1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kexec.h> 34 35 #include <asm/alternative.h> 36 #include <asm/atomic.h> 37 #include <asm/cacheflush.h> 38 #include <asm/cpu.h> 39 #include <asm/cputype.h> 40 #include <asm/cpu_ops.h> 41 #include <asm/daifflags.h> 42 #include <asm/mmu_context.h> 43 #include <asm/numa.h> 44 #include <asm/pgtable.h> 45 #include <asm/pgalloc.h> 46 #include <asm/processor.h> 47 #include <asm/smp_plat.h> 48 #include <asm/sections.h> 49 #include <asm/tlbflush.h> 50 #include <asm/ptrace.h> 51 #include <asm/virt.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ipi.h> 55 56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 57 EXPORT_PER_CPU_SYMBOL(cpu_number); 58 59 /* 60 * as from 2.5, kernels no longer have an init_tasks structure 61 * so we need some other way of telling a new secondary core 62 * where to place its SVC stack 63 */ 64 struct secondary_data secondary_data; 65 /* Number of CPUs which aren't online, but looping in kernel text. */ 66 int cpus_stuck_in_kernel; 67 68 enum ipi_msg_type { 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CPU_STOP, 72 IPI_CPU_CRASH_STOP, 73 IPI_TIMER, 74 IPI_IRQ_WORK, 75 IPI_WAKEUP 76 }; 77 78 #ifdef CONFIG_HOTPLUG_CPU 79 static int op_cpu_kill(unsigned int cpu); 80 #else 81 static inline int op_cpu_kill(unsigned int cpu) 82 { 83 return -ENOSYS; 84 } 85 #endif 86 87 88 /* 89 * Boot a secondary CPU, and assign it the specified idle task. 90 * This also gives us the initial stack to use for this CPU. 91 */ 92 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 93 { 94 if (cpu_ops[cpu]->cpu_boot) 95 return cpu_ops[cpu]->cpu_boot(cpu); 96 97 return -EOPNOTSUPP; 98 } 99 100 static DECLARE_COMPLETION(cpu_running); 101 102 int __cpu_up(unsigned int cpu, struct task_struct *idle) 103 { 104 int ret; 105 long status; 106 107 /* 108 * We need to tell the secondary core where to find its stack and the 109 * page tables. 110 */ 111 secondary_data.task = idle; 112 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 113 update_cpu_boot_status(CPU_MMU_OFF); 114 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 115 116 /* 117 * Now bring the CPU into our world. 118 */ 119 ret = boot_secondary(cpu, idle); 120 if (ret == 0) { 121 /* 122 * CPU was successfully started, wait for it to come online or 123 * time out. 124 */ 125 wait_for_completion_timeout(&cpu_running, 126 msecs_to_jiffies(1000)); 127 128 if (!cpu_online(cpu)) { 129 pr_crit("CPU%u: failed to come online\n", cpu); 130 ret = -EIO; 131 } 132 } else { 133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 134 return ret; 135 } 136 137 secondary_data.task = NULL; 138 secondary_data.stack = NULL; 139 status = READ_ONCE(secondary_data.status); 140 if (ret && status) { 141 142 if (status == CPU_MMU_OFF) 143 status = READ_ONCE(__early_cpu_boot_status); 144 145 switch (status & CPU_BOOT_STATUS_MASK) { 146 default: 147 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 148 cpu, status); 149 break; 150 case CPU_KILL_ME: 151 if (!op_cpu_kill(cpu)) { 152 pr_crit("CPU%u: died during early boot\n", cpu); 153 break; 154 } 155 /* Fall through */ 156 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 157 case CPU_STUCK_IN_KERNEL: 158 pr_crit("CPU%u: is stuck in kernel\n", cpu); 159 if (status & CPU_STUCK_REASON_52_BIT_VA) 160 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 161 if (status & CPU_STUCK_REASON_NO_GRAN) 162 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K); 163 cpus_stuck_in_kernel++; 164 break; 165 case CPU_PANIC_KERNEL: 166 panic("CPU%u detected unsupported configuration\n", cpu); 167 } 168 } 169 170 return ret; 171 } 172 173 static void init_gic_priority_masking(void) 174 { 175 u32 cpuflags; 176 177 if (WARN_ON(!gic_enable_sre())) 178 return; 179 180 cpuflags = read_sysreg(daif); 181 182 WARN_ON(!