xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 2169e6da)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kexec.h>
34 
35 #include <asm/alternative.h>
36 #include <asm/atomic.h>
37 #include <asm/cacheflush.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/cpu_ops.h>
41 #include <asm/daifflags.h>
42 #include <asm/mmu_context.h>
43 #include <asm/numa.h>
44 #include <asm/pgtable.h>
45 #include <asm/pgalloc.h>
46 #include <asm/processor.h>
47 #include <asm/smp_plat.h>
48 #include <asm/sections.h>
49 #include <asm/tlbflush.h>
50 #include <asm/ptrace.h>
51 #include <asm/virt.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ipi.h>
55 
56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
57 EXPORT_PER_CPU_SYMBOL(cpu_number);
58 
59 /*
60  * as from 2.5, kernels no longer have an init_tasks structure
61  * so we need some other way of telling a new secondary core
62  * where to place its SVC stack
63  */
64 struct secondary_data secondary_data;
65 /* Number of CPUs which aren't online, but looping in kernel text. */
66 int cpus_stuck_in_kernel;
67 
68 enum ipi_msg_type {
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNC,
71 	IPI_CPU_STOP,
72 	IPI_CPU_CRASH_STOP,
73 	IPI_TIMER,
74 	IPI_IRQ_WORK,
75 	IPI_WAKEUP
76 };
77 
78 #ifdef CONFIG_HOTPLUG_CPU
79 static int op_cpu_kill(unsigned int cpu);
80 #else
81 static inline int op_cpu_kill(unsigned int cpu)
82 {
83 	return -ENOSYS;
84 }
85 #endif
86 
87 
88 /*
89  * Boot a secondary CPU, and assign it the specified idle task.
90  * This also gives us the initial stack to use for this CPU.
91  */
92 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
93 {
94 	if (cpu_ops[cpu]->cpu_boot)
95 		return cpu_ops[cpu]->cpu_boot(cpu);
96 
97 	return -EOPNOTSUPP;
98 }
99 
100 static DECLARE_COMPLETION(cpu_running);
101 
102 int __cpu_up(unsigned int cpu, struct task_struct *idle)
103 {
104 	int ret;
105 	long status;
106 
107 	/*
108 	 * We need to tell the secondary core where to find its stack and the
109 	 * page tables.
110 	 */
111 	secondary_data.task = idle;
112 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
113 	update_cpu_boot_status(CPU_MMU_OFF);
114 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
115 
116 	/*
117 	 * Now bring the CPU into our world.
118 	 */
119 	ret = boot_secondary(cpu, idle);
120 	if (ret == 0) {
121 		/*
122 		 * CPU was successfully started, wait for it to come online or
123 		 * time out.
124 		 */
125 		wait_for_completion_timeout(&cpu_running,
126 					    msecs_to_jiffies(1000));
127 
128 		if (!cpu_online(cpu)) {
129 			pr_crit("CPU%u: failed to come online\n", cpu);
130 			ret = -EIO;
131 		}
132 	} else {
133 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
134 		return ret;
135 	}
136 
137 	secondary_data.task = NULL;
138 	secondary_data.stack = NULL;
139 	status = READ_ONCE(secondary_data.status);
140 	if (ret && status) {
141 
142 		if (status == CPU_MMU_OFF)
143 			status = READ_ONCE(__early_cpu_boot_status);
144 
145 		switch (status & CPU_BOOT_STATUS_MASK) {
146 		default:
147 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
148 					cpu, status);
149 			break;
150 		case CPU_KILL_ME:
151 			if (!op_cpu_kill(cpu)) {
152 				pr_crit("CPU%u: died during early boot\n", cpu);
153 				break;
154 			}
155 			/* Fall through */
156 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
157 		case CPU_STUCK_IN_KERNEL:
158 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
159 			if (status & CPU_STUCK_REASON_52_BIT_VA)
160 				pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
161 			if (status & CPU_STUCK_REASON_NO_GRAN)
162 				pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
163 			cpus_stuck_in_kernel++;
164 			break;
165 		case CPU_PANIC_KERNEL:
166 			panic("CPU%u detected unsupported configuration\n", cpu);
167 		}
168 	}
169 
170 	return ret;
171 }
172 
173 static void init_gic_priority_masking(void)
174 {
175 	u32 cpuflags;
176 
177 	if (WARN_ON(!gic_enable_sre()))
178 		return;
179 
180 	cpuflags = read_sysreg(daif);
181 
182 	WARN_ON(!(cpuflags & PSR_I_BIT));
183 
184 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
185 }
186 
187 /*
188  * This is the secondary CPU boot entry.  We're using this CPUs
189  * idle thread stack, but a set of temporary page tables.
