1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kexec.h> 34 35 #include <asm/alternative.h> 36 #include <asm/atomic.h> 37 #include <asm/cacheflush.h> 38 #include <asm/cpu.h> 39 #include <asm/cputype.h> 40 #include <asm/cpu_ops.h> 41 #include <asm/daifflags.h> 42 #include <asm/mmu_context.h> 43 #include <asm/numa.h> 44 #include <asm/pgtable.h> 45 #include <asm/pgalloc.h> 46 #include <asm/processor.h> 47 #include <asm/smp_plat.h> 48 #include <asm/sections.h> 49 #include <asm/tlbflush.h> 50 #include <asm/ptrace.h> 51 #include <asm/virt.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ipi.h> 55 56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 57 EXPORT_PER_CPU_SYMBOL(cpu_number); 58 59 /* 60 * as from 2.5, kernels no longer have an init_tasks structure 61 * so we need some other way of telling a new secondary core 62 * where to place its SVC stack 63 */ 64 struct secondary_data secondary_data; 65 /* Number of CPUs which aren't online, but looping in kernel text. */ 66 int cpus_stuck_in_kernel; 67 68 enum ipi_msg_type { 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CPU_STOP, 72 IPI_CPU_CRASH_STOP, 73 IPI_TIMER, 74 IPI_IRQ_WORK, 75 IPI_WAKEUP 76 }; 77 78 #ifdef CONFIG_HOTPLUG_CPU 79 static int op_cpu_kill(unsigned int cpu); 80 #else 81 static inline int op_cpu_kill(unsigned int cpu) 82 { 83 return -ENOSYS; 84 } 85 #endif 86 87 88 /* 89 * Boot a secondary CPU, and assign it the specified idle task. 90 * This also gives us the initial stack to use for this CPU. 91 */ 92 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 93 { 94 if (cpu_ops[cpu]->cpu_boot) 95 return cpu_ops[cpu]->cpu_boot(cpu); 96 97 return -EOPNOTSUPP; 98 } 99 100 static DECLARE_COMPLETION(cpu_running); 101 102 int __cpu_up(unsigned int cpu, struct task_struct *idle) 103 { 104 int ret; 105 long status; 106 107 /* 108 * We need to tell the secondary core where to find its stack and the 109 * page tables. 110 */ 111 secondary_data.task = idle; 112 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 113 update_cpu_boot_status(CPU_MMU_OFF); 114 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 115 116 /* 117 * Now bring the CPU into our world. 118 */ 119 ret = boot_secondary(cpu, idle); 120 if (ret == 0) { 121 /* 122 * CPU was successfully started, wait for it to come online or 123 * time out. 124 */ 125 wait_for_completion_timeout(&cpu_running, 126 msecs_to_jiffies(5000)); 127 128 if (!cpu_online(cpu)) { 129 pr_crit("CPU%u: failed to come online\n", cpu); 130 ret = -EIO; 131 } 132 } else { 133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 134 return ret; 135 } 136 137 secondary_data.task = NULL; 138 secondary_data.stack = NULL; 139 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 140 status = READ_ONCE(secondary_data.status); 141 if (ret && status) { 142 143 if (status == CPU_MMU_OFF) 144 status = READ_ONCE(__early_cpu_boot_status); 145 146 switch (status & CPU_BOOT_STATUS_MASK) { 147 default: 148 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 149 cpu, status); 150 cpus_stuck_in_kernel++; 151 break; 152 case CPU_KILL_ME: 153 if (!op_cpu_kill(cpu)) { 154 pr_crit("CPU%u: died during early boot\n", cpu); 155 break; 156 } 157 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 158 /* Fall through */ 159 case CPU_STUCK_IN_KERNEL: 160 pr_crit("CPU%u: is stuck in kernel\n", cpu); 161 if (status & CPU_STUCK_REASON_52_BIT_VA) 162 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 163 if (status & CPU_STUCK_REASON_NO_GRAN) 164 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K); 165 cpus_stuck_in_kernel++; 166 break; 167 case CPU_PANIC_KERNEL: 168 panic("CPU%u detected unsupported configuration\n", cpu); 169 } 170 } 171 172 return ret; 173 } 174 175 static void init_gic_priority_masking(void) 176 { 177 u32 cpuflags; 178 179 if (WARN_ON(!gic_enable_sre())) 180 return; 181 182 cpuflags = read_sysreg(daif); 183 184 WARN_ON(!