xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 232b0b08)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched/mm.h>
25 #include <linux/sched/hotplug.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/interrupt.h>
28 #include <linux/cache.h>
29 #include <linux/profile.h>
30 #include <linux/errno.h>
31 #include <linux/mm.h>
32 #include <linux/err.h>
33 #include <linux/cpu.h>
34 #include <linux/smp.h>
35 #include <linux/seq_file.h>
36 #include <linux/irq.h>
37 #include <linux/percpu.h>
38 #include <linux/clockchips.h>
39 #include <linux/completion.h>
40 #include <linux/of.h>
41 #include <linux/irq_work.h>
42 
43 #include <asm/alternative.h>
44 #include <asm/atomic.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpu.h>
47 #include <asm/cputype.h>
48 #include <asm/cpu_ops.h>
49 #include <asm/mmu_context.h>
50 #include <asm/numa.h>
51 #include <asm/pgtable.h>
52 #include <asm/pgalloc.h>
53 #include <asm/processor.h>
54 #include <asm/smp_plat.h>
55 #include <asm/sections.h>
56 #include <asm/tlbflush.h>
57 #include <asm/ptrace.h>
58 #include <asm/virt.h>
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ipi.h>
62 
63 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
64 EXPORT_PER_CPU_SYMBOL(cpu_number);
65 
66 /*
67  * as from 2.5, kernels no longer have an init_tasks structure
68  * so we need some other way of telling a new secondary core
69  * where to place its SVC stack
70  */
71 struct secondary_data secondary_data;
72 /* Number of CPUs which aren't online, but looping in kernel text. */
73 int cpus_stuck_in_kernel;
74 
75 enum ipi_msg_type {
76 	IPI_RESCHEDULE,
77 	IPI_CALL_FUNC,
78 	IPI_CPU_STOP,
79 	IPI_TIMER,
80 	IPI_IRQ_WORK,
81 	IPI_WAKEUP
82 };
83 
84 #ifdef CONFIG_ARM64_VHE
85 
86 /* Whether the boot CPU is running in HYP mode or not*/
87 static bool boot_cpu_hyp_mode;
88 
89 static inline void save_boot_cpu_run_el(void)
90 {
91 	boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
92 }
93 
94 static inline bool is_boot_cpu_in_hyp_mode(void)
95 {
96 	return boot_cpu_hyp_mode;
97 }
98 
99 /*
100  * Verify that a secondary CPU is running the kernel at the same
101  * EL as that of the boot CPU.
102  */
103 void verify_cpu_run_el(void)
104 {
105 	bool in_el2 = is_kernel_in_hyp_mode();
106 	bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
107 
108 	if (in_el2 ^ boot_cpu_el2) {
109 		pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
110 					smp_processor_id(),
111 					in_el2 ? 2 : 1,
112 					boot_cpu_el2 ? 2 : 1);
113 		cpu_panic_kernel();
114 	}
115 }
116 
117 #else
118 static inline void save_boot_cpu_run_el(void) {}
119 #endif
120 
121 #ifdef CONFIG_HOTPLUG_CPU
122 static int op_cpu_kill(unsigned int cpu);
123 #else
124 static inline int op_cpu_kill(unsigned int cpu)
125 {
126 	return -ENOSYS;
127 }
128 #endif
129 
130 
131 /*
132  * Boot a secondary CPU, and assign it the specified idle task.
133  * This also gives us the initial stack to use for this CPU.
134  */
135 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
136 {
137 	if (cpu_ops[cpu]->cpu_boot)
138 		return cpu_ops[cpu]->cpu_boot(cpu);
139 
140 	return -EOPNOTSUPP;
141 }
142 
143 static DECLARE_COMPLETION(cpu_running);
144 
145 int __cpu_up(unsigned int cpu, struct task_struct *idle)
146 {
147 	int ret;
148 	long status;
149 
150 	/*
151 	 * We need to tell the secondary core where to find its stack and the
152 	 * page tables.