190  */
191 asmlinkage notrace void secondary_start_kernel(void)
192 {
193 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
194 	struct mm_struct *mm = &init_mm;
195 	unsigned int cpu;
196 
197 	cpu = task_cpu(current);
198 	set_my_cpu_offset(per_cpu_offset(cpu));
199 
200 	/*
201 	 * All kernel threads share the same mm context; grab a
202 	 * reference and switch to it.
203 	 */
204 	mmgrab(mm);
205 	current->active_mm = mm;
206 
207 	/*
208 	 * TTBR0 is only used for the identity mapping at this stage. Make it
209 	 * point to zero page to avoid speculatively fetching new entries.
210 	 */
211 	cpu_uninstall_idmap();
212 
213 	if (system_uses_irq_prio_masking())
214 		init_gic_priority_masking();
215 
216 	preempt_disable();
217 	trace_hardirqs_off();
218 
219 	/*
220 	 * If the system has established the capabilities, make sure
221 	 * this CPU ticks all of those. If it doesn't, the CPU will
222 	 * fail to come online.
223 	 */
224 	check_local_cpu_capabilities();
225 
226 	if (cpu_ops[cpu]->cpu_postboot)
227 		cpu_ops[cpu]->cpu_postboot();
228 
229 	/*
230 	 * Log the CPU info before it is marked online and might get read.
231 	 */
232 	cpuinfo_store_cpu();
233 
234 	/*
235 	 * Enable GIC and timers.
236 	 */
237 	notify_cpu_starting(cpu);
238 
239 	store_cpu_topology(cpu);
240 	numa_add_cpu(cpu);
241 
242 	/*
243 	 * OK, now it's safe to let the boot CPU continue.  Wait for
244 	 * the CPU migration code to notice that the CPU is online
245 	 * before we continue.
246 	 */
247 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
248 					 cpu, (unsigned long)mpidr,
249 					 read_cpuid_id());
250 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
251 	set_cpu_online(cpu, true);
252 	complete(&cpu_running);
253 
254 	local_daif_restore(DAIF_PROCCTX);
255 
256 	/*
257 	 * OK, it's off to the idle thread for us
258 	 */
259 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
260 }
261 
262 #ifdef CONFIG_HOTPLUG_CPU
263 static int op_cpu_disable(unsigned int cpu)
264 {
265 	/*
266 	 * If we don't have a cpu_die method, abort before we reach the point
267 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
268 	 */
269 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
270 		return -EOPNOTSUPP;
271 
272 	/*
273 	 * We may need to abort a hot unplug for some other mechanism-specific
274 	 * reason.
275 	 */
276 	if (cpu_ops[cpu]->cpu_disable)
277 		return cpu_ops[cpu]->cpu_disable(cpu);
278 
279 	return 0;
280 }
281 
282 /*
283  * __cpu_disable runs on the processor to be shutdown.
284  */
285 int __cpu_disable(void)
286 {
287 	unsigned int cpu = smp_processor_id();
288 	int ret;
289 
290 	ret = op_cpu_disable(cpu);
291 	if (ret)
292 		return ret;
293 
294 	remove_cpu_topology(cpu);
295 	numa_remove_cpu(cpu);
296 
297 	/*
298 	 * Take this CPU offline.  Once we clear this, we can't return,
299 	 * and we must not schedule until we're ready to give up the cpu.