(cpuflags & PSR_I_BIT)); 185 186 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 187 } 188 189 /* 190 * This is the secondary CPU boot entry. We're using this CPUs 191 * idle thread stack, but a set of temporary page tables. 192 */ 193 asmlinkage notrace void secondary_start_kernel(void) 194 { 195 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 196 struct mm_struct *mm = &init_mm; 197 unsigned int cpu; 198 199 cpu = task_cpu(current); 200 set_my_cpu_offset(per_cpu_offset(cpu)); 201 202 /* 203 * All kernel threads share the same mm context; grab a 204 * reference and switch to it. 205 */ 206 mmgrab(mm); 207 current->active_mm = mm; 208 209 /* 210 * TTBR0 is only used for the identity mapping at this stage. Make it 211 * point to zero page to avoid speculatively fetching new entries. 212 */ 213 cpu_uninstall_idmap(); 214 215 if (system_uses_irq_prio_masking()) 216 init_gic_priority_masking(); 217 218 preempt_disable(); 219 trace_hardirqs_off(); 220 221 /* 222 * If the system has established the capabilities, make sure 223 * this CPU ticks all of those. If it doesn't, the CPU will 224 * fail to come online. 225 */ 226 check_local_cpu_capabilities(); 227 228 if (cpu_ops[cpu]->cpu_postboot) 229 cpu_ops[cpu]->cpu_postboot(); 230 231 /* 232 * Log the CPU info before it is marked online and might get read. 233 */ 234 cpuinfo_store_cpu(); 235 236 /* 237 * Enable GIC and timers. 238 */ 239 notify_cpu_starting(cpu); 240 241 store_cpu_topology(cpu); 242 numa_add_cpu(cpu); 243 244 /* 245 * OK, now it's safe to let the boot CPU continue. Wait for 246 * the CPU migration code to notice that the CPU is online 247 * before we continue. 248 */ 249 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 250 cpu, (unsigned long)mpidr, 251 read_cpuid_id()); 252 update_cpu_boot_status(CPU_BOOT_SUCCESS); 253 set_cpu_online(cpu, true); 254 complete(&cpu_running); 255 256 local_daif_restore(DAIF_PROCCTX); 257 258 /* 259 * OK, it's off to the idle thread for us 260 */ 261 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 262 } 263 264 #ifdef CONFIG_HOTPLUG_CPU 265 static int op_cpu_disable(unsigned int cpu) 266 { 267 /* 268 * If we don't have a cpu_die method, abort before we reach the point 269 * of no return. CPU0 may not have an cpu_ops, so test for it. 270 */ 271 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 272 return -EOPNOTSUPP; 273 274 /* 275 * We may need to abort a hot unplug for some other mechanism-specific 276 * reason. 277 */ 278 if (cpu_ops[cpu]->cpu_disable) 279 return cpu_ops[cpu]->cpu_disable(cpu); 280 281 return 0; 282 } 283 284 /* 285 * __cpu_disable runs on the processor to be shutdown. 286 */ 287 int __cpu_disable(void) 288 { 289 unsigned int cpu = smp_processor_id(); 290 int ret; 291 292 ret = op_cpu_disable(cpu); 293 if (ret) 294 return ret; 295 296 remove_cpu_topology(cpu); 297 numa_remove_cpu(cpu); 298 299 /* 300 * Take this CPU offline. Once we clear this, we can't return, 301 * and we must not schedule until we're ready to give up the cpu. 302 */ 303 set_cpu_online(cpu, false); 304 305 /* 306 * OK - migrate IRQs away from this CPU 307 */ 308 irq_migrate_all_off_this_cpu(); 309 310 return 0; 311 } 312 313 static int op_cpu_kill(unsigned int cpu) 314 { 315 /* 316 * If we have no means of synchronising with the dying CPU, then assume 317 * that it is really dead. We can only wait for an arbitrary length of 318 * time and hope that it's dead, so let's skip the wait and just