153 	 */
154 	secondary_data.task = idle;
155 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
156 	update_cpu_boot_status(CPU_MMU_OFF);
157 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
158 
159 	/*
160 	 * Now bring the CPU into our world.
161 	 */
162 	ret = boot_secondary(cpu, idle);
163 	if (ret == 0) {
164 		/*
165 		 * CPU was successfully started, wait for it to come online or
166 		 * time out.
167 		 */
168 		wait_for_completion_timeout(&cpu_running,
169 					    msecs_to_jiffies(1000));
170 
171 		if (!cpu_online(cpu)) {
172 			pr_crit("CPU%u: failed to come online\n", cpu);
173 			ret = -EIO;
174 		}
175 	} else {
176 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
177 	}
178 
179 	secondary_data.task = NULL;
180 	secondary_data.stack = NULL;
181 	status = READ_ONCE(secondary_data.status);
182 	if (ret && status) {
183 
184 		if (status == CPU_MMU_OFF)
185 			status = READ_ONCE(__early_cpu_boot_status);
186 
187 		switch (status) {
188 		default:
189 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
190 					cpu, status);
191 			break;
192 		case CPU_KILL_ME:
193 			if (!op_cpu_kill(cpu)) {
194 				pr_crit("CPU%u: died during early boot\n", cpu);
195 				break;
196 			}
197 			/* Fall through */
198 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
199 		case CPU_STUCK_IN_KERNEL:
200 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
201 			cpus_stuck_in_kernel++;
202 			break;
203 		case CPU_PANIC_KERNEL:
204 			panic("CPU%u detected unsupported configuration\n", cpu);
205 		}
206 	}
207 
208 	return ret;
209 }
210 
211 /*
212  * This is the secondary CPU boot entry.  We're using this CPUs
213  * idle thread stack, but a set of temporary page tables.
214  */
215 asmlinkage void secondary_start_kernel(void)
216 {
217 	struct mm_struct *mm = &init_mm;
218 	unsigned int cpu;
219 
220 	cpu = task_cpu(current);
221 	set_my_cpu_offset(per_cpu_offset(cpu));
222 
223 	/*
224 	 * All kernel threads share the same mm context; grab a
225 	 * reference and switch to it.
226 	 */
227 	mmgrab(mm);
228 	current->active_mm = mm;
229 
230 	/*
231 	 * TTBR0 is only used for the identity mapping at this stage. Make it
232 	 * point to zero page to avoid speculatively fetching new entries.
233 	 */
234 	cpu_uninstall_idmap();
235 
236 	preempt_disable();
237 	trace_hardirqs_off();
238 
239 	/*
240 	 * If the system has established the capabilities, make sure
241 	 * this CPU ticks all of those. If it doesn't, the CPU will
242 	 * fail to come online.
243 	 */
244 	check_local_cpu_capabilities();
245 
246 	if (cpu_ops[cpu]->cpu_postboot)
247 		cpu_ops[cpu]->cpu_postboot();
248 
249 	/*
250 	 * Log the CPU info before it is marked online and might get read.
251 	 */
252 	cpuinfo_store_cpu();
253 
254 	/*
255 	 * Enable GIC and timers.
256 	 */
257 	notify_cpu_starting(cpu);
258 
259 	store_cpu_topology(cpu);
260 
261 	/*
262 	 * OK, now it's safe to let the boot CPU continue.  Wait for
263 	 * the CPU migration code to notice that the CPU is online
264 	 * before we continue.