300 	 */
301 	set_cpu_online(cpu, false);
302 
303 	/*
304 	 * OK - migrate IRQs away from this CPU
305 	 */
306 	irq_migrate_all_off_this_cpu();
307 
308 	return 0;
309 }
310 
311 static int op_cpu_kill(unsigned int cpu)
312 {
313 	/*
314 	 * If we have no means of synchronising with the dying CPU, then assume
315 	 * that it is really dead. We can only wait for an arbitrary length of
316 	 * time and hope that it's dead, so let's skip the wait and just hope.
317 	 */
318 	if (!cpu_ops[cpu]->cpu_kill)
319 		return 0;
320 
321 	return cpu_ops[cpu]->cpu_kill(cpu);
322 }
323 
324 /*
325  * called on the thread which is asking for a CPU to be shutdown -
326  * waits until shutdown has completed, or it is timed out.
327  */
328 void __cpu_die(unsigned int cpu)
329 {
330 	int err;
331 
332 	if (!cpu_wait_death(cpu, 5)) {
333 		pr_crit("CPU%u: cpu didn't die\n", cpu);
334 		return;
335 	}
336 	pr_notice("CPU%u: shutdown\n", cpu);
337 
338 	/*
339 	 * Now that the dying CPU is beyond the point of no return w.r.t.
340 	 * in-kernel synchronisation, try to get the firwmare to help us to
341 	 * verify that it has really left the kernel before we consider
342 	 * clobbering anything it might still be using.
343 	 */
344 	err = op_cpu_kill(cpu);
345 	if (err)
346 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
347 			cpu, err);
348 }
349 
350 /*
351  * Called from the idle thread for the CPU which has been shutdown.
352  *
353  */
354 void cpu_die(void)
355 {
356 	unsigned int cpu = smp_processor_id();
357 
358 	idle_task_exit();
359 
360 	local_daif_mask();
361 
362 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
363 	(void)cpu_report_death();
364 
365 	/*
366 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
367 	 * mechanism must perform all required cache maintenance to ensure that
368 	 * no dirty lines are lost in the process of shutting down the CPU.
369 	 */
370 	cpu_ops[cpu]->cpu_die(cpu);
371 
372 	BUG();
373 }
374 #endif
375 
376 /*
377  * Kill the calling secondary CPU, early in bringup before it is turned
378  * online.
379  */
380 void cpu_die_early(void)
381 {
382 	int cpu = smp_processor_id();
383 
384 	pr_crit("CPU%d: will not boot\n", cpu);
385 
386 	/* Mark this CPU absent */
387 	set_cpu_present(cpu, 0);
388 
389 #ifdef CONFIG_HOTPLUG_CPU
390 	update_cpu_boot_status(CPU_KILL_ME);
391 	/* Check if we can park ourselves */
392 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
393 		cpu_ops[cpu]->cpu_die(cpu);
394 #endif
395 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
396 
397 	cpu_park_loop();
398 }
399 
400 static void __init hyp_mode_check(void)
401 {
402 	if (is_hyp_mode_available())
403 		pr_info("CPU: All CPU(s) started at EL2\n");
404 	else if (is_hyp_mode_mismatched())
405 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
406 			   "CPU: CPUs started in inconsistent modes");
407 	else
408 		pr_info("CPU: All CPU(s) started at EL1\n");
409 }
410 
411 void __init smp_cpus_done(unsigned int max_cpus)
412 {
413 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
414 	setup_cpu_features();
415 	hyp_mode_check();
416 	apply_alternatives_all();
417 	mark_linear_text_alias_ro();
418 }
419 
420 void __init smp_prepare_boot_cpu(void)
421 {
422 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
423 	cpuinfo_store_boot_cpu();
424 
425 	/*
426 	 * We now know enough about the boot CPU to apply the
427 	 * alternatives that cannot wait until interrupt handling
428 	 * and/or scheduling is enabled.
429 	 */
430 	apply_boot_alternatives();
431 
432 	/* Conditionally switch to GIC PMR for interrupt masking */
433 	if (system_uses_irq_prio_masking())
434 		init_gic_priority_masking();
435 }
436 
437 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
438 {
439 	const __be32 *cell;
440 	u64 hwid;
441 
442 	/*
443 	 * A cpu node with missing "reg" property is
444 	 * considered invalid to build a cpu_logical_map
445 	 * entry.