hope. 319 */ 320 if (!cpu_ops[cpu]->cpu_kill) 321 return 0; 322 323 return cpu_ops[cpu]->cpu_kill(cpu); 324 } 325 326 /* 327 * called on the thread which is asking for a CPU to be shutdown - 328 * waits until shutdown has completed, or it is timed out. 329 */ 330 void __cpu_die(unsigned int cpu) 331 { 332 int err; 333 334 if (!cpu_wait_death(cpu, 5)) { 335 pr_crit("CPU%u: cpu didn't die\n", cpu); 336 return; 337 } 338 pr_notice("CPU%u: shutdown\n", cpu); 339 340 /* 341 * Now that the dying CPU is beyond the point of no return w.r.t. 342 * in-kernel synchronisation, try to get the firwmare to help us to 343 * verify that it has really left the kernel before we consider 344 * clobbering anything it might still be using. 345 */ 346 err = op_cpu_kill(cpu); 347 if (err) 348 pr_warn("CPU%d may not have shut down cleanly: %d\n", 349 cpu, err); 350 } 351 352 /* 353 * Called from the idle thread for the CPU which has been shutdown. 354 * 355 */ 356 void cpu_die(void) 357 { 358 unsigned int cpu = smp_processor_id(); 359 360 idle_task_exit(); 361 362 local_daif_mask(); 363 364 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 365 (void)cpu_report_death(); 366 367 /* 368 * Actually shutdown the CPU. This must never fail. The specific hotplug 369 * mechanism must perform all required cache maintenance to ensure that 370 * no dirty lines are lost in the process of shutting down the CPU. 371 */ 372 cpu_ops[cpu]->cpu_die(cpu); 373 374 BUG(); 375 } 376 #endif 377 378 /* 379 * Kill the calling secondary CPU, early in bringup before it is turned 380 * online. 381 */ 382 void cpu_die_early(void) 383 { 384 int cpu = smp_processor_id(); 385 386 pr_crit("CPU%d: will not boot\n", cpu); 387 388 /* Mark this CPU absent */ 389 set_cpu_present(cpu, 0); 390 391 #ifdef CONFIG_HOTPLUG_CPU 392 update_cpu_boot_status(CPU_KILL_ME); 393 /* Check if we can park ourselves */ 394 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 395 cpu_ops[cpu]->cpu_die(cpu); 396 #endif 397 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 398 399 cpu_park_loop(); 400 } 401 402 static void __init hyp_mode_check(void) 403 { 404 if (is_hyp_mode_available()) 405 pr_info("CPU: All CPU(s) started at EL2\n"); 406 else if (is_hyp_mode_mismatched()) 407 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 408 "CPU: CPUs started in inconsistent modes"); 409 else 410 pr_info("CPU: All CPU(s) started at EL1\n"); 411 } 412 413 void __init smp_cpus_done(unsigned int max_cpus) 414 { 415 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 416 setup_cpu_features(); 417 hyp_mode_check(); 418 apply_alternatives_all(); 419 mark_linear_text_alias_ro(); 420 } 421 422 void __init smp_prepare_boot_cpu(void) 423 { 424 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 425 cpuinfo_store_boot_cpu(); 426 427 /* 428 * We now know enough about the boot CPU to apply the 429 * alternatives that cannot wait until interrupt handling 430 * and/or scheduling is enabled. 431 */ 432 apply_boot_alternatives(); 433 434 /* Conditionally switch to GIC PMR for interrupt masking */ 435 if (system_uses_irq_prio_masking()) 436 init_gic_priority_masking(); 437 } 438 439 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 440 { 441 const __be32 *cell; 442 u64 hwid; 443 444 /* 445 * A cpu node with missing "reg" property is 446 * considered invalid to build a cpu_logical_map 447 * entry. 