265 	 */
266 	pr_info("CPU%u: Booted secondary processor [%08x]\n",
267 					 cpu, read_cpuid_id());
268 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
269 	set_cpu_online(cpu, true);
270 	complete(&cpu_running);
271 
272 	local_irq_enable();
273 	local_async_enable();
274 
275 	/*
276 	 * OK, it's off to the idle thread for us
277 	 */
278 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
279 }
280 
281 #ifdef CONFIG_HOTPLUG_CPU
282 static int op_cpu_disable(unsigned int cpu)
283 {
284 	/*
285 	 * If we don't have a cpu_die method, abort before we reach the point
286 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
287 	 */
288 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
289 		return -EOPNOTSUPP;
290 
291 	/*
292 	 * We may need to abort a hot unplug for some other mechanism-specific
293 	 * reason.
294 	 */
295 	if (cpu_ops[cpu]->cpu_disable)
296 		return cpu_ops[cpu]->cpu_disable(cpu);
297 
298 	return 0;
299 }
300 
301 /*
302  * __cpu_disable runs on the processor to be shutdown.
303  */
304 int __cpu_disable(void)
305 {
306 	unsigned int cpu = smp_processor_id();
307 	int ret;
308 
309 	ret = op_cpu_disable(cpu);
310 	if (ret)
311 		return ret;
312 
313 	/*
314 	 * Take this CPU offline.  Once we clear this, we can't return,
315 	 * and we must not schedule until we're ready to give up the cpu.
316 	 */
317 	set_cpu_online(cpu, false);
318 
319 	/*
320 	 * OK - migrate IRQs away from this CPU
321 	 */
322 	irq_migrate_all_off_this_cpu();
323 
324 	return 0;
325 }
326 
327 static int op_cpu_kill(unsigned int cpu)
328 {
329 	/*
330 	 * If we have no means of synchronising with the dying CPU, then assume
331 	 * that it is really dead. We can only wait for an arbitrary length of
332 	 * time and hope that it's dead, so let's skip the wait and just hope.
333 	 */
334 	if (!cpu_ops[cpu]->cpu_kill)
335 		return 0;
336 
337 	return cpu_ops[cpu]->cpu_kill(cpu);
338 }
339 
340 /*
341  * called on the thread which is asking for a CPU to be shutdown -
342  * waits until shutdown has completed, or it is timed out.
343  */
344 void __cpu_die(unsigned int cpu)
345 {
346 	int err;
347 
348 	if (!cpu_wait_death(cpu, 5)) {
349 		pr_crit("CPU%u: cpu didn't die\n", cpu);
350 		return;
351 	}
352 	pr_notice("CPU%u: shutdown\n", cpu);
353 
354 	/*
355 	 * Now that the dying CPU is beyond the point of no return w.r.t.
356 	 * in-kernel synchronisation, try to get the firwmare to help us to
357 	 * verify that it has really left the kernel before we consider
358 	 * clobbering anything it might still be using.
359 	 */
360 	err = op_cpu_kill(cpu);
361 	if (err)
362 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
363 			cpu, err);
364 }
365 
366 /*
367  * Called from the idle thread for the CPU which has been shutdown.
368  *
369  * Note that we disable IRQs here, but do not re-enable them
370  * before returning to the caller. This is also the behaviour
371  * of the other hotplug-cpu capable cores, so presumably coming
372  * out of idle fixes this.
373  */
374 void cpu_die(void)
375 {
376 	unsigned int cpu = smp_processor_id();
377 
378 	idle_task_exit();
379 
380 	local_irq_disable();
381 
382 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
383 	(void)cpu_report_death();
384 
385 	/*
386 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
387 	 * mechanism must perform all required cache maintenance to ensure that
388 	 * no dirty lines are lost in the process of shutting down the CPU.
389 	 */
390 	cpu_ops[cpu]->cpu_die(cpu);
391 
392 	BUG();
393 }
394 #endif
395 
396 /*
397  * Kill the calling secondary CPU, early in bringup before it is turned
398  * online.
