); 297 298 return 0; 299 } 300 301 /* 302 * __cpu_disable runs on the processor to be shutdown. 303 */ 304 int __cpu_disable(void) 305 { 306 unsigned int cpu = smp_processor_id(); 307 int ret; 308 309 ret = op_cpu_disable(cpu); 310 if (ret) 311 return ret; 312 313 /* 314 * Take this CPU offline. Once we clear this, we can't return, 315 * and we must not schedule until we're ready to give up the cpu. 316 */ 317 set_cpu_online(cpu, false); 318 319 /* 320 * OK - migrate IRQs away from this CPU 321 */ 322 irq_migrate_all_off_this_cpu(); 323 324 return 0; 325 } 326 327 static int op_cpu_kill(unsigned int cpu) 328 { 329 /* 330 * If we have no means of synchronising with the dying CPU, then assume 331 * that it is really dead. We can only wait for an arbitrary length of 332 * time and hope that it's dead, so let's skip the wait and just hope. 333 */ 334 if (!cpu_ops[cpu]->cpu_kill) 335 return 0; 336 337 return cpu_ops[cpu]->cpu_kill(cpu); 338 } 339 340 /* 341 * called on the thread which is asking for a CPU to be shutdown - 342 * waits until shutdown has completed, or it is timed out. 343 */ 344 void __cpu_die(unsigned int cpu) 345 { 346 int err; 347 348 if (!cpu_wait_death(cpu, 5)) { 349 pr_crit("CPU%u: cpu didn't die\n", cpu); 350 return; 351 } 352 pr_notice("CPU%u: shutdown\n", cpu); 353 354 /* 355 * Now that the dying CPU is beyond the point of no return w.r.t. 356 * in-kernel synchronisation, try to get the firwmare to help us to 357 * verify that it has really left the kernel before we consider 358 * clobbering anything it might still be using. 359 */ 360 err = op_cpu_kill(cpu); 361 if (err) 362 pr_warn("CPU%d may not have shut down cleanly: %d\n", 363 cpu, err); 364 } 365 366 /* 367 * Called from the idle thread for the CPU which has been shutdown. 368 * 369 * Note that we disable IRQs here, but do not re-enable them 370 * before returning to the caller. This is also the behaviour 371 * of the other hotplug-cpu capable cores, so presumably coming 372 * out of idle fixes this. 373 */ 374 void cpu_die(void) 375 { 376 unsigned int cpu = smp_processor_id(); 377 378 idle_task_exit(); 379 380 local_irq_disable(); 381 382 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 383 (void)cpu_report_death(); 384 385 /* 386 * Actually shutdown the CPU. This must never fail. The specific hotplug 387 * mechanism must perform all required cache maintenance to ensure that 388 * no dirty lines are lost in the process of shutting down the CPU. 389 */ 390 cpu_ops[cpu]->cpu_die(cpu); 391 392 BUG(); 393 } 394 #endif 395 396 /* 397 * Kill the calling secondary CPU, early in bringup before it is turned 398 * online. 399 */ 400 void cpu_die_early(void) 401 { 402 int cpu = smp_processor_id(); 403 404 pr_crit("CPU%d: will not boot\n", cpu); 405 406 /* Mark this CPU absent */ 407 set_cpu_present(cpu, 0); 408 409 #ifdef CONFIG_HOTPLUG_CPU 410 update_cpu_boot_status(CPU_KILL_ME); 411 /* Check if we can park ourselves */ 412 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 413 cpu_ops[cpu]->cpu_die(cpu); 414 #endif 415 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 416 417 cpu_park_loop(); 418 } 419 420 static void __init hyp_mode_check(void) 421 { 422 if (is_hyp_mode_available()) 423 pr_info("CPU: All CPU(s) started at EL2\n"); 424 else if (is_hyp_mode_mismatched()) 425 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 426 "CPU: CPUs started in inconsistent modes"); 427 else 428 pr_info("CPU: All CPU(s) started at EL1\n"); 429 } 430 431 void __init smp_cpus_done(unsigned int max_cpus) 432 { 433 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 434 setup_cpu_features(); 435 hyp_mode_check(); 436 apply_alternatives_all(); 437 } 438 439 void __init smp_prepare_boot_cpu(void) 440 { 441 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 442 /* 443 * Initialise the static keys early as they may be enabled by the 444 * cpufeature code. 445 */ 446 jump_label_init(); 447 cpuinfo_store_boot_cpu(); 448 save_boot_cpu_run_el(); 449 /* 450 * Run the errata work around checks on the boot CPU, once we have 451 * initialised the cpu feature infrastructure from 452 * cpuinfo_store_boot_cpu() above. 