448 */ 449 cell = of_get_property(dn, "reg", NULL); 450 if (!cell) { 451 pr_err("%pOF: missing reg property\n", dn); 452 return INVALID_HWID; 453 } 454 455 hwid = of_read_number(cell, of_n_addr_cells(dn)); 456 /* 457 * Non affinity bits must be set to 0 in the DT 458 */ 459 if (hwid & ~MPIDR_HWID_BITMASK) { 460 pr_err("%pOF: invalid reg property\n", dn); 461 return INVALID_HWID; 462 } 463 return hwid; 464 } 465 466 /* 467 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 468 * entries and check for duplicates. If any is found just ignore the 469 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 470 * matching valid MPIDR values. 471 */ 472 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 473 { 474 unsigned int i; 475 476 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 477 if (cpu_logical_map(i) == hwid) 478 return true; 479 return false; 480 } 481 482 /* 483 * Initialize cpu operations for a logical cpu and 484 * set it in the possible mask on success 485 */ 486 static int __init smp_cpu_setup(int cpu) 487 { 488 if (cpu_read_ops(cpu)) 489 return -ENODEV; 490 491 if (cpu_ops[cpu]->cpu_init(cpu)) 492 return -ENODEV; 493 494 set_cpu_possible(cpu, true); 495 496 return 0; 497 } 498 499 static bool bootcpu_valid __initdata; 500 static unsigned int cpu_count = 1; 501 502 #ifdef CONFIG_ACPI 503 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 504 505 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 506 { 507 return &cpu_madt_gicc[cpu]; 508 } 509 510 /* 511 * acpi_map_gic_cpu_interface - parse processor MADT entry 512 * 513 * Carry out sanity checks on MADT processor entry and initialize 514 * cpu_logical_map on success 515 */ 516 static void __init 517 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 518 { 519 u64 hwid = processor->arm_mpidr; 520 521 if (!(processor->flags & ACPI_MADT_ENABLED)) { 522 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 523 return; 524 } 525 526 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 527 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 528 return; 529 } 530 531 if (is_mpidr_duplicate(cpu_count, hwid)) { 532 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 533 return; 534 } 535 536 /* Check if GICC structure of boot CPU is available in the MADT */ 537 if (cpu_logical_map(0) == hwid) { 538 if (bootcpu_valid) { 539 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 540 hwid); 541 return; 542 } 543 bootcpu_valid = true; 544 cpu_madt_gicc[0] = *processor; 545 return; 546 } 547 548 if (cpu_count >= NR_CPUS) 549 return; 550 551 /* map the logical cpu id to cpu MPIDR */ 552 cpu_logical_map(cpu_count) = hwid; 553 554 cpu_madt_gicc[cpu_count] = *processor; 555 556 /* 557 * Set-up the ACPI parking protocol cpu entries 558 * while initializing the cpu_logical_map to 559 * avoid parsing MADT entries multiple times for 560 * nothing (ie a valid cpu_logical_map entry should 561 * contain a valid parking protocol data set to 562 * initialize the cpu if the parking protocol is 563 * the only available enable method). 564 */ 565 acpi_set_mailbox_entry(cpu_count, processor); 566 567 cpu_count++; 568 } 569 570 static int __init 571 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 572 const unsigned long end) 573 { 574 struct acpi_madt_generic_interrupt *processor; 575 576 processor = (struct acpi_madt_generic_interrupt *)header; 577 if (BAD_MADT_GICC_ENTRY(processor, end)) 578 return -EINVAL; 579 580 acpi_table_print_madt_entry(&header->common); 581 582 acpi_map_gic_cpu_interface(processor); 583 584 return 0; 585 } 586 587 static void __init acpi_parse_and_init_cpus(void) 588 { 589 int i; 590 591 /* 592 * do a walk of MADT to determine how many CPUs 593 * we have including disabled CPUs, and get information 594 * we need for SMP init. 595 */ 596 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 597 acpi_parse_gic_cpu_interface, 0); 598 599 /* 600 * In ACPI, SMP and CPU NUMA information is provided in separate 601 * static tables, namely the MADT and the SRAT. 602 * 603 * Thus, it is simpler to first create the cpu logical map through 604 * an MADT walk and then map the logical cpus to their node ids 605 * as separate steps. 