399  */
400 void cpu_die_early(void)
401 {
402 	int cpu = smp_processor_id();
403 
404 	pr_crit("CPU%d: will not boot\n", cpu);
405 
406 	/* Mark this CPU absent */
407 	set_cpu_present(cpu, 0);
408 
409 #ifdef CONFIG_HOTPLUG_CPU
410 	update_cpu_boot_status(CPU_KILL_ME);
411 	/* Check if we can park ourselves */
412 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
413 		cpu_ops[cpu]->cpu_die(cpu);
414 #endif
415 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
416 
417 	cpu_park_loop();
418 }
419 
420 static void __init hyp_mode_check(void)
421 {
422 	if (is_hyp_mode_available())
423 		pr_info("CPU: All CPU(s) started at EL2\n");
424 	else if (is_hyp_mode_mismatched())
425 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
426 			   "CPU: CPUs started in inconsistent modes");
427 	else
428 		pr_info("CPU: All CPU(s) started at EL1\n");
429 }
430 
431 void __init smp_cpus_done(unsigned int max_cpus)
432 {
433 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
434 	setup_cpu_features();
435 	hyp_mode_check();
436 	apply_alternatives_all();
437 }
438 
439 void __init smp_prepare_boot_cpu(void)
440 {
441 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
442 	/*
443 	 * Initialise the static keys early as they may be enabled by the
444 	 * cpufeature code.
445 	 */
446 	jump_label_init();
447 	cpuinfo_store_boot_cpu();
448 	save_boot_cpu_run_el();
449 	/*
450 	 * Run the errata work around checks on the boot CPU, once we have
451 	 * initialised the cpu feature infrastructure from
452 	 * cpuinfo_store_boot_cpu() above.
453 	 */
454 	update_cpu_errata_workarounds();
455 }
456 
457 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
458 {
459 	const __be32 *cell;
460 	u64 hwid;
461 
462 	/*
463 	 * A cpu node with missing "reg" property is
464 	 * considered invalid to build a cpu_logical_map
465 	 * entry.
466 	 */
467 	cell = of_get_property(dn, "reg", NULL);
468 	if (!cell) {
469 		pr_err("%s: missing reg property\n", dn->full_name);
470 		return INVALID_HWID;
471 	}
472 
473 	hwid = of_read_number(cell, of_n_addr_cells(dn));
474 	/*
475 	 * Non affinity bits must be set to 0 in the DT
476 	 */
477 	if (hwid & ~MPIDR_HWID_BITMASK) {
478 		pr_err("%s: invalid reg property\n", dn->full_name);
479 		return INVALID_HWID;
480 	}
481 	return hwid;
482 }
483 
484 /*
485  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
486  * entries and check for duplicates. If any is found just ignore the
487  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
488  * matching valid MPIDR values.
489  */
490 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
491 {
492 	unsigned int i;
493 
494 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
495 		if (cpu_logical_map(i) == hwid)
496 			return true;
497 	return false;
498 }
499 
500 /*
501  * Initialize cpu operations for a logical cpu and
502  * set it in the possible mask on success
503  */
504 static int __init smp_cpu_setup(int cpu)
505 {
506 	if (cpu_read_ops(cpu))
507 		return -ENODEV;
508 
509 	if (cpu_ops[cpu]->cpu_init(cpu))
510 		return -ENODEV;
511 
512 	set_cpu_possible(cpu, true);
513 
514 	return 0;
515 }
516 
517 static bool bootcpu_valid __initdata;
518 static unsigned int cpu_count = 1;
519 
520 #ifdef CONFIG_ACPI
521 /*
522  * acpi_map_gic_cpu_interface - parse processor MADT entry
523  *
524  * Carry out sanity checks on MADT processor entry and initialize
525  * cpu_logical_map on success
526  */
527 static void __init
528 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
529 {
530 	u64 hwid = processor->arm_mpidr;
531 
532 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
533 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
534 		return;
535 	}
536 
537 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
538 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
539 		return;
540 	}
541 
542 	if (is_mpidr_duplicate(cpu_count, hwid)) {
543 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
544 		return;
545 	}
546 
547 	/* Check if GICC structure of boot CPU is available in the MADT */
548 	if (cpu_logical_map(0) == hwid) {
549 		if (bootcpu_valid) {
550 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
551 			       hwid);
552 			return;
553 		}
554 		bootcpu_valid = true;
555 		early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid));
556 		return;
557 	}
558 
559 	if (cpu_count >= NR_CPUS)
560 		return;
561 
562 	/* map the logical cpu id to cpu MPIDR */
563 	cpu_logical_map(cpu_count) = hwid;
564 
565 	/*
566 	 * Set-up the ACPI parking protocol cpu entries
567 	 * while initializing the cpu_logical_map to
568 	 * avoid parsing MADT entries multiple times for
569 	 * nothing (ie a valid cpu_logical_map entry should
570 	 * contain a valid parking protocol data set to
571 	 * initialize the cpu if the parking protocol is
572 	 * the only available enable method).