446 	 */
447 	cell = of_get_property(dn, "reg", NULL);
448 	if (!cell) {
449 		pr_err("%pOF: missing reg property\n", dn);
450 		return INVALID_HWID;
451 	}
452 
453 	hwid = of_read_number(cell, of_n_addr_cells(dn));
454 	/*
455 	 * Non affinity bits must be set to 0 in the DT
456 	 */
457 	if (hwid & ~MPIDR_HWID_BITMASK) {
458 		pr_err("%pOF: invalid reg property\n", dn);
459 		return INVALID_HWID;
460 	}
461 	return hwid;
462 }
463 
464 /*
465  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
466  * entries and check for duplicates. If any is found just ignore the
467  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
468  * matching valid MPIDR values.
469  */
470 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
471 {
472 	unsigned int i;
473 
474 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
475 		if (cpu_logical_map(i) == hwid)
476 			return true;
477 	return false;
478 }
479 
480 /*
481  * Initialize cpu operations for a logical cpu and
482  * set it in the possible mask on success
483  */
484 static int __init smp_cpu_setup(int cpu)
485 {
486 	if (cpu_read_ops(cpu))
487 		return -ENODEV;
488 
489 	if (cpu_ops[cpu]->cpu_init(cpu))
490 		return -ENODEV;
491 
492 	set_cpu_possible(cpu, true);
493 
494 	return 0;
495 }
496 
497 static bool bootcpu_valid __initdata;
498 static unsigned int cpu_count = 1;
499 
500 #ifdef CONFIG_ACPI
501 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
502 
503 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
504 {
505 	return &cpu_madt_gicc[cpu];
506 }
507 
508 /*
509  * acpi_map_gic_cpu_interface - parse processor MADT entry
510  *
511  * Carry out sanity checks on MADT processor entry and initialize
512  * cpu_logical_map on success
513  */
514 static void __init
515 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
516 {
517 	u64 hwid = processor->arm_mpidr;
518 
519 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
520 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
521 		return;
522 	}
523 
524 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
525 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
526 		return;
527 	}
528 
529 	if (is_mpidr_duplicate(cpu_count, hwid)) {
530 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
531 		return;
532 	}
533 
534 	/* Check if GICC structure of boot CPU is available in the MADT */
535 	if (cpu_logical_map(0) == hwid) {
536 		if (bootcpu_valid) {
537 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
538 			       hwid);
539 			return;
540 		}
541 		bootcpu_valid = true;
542 		cpu_madt_gicc[0] = *processor;
543 		return;
544 	}
545 
546 	if (cpu_count >= NR_CPUS)
547 		return;
548 
549 	/* map the logical cpu id to cpu MPIDR */
550 	cpu_logical_map(cpu_count) = hwid;
551 
552 	cpu_madt_gicc[cpu_count] = *processor;
553 
554 	/*
555 	 * Set-up the ACPI parking protocol cpu entries
556 	 * while initializing the cpu_logical_map to
557 	 * avoid parsing MADT entries multiple times for
558 	 * nothing (ie a valid cpu_logical_map entry should
559 	 * contain a valid parking protocol data set to
560 	 * initialize the cpu if the parking protocol is
561 	 * the only available enable method).
562 	 */
563 	acpi_set_mailbox_entry(cpu_count, processor);
564 
565 	cpu_count++;
566 }
567 
568 static int __init
569 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
570 			     const unsigned long end)
571 {
572 	struct acpi_madt_generic_interrupt *processor;
573 
574 	processor = (struct acpi_madt_generic_interrupt *)header;
575 	if (BAD_MADT_GICC_ENTRY(processor, end))
576 		return -EINVAL;
577 
578 	acpi_table_print_madt_entry(&header->common);
579 
580 	acpi_map_gic_cpu_interface(processor);
581 
582 	return 0;
583 }
584 
585 static void __init acpi_parse_and_init_cpus(void)
586 {
587 	int i;
588 
589 	/*
590 	 * do a walk of MADT to determine how many CPUs
591 	 * we have including disabled CPUs, and get information
592 	 * we need for SMP init.