606 */ 607 acpi_map_cpus_to_nodes(); 608 609 for (i = 0; i < nr_cpu_ids; i++) 610 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 611 } 612 #else 613 #define acpi_parse_and_init_cpus(...) do { } while (0) 614 #endif 615 616 /* 617 * Enumerate the possible CPU set from the device tree and build the 618 * cpu logical map array containing MPIDR values related to logical 619 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 620 */ 621 static void __init of_parse_and_init_cpus(void) 622 { 623 struct device_node *dn; 624 625 for_each_of_cpu_node(dn) { 626 u64 hwid = of_get_cpu_mpidr(dn); 627 628 if (hwid == INVALID_HWID) 629 goto next; 630 631 if (is_mpidr_duplicate(cpu_count, hwid)) { 632 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 633 dn); 634 goto next; 635 } 636 637 /* 638 * The numbering scheme requires that the boot CPU 639 * must be assigned logical id 0. Record it so that 640 * the logical map built from DT is validated and can 641 * be used. 642 */ 643 if (hwid == cpu_logical_map(0)) { 644 if (bootcpu_valid) { 645 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 646 dn); 647 goto next; 648 } 649 650 bootcpu_valid = true; 651 early_map_cpu_to_node(0, of_node_to_nid(dn)); 652 653 /* 654 * cpu_logical_map has already been 655 * initialized and the boot cpu doesn't need 656 * the enable-method so continue without 657 * incrementing cpu. 658 */ 659 continue; 660 } 661 662 if (cpu_count >= NR_CPUS) 663 goto next; 664 665 pr_debug("cpu logical map 0x%llx\n", hwid); 666 cpu_logical_map(cpu_count) = hwid; 667 668 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 669 next: 670 cpu_count++; 671 } 672 } 673 674 /* 675 * Enumerate the possible CPU set from the device tree or ACPI and build the 676 * cpu logical map array containing MPIDR values related to logical 677 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 678 */ 679 void __init smp_init_cpus(void) 680 { 681 int i; 682 683 if (acpi_disabled) 684 of_parse_and_init_cpus(); 685 else 686 acpi_parse_and_init_cpus(); 687 688 if (cpu_count > nr_cpu_ids) 689 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 690 cpu_count, nr_cpu_ids); 691 692 if (!bootcpu_valid) { 693 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 694 return; 695 } 696 697 /* 698 * We need to set the cpu_logical_map entries before enabling 699 * the cpus so that cpu processor description entries (DT cpu nodes 700 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 701 * with entries in cpu_logical_map while initializing the cpus. 702 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 703 */ 704 for (i = 1; i < nr_cpu_ids; i++) { 705 if (cpu_logical_map(i) != INVALID_HWID) { 706 if (smp_cpu_setup(i)) 707 cpu_logical_map(i) = INVALID_HWID; 708 } 709 } 710 } 711 712 void __init smp_prepare_cpus(unsigned int max_cpus) 713 { 714 int err; 715 unsigned int cpu; 716 unsigned int this_cpu; 717 718 init_cpu_topology(); 719 720 this_cpu = smp_processor_id(); 721 store_cpu_topology(this_cpu); 722 numa_store_cpu_info(this_cpu); 723 numa_add_cpu(this_cpu); 724 725 /* 726 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 727 * secondary CPUs present. 728 */ 729 if (max_cpus == 0) 730 return; 731 732 /* 733 * Initialise the present map (which describes the set of CPUs 734 * actually populated at the present time) and release the 735 * secondaries from the bootloader. 