(cpuflags & PSR_I_BIT)); 183 184 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 185 } 186 187 /* 188 * This is the secondary CPU boot entry. We're using this CPUs 189 * idle thread stack, but a set of temporary page tables. 190 */ 191 asmlinkage notrace void secondary_start_kernel(void) 192 { 193 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 194 struct mm_struct *mm = &init_mm; 195 unsigned int cpu; 196 197 cpu = task_cpu(current); 198 set_my_cpu_offset(per_cpu_offset(cpu)); 199 200 /* 201 * All kernel threads share the same mm context; grab a 202 * reference and switch to it. 203 */ 204 mmgrab(mm); 205 current->active_mm = mm; 206 207 /* 208 * TTBR0 is only used for the identity mapping at this stage. Make it 209 * point to zero page to avoid speculatively fetching new entries. 210 */ 211 cpu_uninstall_idmap(); 212 213 if (system_uses_irq_prio_masking()) 214 init_gic_priority_masking(); 215 216 preempt_disable(); 217 trace_hardirqs_off(); 218 219 /* 220 * If the system has established the capabilities, make sure 221 * this CPU ticks all of those. If it doesn't, the CPU will 222 * fail to come online. 223 */ 224 check_local_cpu_capabilities(); 225 226 if (cpu_ops[cpu]->cpu_postboot) 227 cpu_ops[cpu]->cpu_postboot(); 228 229 /* 230 * Log the CPU info before it is marked online and might get read. 231 */ 232 cpuinfo_store_cpu(); 233 234 /* 235 * Enable GIC and timers. 236 */ 237 notify_cpu_starting(cpu); 238 239 store_cpu_topology(cpu); 240 numa_add_cpu(cpu); 241 242 /* 243 * OK, now it's safe to let the boot CPU continue. Wait for 244 * the CPU migration code to notice that the CPU is online 245 * before we continue. 246 */ 247 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 248 cpu, (unsigned long)mpidr, 249 read_cpuid_id()); 250 update_cpu_boot_status(CPU_BOOT_SUCCESS); 251 set_cpu_online(cpu, true); 252 complete(&cpu_running); 253 254 local_daif_restore(DAIF_PROCCTX); 255 256 /* 257 * OK, it's off to the idle thread for us 258 */ 259 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 260 } 261 262 #ifdef CONFIG_HOTPLUG_CPU 263 static int op_cpu_disable(unsigned int cpu) 264 { 265 /* 266 * If we don't have a cpu_die method, abort before we reach the point 267 * of no return. CPU0 may not have an cpu_ops, so test for it. 268 */ 269 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 270 return -EOPNOTSUPP; 271 272 /* 273 * We may need to abort a hot unplug for some other mechanism-specific 274 * reason. 275 */ 276 if (cpu_ops[cpu]->cpu_disable) 277 return cpu_ops[cpu]->cpu_disable(cpu); 278 279 return 0; 280 } 281 282 /* 283 * __cpu_disable runs on the processor to be shutdown. 284 */ 285 int __cpu_disable(void) 286 { 287 unsigned int cpu = smp_processor_id(); 288 int ret; 289 290 ret = op_cpu_disable(cpu); 291 if (ret) 292 return ret; 293 294 remove_cpu_topology(cpu); 295 numa_remove_cpu(cpu); 296 297 /* 298 * Take this CPU offline. Once we clear this, we can't return, 299 * and we must not schedule until we're ready to give up the cpu. 300 */ 301 set_cpu_online(cpu, false); 302 303 /* 304 * OK - migrate IRQs away from this CPU 305 */ 306 irq_migrate_all_off_this_cpu(); 307 308 return 0; 309 } 310 311 static int op_cpu_kill(unsigned int cpu) 312 { 313 /* 314 * If we have no means of synchronising with the dying CPU, then assume 315 * that it is really dead. We can only wait for an arbitrary length of 316 * time and hope that it's dead, so let's skip the wait and just hope. 317 */ 318 if (!cpu_ops[cpu]->cpu_kill) 319 return 0; 