573 	 */
574 	acpi_set_mailbox_entry(cpu_count, processor);
575 
576 	early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
577 
578 	cpu_count++;
579 }
580 
581 static int __init
582 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
583 			     const unsigned long end)
584 {
585 	struct acpi_madt_generic_interrupt *processor;
586 
587 	processor = (struct acpi_madt_generic_interrupt *)header;
588 	if (BAD_MADT_GICC_ENTRY(processor, end))
589 		return -EINVAL;
590 
591 	acpi_table_print_madt_entry(header);
592 
593 	acpi_map_gic_cpu_interface(processor);
594 
595 	return 0;
596 }
597 #else
598 #define acpi_table_parse_madt(...)	do { } while (0)
599 #endif
600 
601 /*
602  * Enumerate the possible CPU set from the device tree and build the
603  * cpu logical map array containing MPIDR values related to logical
604  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
605  */
606 static void __init of_parse_and_init_cpus(void)
607 {
608 	struct device_node *dn;
609 
610 	for_each_node_by_type(dn, "cpu") {
611 		u64 hwid = of_get_cpu_mpidr(dn);
612 
613 		if (hwid == INVALID_HWID)
614 			goto next;
615 
616 		if (is_mpidr_duplicate(cpu_count, hwid)) {
617 			pr_err("%s: duplicate cpu reg properties in the DT\n",
618 				dn->full_name);
619 			goto next;
620 		}
621 
622 		/*
623 		 * The numbering scheme requires that the boot CPU
624 		 * must be assigned logical id 0. Record it so that
625 		 * the logical map built from DT is validated and can
626 		 * be used.
627 		 */
628 		if (hwid == cpu_logical_map(0)) {
629 			if (bootcpu_valid) {
630 				pr_err("%s: duplicate boot cpu reg property in DT\n",
631 					dn->full_name);
632 				goto next;
633 			}
634 
635 			bootcpu_valid = true;
636 			early_map_cpu_to_node(0, of_node_to_nid(dn));
637 
638 			/*
639 			 * cpu_logical_map has already been
640 			 * initialized and the boot cpu doesn't need
641 			 * the enable-method so continue without
642 			 * incrementing cpu.
643 			 */
644 			continue;
645 		}
646 
647 		if (cpu_count >= NR_CPUS)
648 			goto next;
649 
650 		pr_debug("cpu logical map 0x%llx\n", hwid);
651 		cpu_logical_map(cpu_count) = hwid;
652 
653 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
654 next:
655 		cpu_count++;
656 	}
657 }
658 
659 /*
660  * Enumerate the possible CPU set from the device tree or ACPI and build the
661  * cpu logical map array containing MPIDR values related to logical
662  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
663  */
664 void __init smp_init_cpus(void)
665 {
666 	int i;
667 
668 	if (acpi_disabled)
669 		of_parse_and_init_cpus();
670 	else
671 		/*
672 		 * do a walk of MADT to determine how many CPUs
673 		 * we have including disabled CPUs, and get information
674 		 * we need for SMP init
675 		 */
676 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
677 				      acpi_parse_gic_cpu_interface, 0);
678 
679 	if (cpu_count > nr_cpu_ids)
680 		pr_warn("Number of cores (%d) exceeds configured maximum of %d - clipping\n",
681 			cpu_count, nr_cpu_ids);
682 
683 	if (!bootcpu_valid) {
684 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
685 		return;
686 	}
687 
688 	/*
689 	 * We need to set the cpu_logical_map entries before enabling
690 	 * the cpus so that cpu processor description entries (DT cpu nodes
691 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
692 	 * with entries in cpu_logical_map while initializing the cpus.