736 */ 737 for_each_possible_cpu(cpu) { 738 739 per_cpu(cpu_number, cpu) = cpu; 740 741 if (cpu == smp_processor_id()) 742 continue; 743 744 if (!cpu_ops[cpu]) 745 continue; 746 747 err = cpu_ops[cpu]->cpu_prepare(cpu); 748 if (err) 749 continue; 750 751 set_cpu_present(cpu, true); 752 numa_store_cpu_info(cpu); 753 } 754 } 755 756 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 757 758 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 759 { 760 __smp_cross_call = fn; 761 } 762 763 static const char *ipi_types[NR_IPI] __tracepoint_string = { 764 #define S(x,s) [x] = s 765 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 766 S(IPI_CALL_FUNC, "Function call interrupts"), 767 S(IPI_CPU_STOP, "CPU stop interrupts"), 768 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 769 S(IPI_TIMER, "Timer broadcast interrupts"), 770 S(IPI_IRQ_WORK, "IRQ work interrupts"), 771 S(IPI_WAKEUP, "CPU wake-up interrupts"), 772 }; 773 774 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 775 { 776 trace_ipi_raise(target, ipi_types[ipinr]); 777 __smp_cross_call(target, ipinr); 778 } 779 780 void show_ipi_list(struct seq_file *p, int prec) 781 { 782 unsigned int cpu, i; 783 784 for (i = 0; i < NR_IPI; i++) { 785 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 786 prec >= 4 ? " " : ""); 787 for_each_online_cpu(cpu) 788 seq_printf(p, "%10u ", 789 __get_irq_stat(cpu, ipi_irqs[i])); 790 seq_printf(p, " %s\n", ipi_types[i]); 791 } 792 } 793 794 u64 smp_irq_stat_cpu(unsigned int cpu) 795 { 796 u64 sum = 0; 797 int i; 798 799 for (i = 0; i < NR_IPI; i++) 800 sum += __get_irq_stat(cpu, ipi_irqs[i]); 801 802 return sum; 803 } 804 805 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 806 { 807 smp_cross_call(mask, IPI_CALL_FUNC); 808 } 809 810 void arch_send_call_function_single_ipi(int cpu) 811 { 812 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 813 } 814 815 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 816 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 817 { 818 smp_cross_call(mask, IPI_WAKEUP); 819 } 820 #endif 821 822 #ifdef CONFIG_IRQ_WORK 823 void arch_irq_work_raise(void) 824 { 825 if (__smp_cross_call) 826 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 827 } 828 #endif 829 830 static void local_cpu_stop(void) 831 { 832 set_cpu_online(smp_processor_id(), false); 833 834 local_daif_mask(); 835 sdei_mask_local_cpu(); 836 cpu_park_loop(); 837 } 838 839 /* 840 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 841 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 842 * CPUs that have already stopped themselves. 843 */ 844 void panic_smp_self_stop(void) 845 { 846 local_cpu_stop(); 847 } 848 849 #ifdef CONFIG_KEXEC_CORE 850 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 851 #endif 852 853 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 854 { 855 #ifdef CONFIG_KEXEC_CORE 856 crash_save_cpu(regs, cpu); 857 858 atomic_dec(&waiting_for_crash_ipi); 859 860 local_irq_disable(); 861 sdei_mask_local_cpu(); 862 863 #ifdef CONFIG_HOTPLUG_CPU 864 if (cpu_ops[cpu]->cpu_die) 865 cpu_ops[cpu]->cpu_die(cpu); 866 #endif 867 868 /* just in case */ 869 cpu_park_loop(); 870 #endif 871 } 872 873 /* 874 * Main handler for inter-processor interrupts 875 */ 876 void handle_IPI(int ipinr, struct pt_regs *regs) 877 { 878 unsigned int cpu = smp_processor_id(); 879 struct pt_regs *old_regs = set_irq_regs(regs); 880 881 if ((unsigned)ipinr < NR_IPI) { 882 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 883 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 884 } 885 886 switch (ipinr) { 887 case IPI_RESCHEDULE: 888 scheduler_ipi(); 889 break; 890 891 case IPI_CALL_FUNC: 892 irq_enter(); 893 generic_smp_call_function_interrupt(); 894 irq_exit(); 895 break; 896 897 case IPI_CPU_STOP: 898 