593 	 */
594 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
595 				      acpi_parse_gic_cpu_interface, 0);
596 
597 	/*
598 	 * In ACPI, SMP and CPU NUMA information is provided in separate
599 	 * static tables, namely the MADT and the SRAT.
600 	 *
601 	 * Thus, it is simpler to first create the cpu logical map through
602 	 * an MADT walk and then map the logical cpus to their node ids
603 	 * as separate steps.
604 	 */
605 	acpi_map_cpus_to_nodes();
606 
607 	for (i = 0; i < nr_cpu_ids; i++)
608 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
609 }
610 #else
611 #define acpi_parse_and_init_cpus(...)	do { } while (0)
612 #endif
613 
614 /*
615  * Enumerate the possible CPU set from the device tree and build the
616  * cpu logical map array containing MPIDR values related to logical
617  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
618  */
619 static void __init of_parse_and_init_cpus(void)
620 {
621 	struct device_node *dn;
622 
623 	for_each_of_cpu_node(dn) {
624 		u64 hwid = of_get_cpu_mpidr(dn);
625 
626 		if (hwid == INVALID_HWID)
627 			goto next;
628 
629 		if (is_mpidr_duplicate(cpu_count, hwid)) {
630 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
631 				dn);
632 			goto next;
633 		}
634 
635 		/*
636 		 * The numbering scheme requires that the boot CPU
637 		 * must be assigned logical id 0. Record it so that
638 		 * the logical map built from DT is validated and can
639 		 * be used.
640 		 */
641 		if (hwid == cpu_logical_map(0)) {
642 			if (bootcpu_valid) {
643 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
644 					dn);
645 				goto next;
646 			}
647 
648 			bootcpu_valid = true;
649 			early_map_cpu_to_node(0, of_node_to_nid(dn));
650 
651 			/*
652 			 * cpu_logical_map has already been
653 			 * initialized and the boot cpu doesn't need
654 			 * the enable-method so continue without
655 			 * incrementing cpu.
656 			 */
657 			continue;
658 		}
659 
660 		if (cpu_count >= NR_CPUS)
661 			goto next;
662 
663 		pr_debug("cpu logical map 0x%llx\n", hwid);
664 		cpu_logical_map(cpu_count) = hwid;
665 
666 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
667 next:
668 		cpu_count++;
669 	}
670 }
671 
672 /*
673  * Enumerate the possible CPU set from the device tree or ACPI and build the
674  * cpu logical map array containing MPIDR values related to logical
675  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
676  */
677 void __init smp_init_cpus(void)
678 {
679 	int i;
680 
681 	if (acpi_disabled)
682 		of_parse_and_init_cpus();
683 	else
684 		acpi_parse_and_init_cpus();
685 
686 	if (cpu_count > nr_cpu_ids)
687 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
688 			cpu_count, nr_cpu_ids);
689 
690 	if (!bootcpu_valid) {
691 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
692 		return;
693 	}
694 
695 	/*
696 	 * We need to set the cpu_logical_map entries before enabling
697 	 * the cpus so that cpu processor description entries (DT cpu nodes
698 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
699 	 * with entries in cpu_logical_map while initializing the cpus.
700 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
701 	 */
702 	for (i = 1; i < nr_cpu_ids; i++) {
703 		if (cpu_logical_map(i) != INVALID_HWID) {
704 			if (smp_cpu_setup(i))
705 				cpu_logical_map(i) = INVALID_HWID;
706 		}
707 	}
708 }
709 
710 void __init smp_prepare_cpus(unsigned int max_cpus)
711 {
712 	int err;
713 	unsigned int cpu;
714 	unsigned int this_cpu;
715 
716 	init_cpu_topology();
717 
718 	this_cpu = smp_processor_id();
719 	store_cpu_topology(this_cpu);
720 	numa_store_cpu_info(this_cpu);
721 	numa_add_cpu(this_cpu);
722 
723 	/*
724 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
725 	 * secondary CPUs present.
726 	 */
727 	if (max_cpus == 0)
728 		return;
729 
730 	/*
731 	 * Initialise the present map (which describes the set of CPUs
732 	 * actually populated at the present time) and release the
733 	 * secondaries from the bootloader.