320 321 return cpu_ops[cpu]->cpu_kill(cpu); 322 } 323 324 /* 325 * called on the thread which is asking for a CPU to be shutdown - 326 * waits until shutdown has completed, or it is timed out. 327 */ 328 void __cpu_die(unsigned int cpu) 329 { 330 int err; 331 332 if (!cpu_wait_death(cpu, 5)) { 333 pr_crit("CPU%u: cpu didn't die\n", cpu); 334 return; 335 } 336 pr_notice("CPU%u: shutdown\n", cpu); 337 338 /* 339 * Now that the dying CPU is beyond the point of no return w.r.t. 340 * in-kernel synchronisation, try to get the firwmare to help us to 341 * verify that it has really left the kernel before we consider 342 * clobbering anything it might still be using. 343 */ 344 err = op_cpu_kill(cpu); 345 if (err) 346 pr_warn("CPU%d may not have shut down cleanly: %d\n", 347 cpu, err); 348 } 349 350 /* 351 * Called from the idle thread for the CPU which has been shutdown. 352 * 353 */ 354 void cpu_die(void) 355 { 356 unsigned int cpu = smp_processor_id(); 357 358 idle_task_exit(); 359 360 local_daif_mask(); 361 362 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 363 (void)cpu_report_death(); 364 365 /* 366 * Actually shutdown the CPU. This must never fail. The specific hotplug 367 * mechanism must perform all required cache maintenance to ensure that 368 * no dirty lines are lost in the process of shutting down the CPU. 369 */ 370 cpu_ops[cpu]->cpu_die(cpu); 371 372 BUG(); 373 } 374 #endif 375 376 /* 377 * Kill the calling secondary CPU, early in bringup before it is turned 378 * online. 379 */ 380 void cpu_die_early(void) 381 { 382 int cpu = smp_processor_id(); 383 384 pr_crit("CPU%d: will not boot\n", cpu); 385 386 /* Mark this CPU absent */ 387 set_cpu_present(cpu, 0); 388 389 #ifdef CONFIG_HOTPLUG_CPU 390 update_cpu_boot_status(CPU_KILL_ME); 391 /* Check if we can park ourselves */ 392 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 393 cpu_ops[cpu]->cpu_die(cpu); 394 #endif 395 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 396 397 cpu_park_loop(); 398 } 399 400 static void __init hyp_mode_check(void) 401 { 402 if (is_hyp_mode_available()) 403 pr_info("CPU: All CPU(s) started at EL2\n"); 404 else if (is_hyp_mode_mismatched()) 405 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 406 "CPU: CPUs started in inconsistent modes"); 407 else 408 pr_info("CPU: All CPU(s) started at EL1\n"); 409 } 410 411 void __init smp_cpus_done(unsigned int max_cpus) 412 { 413 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 414 setup_cpu_features(); 415 hyp_mode_check(); 416 apply_alternatives_all(); 417 mark_linear_text_alias_ro(); 418 } 419 420 void __init smp_prepare_boot_cpu(void) 421 { 422 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 423 cpuinfo_store_boot_cpu(); 424 425 /* 426 * We now know enough about the boot CPU to apply the 427 * alternatives that cannot wait until interrupt handling 428 * and/or scheduling is enabled. 429 */ 430 apply_boot_alternatives(); 431 432 /* Conditionally switch to GIC PMR for interrupt masking */ 433 if (system_uses_irq_prio_masking()) 434 init_gic_priority_masking(); 435 } 436 437 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 438 { 439 const __be32 *cell; 440 u64 hwid; 441 442 /* 443 * A cpu node with missing "reg" property is 444 * considered invalid to build a cpu_logical_map 445 * entry. 446 */ 447 cell = of_get_property(dn, "reg", NULL); 448 if (!cell) { 449 pr_err("%pOF: missing reg property\n", dn); 450 return INVALID_HWID; 451 } 452 453 hwid = of_read_number(cell, of_n_addr_cells(dn)); 454 /* 455 * Non affinity bits must be set to 0 in the DT 456 */ 457 if (hwid & ~MPIDR_HWID_BITMASK) { 458 pr_err("%pOF: invalid reg property\n", dn); 459 return INVALID_HWID; 460 } 461 return hwid; 462 } 463 464 /* 465 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 466 * entries and check for duplicates. If any is found just ignore the 467 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 468 * matching valid MPIDR values. 