693 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
694 	 */
695 	for (i = 1; i < nr_cpu_ids; i++) {
696 		if (cpu_logical_map(i) != INVALID_HWID) {
697 			if (smp_cpu_setup(i))
698 				cpu_logical_map(i) = INVALID_HWID;
699 		}
700 	}
701 }
702 
703 void __init smp_prepare_cpus(unsigned int max_cpus)
704 {
705 	int err;
706 	unsigned int cpu;
707 	unsigned int this_cpu;
708 
709 	init_cpu_topology();
710 
711 	this_cpu = smp_processor_id();
712 	store_cpu_topology(this_cpu);
713 	numa_store_cpu_info(this_cpu);
714 
715 	/*
716 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
717 	 * secondary CPUs present.
718 	 */
719 	if (max_cpus == 0)
720 		return;
721 
722 	/*
723 	 * Initialise the present map (which describes the set of CPUs
724 	 * actually populated at the present time) and release the
725 	 * secondaries from the bootloader.
726 	 */
727 	for_each_possible_cpu(cpu) {
728 
729 		per_cpu(cpu_number, cpu) = cpu;
730 
731 		if (cpu == smp_processor_id())
732 			continue;
733 
734 		if (!cpu_ops[cpu])
735 			continue;
736 
737 		err = cpu_ops[cpu]->cpu_prepare(cpu);
738 		if (err)
739 			continue;
740 
741 		set_cpu_present(cpu, true);
742 		numa_store_cpu_info(cpu);
743 	}
744 }
745 
746 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
747 
748 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
749 {
750 	__smp_cross_call = fn;
751 }
752 
753 static const char *ipi_types[NR_IPI] __tracepoint_string = {
754 #define S(x,s)	[x] = s
755 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
756 	S(IPI_CALL_FUNC, "Function call interrupts"),
757 	S(IPI_CPU_STOP, "CPU stop interrupts"),
758 	S(IPI_TIMER, "Timer broadcast interrupts"),
759 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
760 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
761 };
762 
763 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
764 {
765 	trace_ipi_raise(target, ipi_types[ipinr]);
766 	__smp_cross_call(target, ipinr);
767 }
768 
769 void show_ipi_list(struct seq_file *p, int prec)
770 {
771 	unsigned int cpu, i;
772 
773 	for (i = 0; i < NR_IPI; i++) {
774 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
775 			   prec >= 4 ? " " : "");
776 		for_each_online_cpu(cpu)
777 			seq_printf(p, "%10u ",
778 				   __get_irq_stat(cpu, ipi_irqs[i]));
779 		seq_printf(p, "      %s\n", ipi_types[i]);
780 	}
781 }
782 
783 u64 smp_irq_stat_cpu(unsigned int cpu)
784 {
785 	u64 sum = 0;
786 	int i;
787 
788 	for (i = 0; i < NR_IPI; i++)
789 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
790 
791 	return sum;
792 }
793 
794 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
795 {
796 	smp_cross_call(mask, IPI_CALL_FUNC);
797 }
798 
799 void arch_send_call_function_single_ipi(int cpu)
800 {
801 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
802 }
803 
804 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
805 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
806 {
807 	smp_cross_call(mask, IPI_WAKEUP);
808 }
809 #endif
810 
811 #ifdef CONFIG_IRQ_WORK
812 void arch_irq_work_raise(void)
813 {
814 	if (__smp_cross_call)
815 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
816 }
817 #endif
818 
819 /*
820  * ipi_cpu_stop - handle IPI from smp_send_stop()