734 	 */
735 	for_each_possible_cpu(cpu) {
736 
737 		per_cpu(cpu_number, cpu) = cpu;
738 
739 		if (cpu == smp_processor_id())
740 			continue;
741 
742 		if (!cpu_ops[cpu])
743 			continue;
744 
745 		err = cpu_ops[cpu]->cpu_prepare(cpu);
746 		if (err)
747 			continue;
748 
749 		set_cpu_present(cpu, true);
750 		numa_store_cpu_info(cpu);
751 	}
752 }
753 
754 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
755 
756 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
757 {
758 	__smp_cross_call = fn;
759 }
760 
761 static const char *ipi_types[NR_IPI] __tracepoint_string = {
762 #define S(x,s)	[x] = s
763 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
764 	S(IPI_CALL_FUNC, "Function call interrupts"),
765 	S(IPI_CPU_STOP, "CPU stop interrupts"),
766 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
767 	S(IPI_TIMER, "Timer broadcast interrupts"),
768 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
769 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
770 };
771 
772 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
773 {
774 	trace_ipi_raise(target, ipi_types[ipinr]);
775 	__smp_cross_call(target, ipinr);
776 }
777 
778 void show_ipi_list(struct seq_file *p, int prec)
779 {
780 	unsigned int cpu, i;
781 
782 	for (i = 0; i < NR_IPI; i++) {
783 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
784 			   prec >= 4 ? " " : "");
785 		for_each_online_cpu(cpu)
786 			seq_printf(p, "%10u ",
787 				   __get_irq_stat(cpu, ipi_irqs[i]));
788 		seq_printf(p, "      %s\n", ipi_types[i]);
789 	}
790 }
791 
792 u64 smp_irq_stat_cpu(unsigned int cpu)
793 {
794 	u64 sum = 0;
795 	int i;
796 
797 	for (i = 0; i < NR_IPI; i++)
798 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
799 
800 	return sum;
801 }
802 
803 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
804 {
805 	smp_cross_call(mask, IPI_CALL_FUNC);
806 }
807 
808 void arch_send_call_function_single_ipi(int cpu)
809 {
810 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
811 }
812 
813 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
814 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
815 {
816 	smp_cross_call(mask, IPI_WAKEUP);
817 }
818 #endif
819 
820 #ifdef CONFIG_IRQ_WORK
821 void arch_irq_work_raise(void)
822 {
823 	if (__smp_cross_call)
824 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
825 }
826 #endif
827 
828 static void local_cpu_stop(void)
829 {
830 	set_cpu_online(smp_processor_id(), false);
831 
832 	local_daif_mask();
833 	sdei_mask_local_cpu();
834 	cpu_park_loop();
835 }
836 
837 /*
838  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
839  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
840  * CPUs that have already stopped themselves.
841  */
842 void panic_smp_self_stop(void)
843 {
844 	local_cpu_stop();
845 }
846 
847 #ifdef CONFIG_KEXEC_CORE
848 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
849 #endif
850 
851 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
852 {
853 #ifdef CONFIG_KEXEC_CORE
854 	crash_save_cpu(regs, cpu);
855 
856 	atomic_dec(&waiting_for_crash_ipi);
857 
858 	local_irq_disable();
859 	sdei_mask_local_cpu();
860 
861 #ifdef CONFIG_HOTPLUG_CPU
862 	if (cpu_ops[cpu]->cpu_die)
863 		cpu_ops[cpu]->cpu_die(cpu);
864 #endif
865 
866 	/* just in case */
867 	cpu_park_loop();
868 #endif
869 }
870 
871 /*
872  * Main handler for inter-processor interrupts
873  */
874 void handle_IPI(int ipinr, struct pt_regs *regs)
875 {
876 	unsigned int cpu = smp_processor_id();
877 	struct pt_regs *old_regs = set_irq_regs(regs);
878 
879 	if ((unsigned)ipinr < NR_IPI) {
880 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
881 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
882 	}
883 
884 	switch (ipinr) {
885 	case IPI_RESCHEDULE:
886 		scheduler_ipi();
887 		break;
888 
889 	case IPI_CALL_FUNC:
890 		irq_enter();
891 		generic_smp_call_function_interrupt();