469 */ 470 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 471 { 472 unsigned int i; 473 474 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 475 if (cpu_logical_map(i) == hwid) 476 return true; 477 return false; 478 } 479 480 /* 481 * Initialize cpu operations for a logical cpu and 482 * set it in the possible mask on success 483 */ 484 static int __init smp_cpu_setup(int cpu) 485 { 486 if (cpu_read_ops(cpu)) 487 return -ENODEV; 488 489 if (cpu_ops[cpu]->cpu_init(cpu)) 490 return -ENODEV; 491 492 set_cpu_possible(cpu, true); 493 494 return 0; 495 } 496 497 static bool bootcpu_valid __initdata; 498 static unsigned int cpu_count = 1; 499 500 #ifdef CONFIG_ACPI 501 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 502 503 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 504 { 505 return &cpu_madt_gicc[cpu]; 506 } 507 508 /* 509 * acpi_map_gic_cpu_interface - parse processor MADT entry 510 * 511 * Carry out sanity checks on MADT processor entry and initialize 512 * cpu_logical_map on success 513 */ 514 static void __init 515 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 516 { 517 u64 hwid = processor->arm_mpidr; 518 519 if (!(processor->flags & ACPI_MADT_ENABLED)) { 520 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 521 return; 522 } 523 524 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 525 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 526 return; 527 } 528 529 if (is_mpidr_duplicate(cpu_count, hwid)) { 530 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 531 return; 532 } 533 534 /* Check if GICC structure of boot CPU is available in the MADT */ 535 if (cpu_logical_map(0) == hwid) { 536 if (bootcpu_valid) { 537 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 538 hwid); 539 return; 540 } 541 bootcpu_valid = true; 542 cpu_madt_gicc[0] = *processor; 543 return; 544 } 545 546 if (cpu_count >= NR_CPUS) 547 return; 548 549 /* map the logical cpu id to cpu MPIDR */ 550 cpu_logical_map(cpu_count) = hwid; 551 552 cpu_madt_gicc[cpu_count] = *processor; 553 554 /* 555 * Set-up the ACPI parking protocol cpu entries 556 * while initializing the cpu_logical_map to 557 * avoid parsing MADT entries multiple times for 558 * nothing (ie a valid cpu_logical_map entry should 559 * contain a valid parking protocol data set to 560 * initialize the cpu if the parking protocol is 561 * the only available enable method). 562 */ 563 acpi_set_mailbox_entry(cpu_count, processor); 564 565 cpu_count++; 566 } 567 568 static int __init 569 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 570 const unsigned long end) 571 { 572 struct acpi_madt_generic_interrupt *processor; 573 574 processor = (struct acpi_madt_generic_interrupt *)header; 575 if (BAD_MADT_GICC_ENTRY(processor, end)) 576 return -EINVAL; 577 578 acpi_table_print_madt_entry(&header->common); 579 580 acpi_map_gic_cpu_interface(processor); 581 582 return 0; 583 } 584 585 static void __init acpi_parse_and_init_cpus(void) 586 { 587 int i; 588 589 /* 590 * do a walk of MADT to determine how many CPUs 591 * we have including disabled CPUs, and get information 592 * we need for SMP init. 593 */ 594 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 595 acpi_parse_gic_cpu_interface, 0); 596 597 /* 598 * In ACPI, SMP and CPU NUMA information is provided in separate 599 * static tables, namely the MADT and the SRAT. 600 * 601 * Thus, it is simpler to first create the cpu logical map through 602 * an MADT walk and then map the logical cpus to their node ids 603 * as separate steps. 