irq_enter(); 899 local_cpu_stop(); 900 irq_exit(); 901 break; 902 903 case IPI_CPU_CRASH_STOP: 904 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 905 irq_enter(); 906 ipi_cpu_crash_stop(cpu, regs); 907 908 unreachable(); 909 } 910 break; 911 912 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 913 case IPI_TIMER: 914 irq_enter(); 915 tick_receive_broadcast(); 916 irq_exit(); 917 break; 918 #endif 919 920 #ifdef CONFIG_IRQ_WORK 921 case IPI_IRQ_WORK: 922 irq_enter(); 923 irq_work_run(); 924 irq_exit(); 925 break; 926 #endif 927 928 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 929 case IPI_WAKEUP: 930 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 931 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 932 cpu); 933 break; 934 #endif 935 936 default: 937 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 938 break; 939 } 940 941 if ((unsigned)ipinr < NR_IPI) 942 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 943 set_irq_regs(old_regs); 944 } 945 946 void smp_send_reschedule(int cpu) 947 { 948 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 949 } 950 951 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 952 void tick_broadcast(const struct cpumask *mask) 953 { 954 smp_cross_call(mask, IPI_TIMER); 955 } 956 #endif 957 958 void smp_send_stop(void) 959 { 960 unsigned long timeout; 961 962 if (num_online_cpus() > 1) { 963 cpumask_t mask; 964 965 cpumask_copy(&mask, cpu_online_mask); 966 cpumask_clear_cpu(smp_processor_id(), &mask); 967 968 if (system_state <= SYSTEM_RUNNING) 969 pr_crit("SMP: stopping secondary CPUs\n"); 970 smp_cross_call(&mask, IPI_CPU_STOP); 971 } 972 973 /* Wait up to one second for other CPUs to stop */ 974 timeout = USEC_PER_SEC; 975 while (num_online_cpus() > 1 && timeout--) 976 udelay(1); 977 978 if (num_online_cpus() > 1) 979 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 980 cpumask_pr_args(cpu_online_mask)); 981 982 sdei_mask_local_cpu(); 983 } 984 985 #ifdef CONFIG_KEXEC_CORE 986 void crash_smp_send_stop(void) 987 { 988 static int cpus_stopped; 989 cpumask_t mask; 990 unsigned long timeout; 991 992 /* 993 * This function can be called twice in panic path, but obviously 994 * we execute this only once. 995 */ 996 if (cpus_stopped) 997 return; 998 999 cpus_stopped = 1; 1000 1001 if (num_online_cpus() == 1) { 1002 sdei_mask_local_cpu(); 1003 return; 1004 } 1005 1006 cpumask_copy(&mask, cpu_online_mask); 1007 cpumask_clear_cpu(smp_processor_id(), &mask); 1008 1009 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); 1010 1011 pr_crit("SMP: stopping secondary CPUs\n"); 1012 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1013 1014 /* Wait up to one second for other CPUs to stop */ 1015 timeout = USEC_PER_SEC; 1016 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1017 udelay(1); 1018 1019 if (atomic_read(&waiting_for_crash_ipi) > 0) 1020 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 1021 cpumask_pr_args(&mask)); 1022 1023 sdei_mask_local_cpu(); 1024 } 1025 1026 bool smp_crash_stop_failed(void) 1027 { 1028 return (atomic_read(&waiting_for_crash_ipi) > 0); 1029 } 1030 #endif 1031 1032 /* 1033 * not supported here 1034 */ 1035 int setup_profiling_timer(unsigned int multiplier) 1036 { 1037 return -EINVAL; 1038 } 1039 1040 static bool have_cpu_die(void) 1041 { 1042 #ifdef CONFIG_HOTPLUG_CPU 1043 int any_cpu = raw_smp_processor_id(); 1044 1045 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 1046 return true; 1047 #endif 1048 return false; 1049 } 1050 1051 bool cpus_are_stuck_in_kernel(void) 1052 { 1053 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1054 1055 return !!cpus_stuck_in_kernel || smp_spin_tables; 1056 } 1057