892 		irq_exit();
893 		break;
894 
895 	case IPI_CPU_STOP:
896 		irq_enter();
897 		local_cpu_stop();
898 		irq_exit();
899 		break;
900 
901 	case IPI_CPU_CRASH_STOP:
902 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
903 			irq_enter();
904 			ipi_cpu_crash_stop(cpu, regs);
905 
906 			unreachable();
907 		}
908 		break;
909 
910 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
911 	case IPI_TIMER:
912 		irq_enter();
913 		tick_receive_broadcast();
914 		irq_exit();
915 		break;
916 #endif
917 
918 #ifdef CONFIG_IRQ_WORK
919 	case IPI_IRQ_WORK:
920 		irq_enter();
921 		irq_work_run();
922 		irq_exit();
923 		break;
924 #endif
925 
926 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
927 	case IPI_WAKEUP:
928 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
929 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
930 			  cpu);
931 		break;
932 #endif
933 
934 	default:
935 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
936 		break;
937 	}
938 
939 	if ((unsigned)ipinr < NR_IPI)
940 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
941 	set_irq_regs(old_regs);
942 }
943 
944 void smp_send_reschedule(int cpu)
945 {
946 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
947 }
948 
949 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
950 void tick_broadcast(const struct cpumask *mask)
951 {
952 	smp_cross_call(mask, IPI_TIMER);
953 }
954 #endif
955 
956 void smp_send_stop(void)
957 {
958 	unsigned long timeout;
959 
960 	if (num_online_cpus() > 1) {
961 		cpumask_t mask;
962 
963 		cpumask_copy(&mask, cpu_online_mask);
964 		cpumask_clear_cpu(smp_processor_id(), &mask);
965 
966 		if (system_state <= SYSTEM_RUNNING)
967 			pr_crit("SMP: stopping secondary CPUs\n");
968 		smp_cross_call(&mask, IPI_CPU_STOP);
969 	}
970 
971 	/* Wait up to one second for other CPUs to stop */
972 	timeout = USEC_PER_SEC;
973 	while (num_online_cpus() > 1 && timeout--)
974 		udelay(1);
975 
976 	if (num_online_cpus() > 1)
977 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
978 			   cpumask_pr_args(cpu_online_mask));
979 
980 	sdei_mask_local_cpu();
981 }
982 
983 #ifdef CONFIG_KEXEC_CORE
984 void crash_smp_send_stop(void)
985 {
986 	static int cpus_stopped;
987 	cpumask_t mask;
988 	unsigned long timeout;
989 
990 	/*
991 	 * This function can be called twice in panic path, but obviously
992 	 * we execute this only once.
993 	 */
994 	if (cpus_stopped)
995 		return;
996 
997 	cpus_stopped = 1;
998 
999 	if (num_online_cpus() == 1) {
1000 		sdei_mask_local_cpu();
1001 		return;
1002 	}
1003 
1004 	cpumask_copy(&mask, cpu_online_mask);
1005 	cpumask_clear_cpu(smp_processor_id(), &mask);
1006 
1007 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1008 
1009 	pr_crit("SMP: stopping secondary CPUs\n");
1010 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1011 
1012 	/* Wait up to one second for other CPUs to stop */
1013 	timeout = USEC_PER_SEC;
1014 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1015 		udelay(1);
1016 
1017 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1018 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1019 			   cpumask_pr_args(&mask));
1020 
1021 	sdei_mask_local_cpu();
1022 }
1023 
1024 bool smp_crash_stop_failed(void)
1025 {
1026 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1027 }
1028 #endif
1029 
1030 /*
1031  * not supported here
1032  */
1033 int setup_profiling_timer(unsigned int multiplier)
1034 {
1035 	return -EINVAL;
1036 }
1037 
1038 static bool have_cpu_die(void)
1039 {
1040 #ifdef CONFIG_HOTPLUG_CPU
1041 	int any_cpu = raw_smp_processor_id();
1042 
1043 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1044 		return true;
1045 #endif
1046 	return false;
1047 }
1048 
1049 bool cpus_are_stuck_in_kernel(void)
1050 {
1051 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1052 
1053 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1054 }
1055