604 */ 605 acpi_map_cpus_to_nodes(); 606 607 for (i = 0; i < nr_cpu_ids; i++) 608 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 609 } 610 #else 611 #define acpi_parse_and_init_cpus(...) do { } while (0) 612 #endif 613 614 /* 615 * Enumerate the possible CPU set from the device tree and build the 616 * cpu logical map array containing MPIDR values related to logical 617 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 618 */ 619 static void __init of_parse_and_init_cpus(void) 620 { 621 struct device_node *dn; 622 623 for_each_of_cpu_node(dn) { 624 u64 hwid = of_get_cpu_mpidr(dn); 625 626 if (hwid == INVALID_HWID) 627 goto next; 628 629 if (is_mpidr_duplicate(cpu_count, hwid)) { 630 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 631 dn); 632 goto next; 633 } 634 635 /* 636 * The numbering scheme requires that the boot CPU 637 * must be assigned logical id 0. Record it so that 638 * the logical map built from DT is validated and can 639 * be used. 640 */ 641 if (hwid == cpu_logical_map(0)) { 642 if (bootcpu_valid) { 643 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 644 dn); 645 goto next; 646 } 647 648 bootcpu_valid = true; 649 early_map_cpu_to_node(0, of_node_to_nid(dn)); 650 651 /* 652 * cpu_logical_map has already been 653 * initialized and the boot cpu doesn't need 654 * the enable-method so continue without 655 * incrementing cpu. 656 */ 657 continue; 658 } 659 660 if (cpu_count >= NR_CPUS) 661 goto next; 662 663 pr_debug("cpu logical map 0x%llx\n", hwid); 664 cpu_logical_map(cpu_count) = hwid; 665 666 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 667 next: 668 cpu_count++; 669 } 670 } 671 672 /* 673 * Enumerate the possible CPU set from the device tree or ACPI and build the 674 * cpu logical map array containing MPIDR values related to logical 675 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 676 */ 677 void __init smp_init_cpus(void) 678 { 679 int i; 680 681 if (acpi_disabled) 682 of_parse_and_init_cpus(); 683 else 684 acpi_parse_and_init_cpus(); 685 686 if (cpu_count > nr_cpu_ids) 687 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 688 cpu_count, nr_cpu_ids); 689 690 if (!bootcpu_valid) { 691 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 692 return; 693 } 694 695 /* 696 * We need to set the cpu_logical_map entries before enabling 697 * the cpus so that cpu processor description entries (DT cpu nodes 698 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 699 * with entries in cpu_logical_map while initializing the cpus. 700 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 701 */ 702 for (i = 1; i < nr_cpu_ids; i++) { 703 if (cpu_logical_map(i) != INVALID_HWID) { 704 if (smp_cpu_setup(i)) 705 cpu_logical_map(i) = INVALID_HWID; 706 } 707 } 708 } 709 710 void __init smp_prepare_cpus(unsigned int max_cpus) 711 { 712 int err; 713 unsigned int cpu; 714 unsigned int this_cpu; 715 716 init_cpu_topology(); 717 718 this_cpu = smp_processor_id(); 719 store_cpu_topology(this_cpu); 720 numa_store_cpu_info(this_cpu); 721 numa_add_cpu(this_cpu); 722 723 /* 724 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 725 * secondary CPUs present. 726 */ 727 if (max_cpus == 0) 728 return; 729 730 /* 731 * Initialise the present map (which describes the set of CPUs 732 * actually populated at the present time) and release the 733 * secondaries from the bootloader. 