821  */
822 static void ipi_cpu_stop(unsigned int cpu)
823 {
824 	set_cpu_online(cpu, false);
825 
826 	local_irq_disable();
827 
828 	while (1)
829 		cpu_relax();
830 }
831 
832 /*
833  * Main handler for inter-processor interrupts
834  */
835 void handle_IPI(int ipinr, struct pt_regs *regs)
836 {
837 	unsigned int cpu = smp_processor_id();
838 	struct pt_regs *old_regs = set_irq_regs(regs);
839 
840 	if ((unsigned)ipinr < NR_IPI) {
841 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
842 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
843 	}
844 
845 	switch (ipinr) {
846 	case IPI_RESCHEDULE:
847 		scheduler_ipi();
848 		break;
849 
850 	case IPI_CALL_FUNC:
851 		irq_enter();
852 		generic_smp_call_function_interrupt();
853 		irq_exit();
854 		break;
855 
856 	case IPI_CPU_STOP:
857 		irq_enter();
858 		ipi_cpu_stop(cpu);
859 		irq_exit();
860 		break;
861 
862 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
863 	case IPI_TIMER:
864 		irq_enter();
865 		tick_receive_broadcast();
866 		irq_exit();
867 		break;
868 #endif
869 
870 #ifdef CONFIG_IRQ_WORK
871 	case IPI_IRQ_WORK:
872 		irq_enter();
873 		irq_work_run();
874 		irq_exit();
875 		break;
876 #endif
877 
878 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
879 	case IPI_WAKEUP:
880 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
881 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
882 			  cpu);
883 		break;
884 #endif
885 
886 	default:
887 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
888 		break;
889 	}
890 
891 	if ((unsigned)ipinr < NR_IPI)
892 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
893 	set_irq_regs(old_regs);
894 }
895 
896 void smp_send_reschedule(int cpu)
897 {
898 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
899 }
900 
901 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
902 void tick_broadcast(const struct cpumask *mask)
903 {
904 	smp_cross_call(mask, IPI_TIMER);
905 }
906 #endif
907 
908 void smp_send_stop(void)
909 {
910 	unsigned long timeout;
911 
912 	if (num_online_cpus() > 1) {
913 		cpumask_t mask;
914 
915 		cpumask_copy(&mask, cpu_online_mask);
916 		cpumask_clear_cpu(smp_processor_id(), &mask);
917 
918 		if (system_state == SYSTEM_BOOTING ||
919 		    system_state == SYSTEM_RUNNING)
920 			pr_crit("SMP: stopping secondary CPUs\n");
921 		smp_cross_call(&mask, IPI_CPU_STOP);
922 	}
923 
924 	/* Wait up to one second for other CPUs to stop */
925 	timeout = USEC_PER_SEC;
926 	while (num_online_cpus() > 1 && timeout--)
927 		udelay(1);
928 
929 	if (num_online_cpus() > 1)
930 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
931 			   cpumask_pr_args(cpu_online_mask));
932 }
933 
934 /*
935  * not supported here
936  */
937 int setup_profiling_timer(unsigned int multiplier)
938 {
939 	return -EINVAL;
940 }
941 
942 static bool have_cpu_die(void)
943 {
944 #ifdef CONFIG_HOTPLUG_CPU
945 	int any_cpu = raw_smp_processor_id();
946 
947 	if (cpu_ops[any_cpu]->cpu_die)
948 		return true;
949 #endif
950 	return false;
951 }
952 
953 bool cpus_are_stuck_in_kernel(void)
954 {
955 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
956 
957 	return !!cpus_stuck_in_kernel || smp_spin_tables;
958 }
959