453 */ 454 update_cpu_errata_workarounds(); 455 } 456 457 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 458 { 459 const __be32 *cell; 460 u64 hwid; 461 462 /* 463 * A cpu node with missing "reg" property is 464 * considered invalid to build a cpu_logical_map 465 * entry. 466 */ 467 cell = of_get_property(dn, "reg", NULL); 468 if (!cell) { 469 pr_err("%s: missing reg property\n", dn->full_name); 470 return INVALID_HWID; 471 } 472 473 hwid = of_read_number(cell, of_n_addr_cells(dn)); 474 /* 475 * Non affinity bits must be set to 0 in the DT 476 */ 477 if (hwid & ~MPIDR_HWID_BITMASK) { 478 pr_err("%s: invalid reg property\n", dn->full_name); 479 return INVALID_HWID; 480 } 481 return hwid; 482 } 483 484 /* 485 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 486 * entries and check for duplicates. If any is found just ignore the 487 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 488 * matching valid MPIDR values. 489 */ 490 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 491 { 492 unsigned int i; 493 494 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 495 if (cpu_logical_map(i) == hwid) 496 return true; 497 return false; 498 } 499 500 /* 501 * Initialize cpu operations for a logical cpu and 502 * set it in the possible mask on success 503 */ 504 static int __init smp_cpu_setup(int cpu) 505 { 506 if (cpu_read_ops(cpu)) 507 return -ENODEV; 508 509 if (cpu_ops[cpu]->cpu_init(cpu)) 510 return -ENODEV; 511 512 set_cpu_possible(cpu, true); 513 514 return 0; 515 } 516 517 static bool bootcpu_valid __initdata; 518 static unsigned int cpu_count = 1; 519 520 #ifdef CONFIG_ACPI 521 /* 522 * acpi_map_gic_cpu_interface - parse processor MADT entry 523 * 524 * Carry out sanity checks on MADT processor entry and initialize 525 * cpu_logical_map on success 526 */ 527 static void __init 528 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 529 { 530 u64 hwid = processor->arm_mpidr; 531 532 if (!(processor->flags & ACPI_MADT_ENABLED)) { 533 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 534 return; 535 } 536 537 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 538 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 539 return; 540 } 541 542 if (is_mpidr_duplicate(cpu_count, hwid)) { 543 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 544 return; 545 } 546 547 /* Check if GICC structure of boot CPU is available in the MADT */ 548 if (cpu_logical_map(0) == hwid) { 549 if (bootcpu_valid) { 550 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 551 hwid); 552 return; 553 } 554 bootcpu_valid = true; 555 early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid)); 556 return; 557 } 558 559 if (cpu_count >= NR_CPUS) 560 return; 561 562 /* map the logical cpu id to cpu MPIDR */ 563 cpu_logical_map(cpu_count) = hwid; 564 565 /* 566 * Set-up the ACPI parking protocol cpu entries 567 * while initializing the cpu_logical_map to 568 * avoid parsing MADT entries multiple times for 569 * nothing (ie a valid cpu_logical_map entry should 570 * contain a valid parking protocol data set to 571 * initialize the cpu if the parking protocol is 572 * the only available enable method). 573 */ 574 acpi_set_mailbox_entry(cpu_count, processor); 575 576 early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid)); 577 578 cpu_count++; 579 } 580 581 static int __init 582 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, 583 const unsigned long end) 584 { 585 struct acpi_madt_generic_interrupt *processor; 586 587 processor = (struct acpi_madt_generic_interrupt *)header; 588 if (BAD_MADT_GICC_ENTRY(processor, end)) 589 return -EINVAL; 590 591 acpi_table_print_madt_entry(header); 592 593 acpi_map_gic_cpu_interface(processor); 594 595 return 0; 596 } 597 #else 598 #define acpi_table_parse_madt(...) do { } while (0) 599 #endif 600 601 /* 602 * Enumerate the possible CPU set from the device tree and build the 603 * cpu logical map array containing MPIDR values related to logical 604 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 605 */ 606 static void __init of_parse_and_init_cpus(void) 607 { 608 struct device_node *dn; 609 610 for_each_node_by_type(dn, "cpu") { 611 u64 hwid = of_get_cpu_mpidr(dn); 612 613 if (hwid == INVALID_HWID) 614 goto next; 615 616 if (is_mpidr_duplicate(cpu_count, hwid)) { 617 pr_err("%s: duplicate cpu reg properties in the DT\n", 618 dn->full_name); 619 goto next; 620 } 621 622 /* 623 * The numbering scheme requires that the boot CPU 624 * must be assigned logical id 0. Record it so that 625 * the logical map built from DT is validated and can 626 * be used. 627 */ 628 if (hwid == cpu_logical_map(0)) { 629 if (bootcpu_valid) { 630 pr_err("%s: duplicate boot cpu reg property in DT\n", 631 dn->full_name); 632 goto next; 633 } 634 635 bootcpu_valid = true; 636 early_map_cpu_to_node(0, of_node_to_nid(dn)); 637 638 /* 639 * cpu_logical_map has already been 640 * initialized and the boot cpu doesn't need 641 * the enable-method so continue without 642 * incrementing cpu. 643 */ 644 continue; 645 } 646 647 if (cpu_count >= NR_CPUS) 648 goto next; 649 650 pr_debug("cpu logical map 0x%llx\n", hwid); 651 cpu_logical_map(cpu_count) = hwid; 652 653 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 654 next: 655 cpu_count++; 656 } 657 } 658 659 /* 660 * Enumerate the possible CPU set from the device tree or ACPI and build the 661 * cpu logical map array containing MPIDR values related to logical 662 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 663 */ 664 void __init smp_init_cpus(void) 665 { 666 int i; 667 668 if (acpi_disabled) 669 of_parse_and_init_cpus(); 670 else 671 /* 672 * do a walk of MADT to determine how many CPUs 673 * we have including disabled CPUs, and get information 674 * we need for SMP init 675 */ 676 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 677 acpi_parse_gic_cpu_interface, 0); 678 679 if (cpu_count > nr_cpu_ids) 680 pr_warn("Number of cores (%d) exceeds configured maximum of %d - clipping\n", 681 cpu_count, nr_cpu_ids); 682 683 if (!bootcpu_valid) { 684 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 685 return; 686 } 687 688 /* 689 * We need to set the cpu_logical_map entries before enabling 690 * the cpus so that cpu processor description entries (DT cpu nodes 691 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 692 * with entries in cpu_logical_map while initializing the cpus. 693 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 694 */ 695 for (i = 1; i < nr_cpu_ids; i++) { 696 if (cpu_logical_map(i) != INVALID_HWID) { 697 if (smp_cpu_setup(i)) 698 cpu_logical_map(i) = INVALID_HWID; 699 } 700 } 701 } 702 703 void __init smp_prepare_cpus(unsigned int max_cpus) 704 { 705 int err; 706 unsigned int cpu; 707 unsigned int this_cpu; 708 709 init_cpu_topology(); 710 711 this_cpu = smp_processor_id(); 712 store_cpu_topology(this_cpu); 713 numa_store_cpu_info(this_cpu); 714 715 /* 716 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 717 * secondary CPUs present. 718 */ 719 if (max_cpus == 0) 720 return; 721 722 /* 723 * Initialise the present map (which describes the set of CPUs 724 * actually populated at the present time) and release the 725 * secondaries from the bootloader. 726 */ 727 for_each_possible_cpu(cpu) { 728 729 per_cpu(cpu_number, cpu) = cpu; 730 731 if (cpu == smp_processor_id()) 732 continue; 733 734 if (!cpu_ops[cpu]) 735 continue; 736 737 err = cpu_ops[cpu]->cpu_prepare(cpu); 738 if (err) 739 continue; 740 741 set_cpu_present(cpu, true); 742 numa_store_cpu_info(cpu); 743 } 744 } 745 746 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 747 748 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 749 { 750 __smp_cross_call = fn; 751 } 752 753 static const char *ipi_types[NR_IPI] __tracepoint_string = { 754 #define S(x,s) [x] = s 755 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 756 S(IPI_CALL_FUNC, "Function call interrupts"), 757 S(IPI_CPU_STOP, "CPU stop interrupts"), 758 S(IPI_TIMER, "Timer broadcast interrupts"), 759 S(IPI_IRQ_WORK, "IRQ work interrupts"), 760 S(IPI_WAKEUP, "CPU wake-up interrupts"), 761 }; 762 763 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 764 { 765 trace_ipi_raise(target, ipi_types[ipinr]); 766 __smp_cross_call(target, ipinr); 767 } 768 769 void show_ipi_list(struct seq_file *p, int prec) 770 { 771 unsigned int cpu, i; 772 773 for (i = 0; i < NR_IPI; i++) { 774 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 775 prec >= 4 ? " " : ""); 776 for_each_online_cpu(cpu) 777 seq_printf(p, "%10u ", 778 __get_irq_stat(cpu, ipi_irqs[i])); 779 seq_printf(p, " %s\n", ipi_types[i]); 780 } 781 } 782 783 u64 smp_irq_stat_cpu(unsigned int cpu) 784 { 785 u64 sum = 0; 786 int i; 787 788 for (i = 0; i < NR_IPI; i++) 789 sum += __get_irq_stat(cpu, ipi_irqs[i]); 790 791 return sum; 792 } 793 794 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 795 { 796 smp_cross_call(mask, IPI_CALL_FUNC); 797 } 798 799 void arch_send_call_function_single_ipi(int cpu) 800 { 801 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 802 } 803 804 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 805 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 806 { 807 smp_cross_call(mask, IPI_WAKEUP); 808 } 809 #endif 810 811 #ifdef CONFIG_IRQ_WORK 812 void arch_irq_work_raise(void) 813 { 814 if (__smp_cross_call) 815 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 816 } 817 #endif 818 819 /* 820 * ipi_cpu_stop - handle IPI from smp_send_stop() 821 */ 822 static void ipi_cpu_stop(unsigned int cpu) 823 { 824 set_cpu_online(cpu, false); 825 826 local_irq_disable(); 827 828 while (1) 829 cpu_relax(); 830 } 831 832 /* 833 * Main handler for inter-processor interrupts 834 */ 835 void handle_IPI(int ipinr, struct pt_regs *regs) 836 { 837 unsigned int cpu = smp_processor_id(); 838 struct pt_regs *old_regs = set_irq_regs(regs); 839 840 if ((unsigned)ipinr < NR_IPI) { 841 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 842 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 843 } 844 845 switch (ipinr) { 846 case IPI_RESCHEDULE: 847 scheduler_ipi(); 848 break; 849 850 case IPI_CALL_FUNC: 851 irq_enter(); 852 generic_smp_call_function_interrupt(); 853 irq_exit(); 854 break; 855 856 case IPI_CPU_STOP: 857 irq_enter(); 858 ipi_cpu_stop(cpu); 859 irq_exit(); 860 break; 861 862 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 863 case IPI_TIMER: 864 irq_enter(); 865 tick_receive_broadcast(); 866 irq_exit(); 867 break; 868 #endif 869 870 #ifdef CONFIG_IRQ_WORK 871 case IPI_IRQ_WORK: 872 irq_enter(); 873 irq_work_run(); 874 irq_exit(); 875 break; 876 #endif 877 878 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 879 case IPI_WAKEUP: 880 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 881 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 882 cpu); 883 break; 884 #endif 885 886 default: 887 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 888 break; 889 } 890 891 if ((unsigned)ipinr < NR_IPI) 892 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 893 set_irq_regs(old_regs); 894 } 895 896 void smp_send_reschedule(int cpu) 897 { 898 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 899 } 900 901 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 902 void tick_broadcast(const struct cpumask *mask) 903 { 904 smp_cross_call(mask, IPI_TIMER); 905 } 906 #endif 907 908 void smp_send_stop(void) 909 { 910 unsigned long timeout; 911 912 if (num_online_cpus() > 1) { 913 cpumask_t mask; 914 915 cpumask_copy(&mask, cpu_online_mask); 916 cpumask_clear_cpu(smp_processor_id(), &mask); 917 918 if (system_state == SYSTEM_BOOTING || 919 system_state == SYSTEM_RUNNING) 920 pr_crit("SMP: stopping secondary CPUs\n"); 921 smp_cross_call(&mask, IPI_CPU_STOP); 922 } 923 924 /* Wait up to one second for other CPUs to stop */ 925 timeout = USEC_PER_SEC; 926 while (num_online_cpus() > 1 && timeout--) 927 udelay(1); 928 929 if (num_online_cpus() > 1) 930 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 931 cpumask_pr_args(cpu_online_mask)); 932 } 933 934 /* 935 * not supported here 936 */ 937 int setup_profiling_timer(unsigned int multiplier) 938 { 939 return -EINVAL; 940 } 941 942 static bool have_cpu_die(void) 943 { 944 #ifdef CONFIG_HOTPLUG_CPU 945 int any_cpu = raw_smp_processor_id(); 946 947 if (cpu_ops[any_cpu]->cpu_die) 948 return true; 949 #endif 950 return false; 951 } 952 953 bool cpus_are_stuck_in_kernel(void) 954 { 955 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 956 957 return !!cpus_stuck_in_kernel || smp_spin_tables; 958 } 959