734 */ 735 for_each_possible_cpu(cpu) { 736 737 per_cpu(cpu_number, cpu) = cpu; 738 739 if (cpu == smp_processor_id()) 740 continue; 741 742 if (!cpu_ops[cpu]) 743 continue; 744 745 err = cpu_ops[cpu]->cpu_prepare(cpu); 746 if (err) 747 continue; 748 749 set_cpu_present(cpu, true); 750 numa_store_cpu_info(cpu); 751 } 752 } 753 754 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 755 756 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 757 { 758 __smp_cross_call = fn; 759 } 760 761 static const char *ipi_types[NR_IPI] __tracepoint_string = { 762 #define S(x,s) [x] = s 763 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 764 S(IPI_CALL_FUNC, "Function call interrupts"), 765 S(IPI_CPU_STOP, "CPU stop interrupts"), 766 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 767 S(IPI_TIMER, "Timer broadcast interrupts"), 768 S(IPI_IRQ_WORK, "IRQ work interrupts"), 769 S(IPI_WAKEUP, "CPU wake-up interrupts"), 770 }; 771 772 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 773 { 774 trace_ipi_raise(target, ipi_types[ipinr]); 775 __smp_cross_call(target, ipinr); 776 } 777 778 void show_ipi_list(struct seq_file *p, int prec) 779 { 780 unsigned int cpu, i; 781 782 for (i = 0; i < NR_IPI; i++) { 783 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 784 prec >= 4 ? " " : ""); 785 for_each_online_cpu(cpu) 786 seq_printf(p, "%10u ", 787 __get_irq_stat(cpu, ipi_irqs[i])); 788 seq_printf(p, " %s\n", ipi_types[i]); 789 } 790 } 791 792 u64 smp_irq_stat_cpu(unsigned int cpu) 793 { 794 u64 sum = 0; 795 int i; 796 797 for (i = 0; i < NR_IPI; i++) 798 sum += __get_irq_stat(cpu, ipi_irqs[i]); 799 800 return sum; 801 } 802 803 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 804 { 805 smp_cross_call(mask, IPI_CALL_FUNC); 806 } 807 808 void arch_send_call_function_single_ipi(int cpu) 809 { 810 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 811 } 812 813 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 814 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 815 { 816 smp_cross_call(mask, IPI_WAKEUP); 817 } 818 #endif 819 820 #ifdef CONFIG_IRQ_WORK 821 void arch_irq_work_raise(void) 822 { 823 if (__smp_cross_call) 824 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 825 } 826 #endif 827 828 static void local_cpu_stop(void) 829 { 830 set_cpu_online(smp_processor_id(), false); 831 832 local_daif_mask(); 833 sdei_mask_local_cpu(); 834 cpu_park_loop(); 835 } 836 837 /* 838 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 839 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 840 * CPUs that have already stopped themselves. 841 */ 842 void panic_smp_self_stop(void) 843 { 844 local_cpu_stop(); 845 } 846 847 #ifdef CONFIG_KEXEC_CORE 848 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 849 #endif 850 851 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 852 { 853 #ifdef CONFIG_KEXEC_CORE 854 crash_save_cpu(regs, cpu); 855 856 atomic_dec(&waiting_for_crash_ipi); 857 858 local_irq_disable(); 859 sdei_mask_local_cpu(); 860 861 #ifdef CONFIG_HOTPLUG_CPU 862 if (cpu_ops[cpu]->cpu_die) 863 cpu_ops[cpu]->cpu_die(cpu); 864 #endif 865 866 /* just in case */ 867 cpu_park_loop(); 868 #endif 869 } 870 871 /* 872 * Main handler for inter-processor interrupts 873 */ 874 void handle_IPI(int ipinr, struct pt_regs *regs) 875 { 876 unsigned int cpu = smp_processor_id(); 877 struct pt_regs *old_regs = set_irq_regs(regs); 878 879 if ((unsigned)ipinr < NR_IPI) { 880 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 881 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 882 } 883 884 switch (ipinr) { 885 case IPI_RESCHEDULE: 886 scheduler_ipi(); 887 break; 888 889 case IPI_CALL_FUNC: 890 irq_enter(); 891 generic_smp_call_function_interrupt(); 892 irq_exit(); 893 break; 894 895 case IPI_CPU_STOP: 896 irq_enter(); 897 local_cpu_stop(); 898 irq_exit(); 899 break; 900 901 case IPI_CPU_CRASH_STOP: 902 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 903 irq_enter(); 904 ipi_cpu_crash_stop(cpu, regs); 905 906 unreachable(); 907 } 908 break; 909 910 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 911 case IPI_TIMER: 912 irq_enter(); 913 tick_receive_broadcast(); 914 irq_exit(); 915 break; 916 #endif 917 918 #ifdef CONFIG_IRQ_WORK 919 case IPI_IRQ_WORK: 920 irq_enter(); 921 irq_work_run(); 922 irq_exit(); 923 break; 924 #endif 925 926 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 927 case IPI_WAKEUP: 928 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 929 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 930 cpu); 931 break; 932 #endif 933 934 default: 935 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 936 break; 937 } 938 939 if ((unsigned)ipinr < NR_IPI) 940 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 941 set_irq_regs(old_regs); 942 } 943 944 void smp_send_reschedule(int cpu) 945 { 946 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 947 } 948 949 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 950 void tick_broadcast(const struct cpumask *mask) 951 { 952 smp_cross_call(mask, IPI_TIMER); 953 } 954 #endif 955 956 void smp_send_stop(void) 957 { 958 unsigned long timeout; 959 960 if (num_online_cpus() > 1) { 961 cpumask_t mask; 962 963 cpumask_copy(&mask, cpu_online_mask); 964 cpumask_clear_cpu(smp_processor_id(), &mask); 965 966 if (system_state <= SYSTEM_RUNNING) 967 pr_crit("SMP: stopping secondary CPUs\n"); 968 smp_cross_call(&mask, IPI_CPU_STOP); 969 } 970 971 /* Wait up to one second for other CPUs to stop */ 972 timeout = USEC_PER_SEC; 973 while (num_online_cpus() > 1 && timeout--) 974 udelay(1); 975 976 if (num_online_cpus() > 1) 977 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 978 cpumask_pr_args(cpu_online_mask)); 979 980 sdei_mask_local_cpu(); 981 } 982 983 #ifdef CONFIG_KEXEC_CORE 984 void crash_smp_send_stop(void) 985 { 986 static int cpus_stopped; 987 cpumask_t mask; 988 unsigned long timeout; 989 990 /* 991 * This function can be called twice in panic path, but obviously 992 * we execute this only once. 993 */ 994 if (cpus_stopped) 995 return; 996 997 cpus_stopped = 1; 998 999 if (num_online_cpus() == 1) { 1000 sdei_mask_local_cpu(); 1001 return; 1002 } 1003 1004 cpumask_copy(&mask, cpu_online_mask); 1005 cpumask_clear_cpu(smp_processor_id(), &mask); 1006 1007 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); 1008 1009 pr_crit("SMP: stopping secondary CPUs\n"); 1010 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1011 1012 /* Wait up to one second for other CPUs to stop */ 1013 timeout = USEC_PER_SEC; 1014 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1015 udelay(1); 1016 1017 if (atomic_read(&waiting_for_crash_ipi) > 0) 1018 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 1019 cpumask_pr_args(&mask)); 1020 1021 sdei_mask_local_cpu(); 1022 } 1023 1024 bool smp_crash_stop_failed(void) 1025 { 1026 return (atomic_read(&waiting_for_crash_ipi) > 0); 1027 } 1028 #endif 1029 1030 /* 1031 * not supported here 1032 */ 1033 int setup_profiling_timer(unsigned int multiplier) 1034 { 1035 return -EINVAL; 1036 } 1037 1038 static bool have_cpu_die(void) 1039 { 1040 #ifdef CONFIG_HOTPLUG_CPU 1041 int any_cpu = raw_smp_processor_id(); 1042 1043 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 1044 return true; 1045 #endif 1046 return false; 1047 } 1048 1049 bool cpus_are_stuck_in_kernel(void) 1050 { 1051 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1052 1053 return !!cpus_stuck_in_kernel || smp_spin_tables; 1054 } 1055