1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kexec.h> 34 35 #include <asm/alternative.h> 36 #include <asm/atomic.h> 37 #include <asm/cacheflush.h> 38 #include <asm/cpu.h> 39 #include <asm/cputype.h> 40 #include <asm/cpu_ops.h> 41 #include <asm/daifflags.h> 42 #include <asm/mmu_context.h> 43 #include <asm/numa.h> 44 #include <asm/pgtable.h> 45 #include <asm/pgalloc.h> 46 #include <asm/processor.h> 47 #include <asm/smp_plat.h> 48 #include <asm/sections.h> 49 #include <asm/tlbflush.h> 50 #include <asm/ptrace.h> 51 #include <asm/virt.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ipi.h> 55 56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 57 EXPORT_PER_CPU_SYMBOL(cpu_number); 58 59 /* 60 * as from 2.5, kernels no longer have an init_tasks structure 61 * so we need some other way of telling a new secondary core 62 * where to place its SVC stack 63 */ 64 struct secondary_data secondary_data; 65 /* Number of CPUs which aren't online, but looping in kernel text. */ 66 int cpus_stuck_in_kernel; 67 68 enum ipi_msg_type { 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CPU_STOP, 72 IPI_CPU_CRASH_STOP, 73 IPI_TIMER, 74 IPI_IRQ_WORK, 75 IPI_WAKEUP 76 }; 77 78 #ifdef CONFIG_HOTPLUG_CPU 79 static int op_cpu_kill(unsigned int cpu); 80 #else 81 static inline int op_cpu_kill(unsigned int cpu) 82 { 83 return -ENOSYS; 84 } 85 #endif 86 87 88 /* 89 * Boot a secondary CPU, and assign it the specified idle task. 90 * This also gives us the initial stack to use for this CPU. 91 */ 92 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 93 { 94 if (cpu_ops[cpu]->cpu_boot) 95 return cpu_ops[cpu]->cpu_boot(cpu); 96 97 return -EOPNOTSUPP; 98 } 99 100 static DECLARE_COMPLETION(cpu_running); 101 102 int __cpu_up(unsigned int cpu, struct task_struct *idle) 103 { 104 int ret; 105 long status; 106 107 /* 108 * We need to tell the secondary core where to find its stack and the 109 * page tables. 110 */ 111 secondary_data.task = idle; 112 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 113 update_cpu_boot_status(CPU_MMU_OFF); 114 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 115 116 /* 117 * Now bring the CPU into our world. 118 */ 119 ret = boot_secondary(cpu, idle); 120 if (ret == 0) { 121 /* 122 * CPU was successfully started, wait for it to come online or 123 * time out. 124 */ 125 wait_for_completion_timeout(&cpu_running, 126 msecs_to_jiffies(5000)); 127 128 if (!cpu_online(cpu)) { 129 pr_crit("CPU%u: failed to come online\n", cpu); 130 ret = -EIO; 131 } 132 } else { 133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 134 return ret; 135 } 136 137 secondary_data.task = NULL; 138 secondary_data.stack = NULL; 139 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 140 status = READ_ONCE(secondary_data.status); 141 if (ret && status) { 142 143 if (status == CPU_MMU_OFF) 144 status = READ_ONCE(__early_cpu_boot_status); 145 146 switch (status & CPU_BOOT_STATUS_MASK) { 147 default: 148 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 149 cpu, status); 150 cpus_stuck_in_kernel++; 151 break; 152 case CPU_KILL_ME: 153 if (!op_cpu_kill(cpu)) { 154 pr_crit("CPU%u: died during early boot\n", cpu); 155 break; 156 } 157 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 158 /* Fall through */ 159 case CPU_STUCK_IN_KERNEL: 160 pr_crit("CPU%u: is stuck in kernel\n", cpu); 161 if (status & CPU_STUCK_REASON_52_BIT_VA) 162 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 163 if (status & CPU_STUCK_REASON_NO_GRAN) 164 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K); 165 cpus_stuck_in_kernel++; 166 break; 167 case CPU_PANIC_KERNEL: 168 panic("CPU%u detected unsupported configuration\n", cpu); 169 } 170 } 171 172 return ret; 173 } 174 175 static void init_gic_priority_masking(void) 176 { 177 u32 cpuflags; 178 179 if (WARN_ON(!gic_enable_sre())) 180 return; 181 182 cpuflags = read_sysreg(daif); 183 184 WARN_ON(!(cpuflags & PSR_I_BIT)); 185 186 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 187 } 188 189 /* 190 * This is the secondary CPU boot entry. We're using this CPUs 191 * idle thread stack, but a set of temporary page tables. 192 */ 193 asmlinkage notrace void secondary_start_kernel(void) 194 { 195 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 196 struct mm_struct *mm = &init_mm; 197 unsigned int cpu; 198 199 cpu = task_cpu(current); 200 set_my_cpu_offset(per_cpu_offset(cpu)); 201 202 /* 203 * All kernel threads share the same mm context; grab a 204 * reference and switch to it. 205 */ 206 mmgrab(mm); 207 current->active_mm = mm; 208 209 /* 210 * TTBR0 is only used for the identity mapping at this stage. Make it 211 * point to zero page to avoid speculatively fetching new entries. 212 */ 213 cpu_uninstall_idmap(); 214 215 if (system_uses_irq_prio_masking()) 216 init_gic_priority_masking(); 217 218 preempt_disable(); 219 trace_hardirqs_off(); 220 221 /* 222 * If the system has established the capabilities, make sure 223 * this CPU ticks all of those. If it doesn't, the CPU will 224 * fail to come online. 225 */ 226 check_local_cpu_capabilities(); 227 228 if (cpu_ops[cpu]->cpu_postboot) 229 cpu_ops[cpu]->cpu_postboot(); 230 231 /* 232 * Log the CPU info before it is marked online and might get read. 233 */ 234 cpuinfo_store_cpu(); 235 236 /* 237 * Enable GIC and timers. 238 */ 239 notify_cpu_starting(cpu); 240 241 store_cpu_topology(cpu); 242 numa_add_cpu(cpu); 243 244 /* 245 * OK, now it's safe to let the boot CPU continue. Wait for 246 * the CPU migration code to notice that the CPU is online 247 * before we continue. 248 */ 249 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 250 cpu, (unsigned long)mpidr, 251 read_cpuid_id()); 252 update_cpu_boot_status(CPU_BOOT_SUCCESS); 253 set_cpu_online(cpu, true); 254 complete(&cpu_running); 255 256 local_daif_restore(DAIF_PROCCTX); 257 258 /* 259 * OK, it's off to the idle thread for us 260 */ 261 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 262 } 263 264 #ifdef CONFIG_HOTPLUG_CPU 265 static int op_cpu_disable(unsigned int cpu) 266 { 267 /* 268 * If we don't have a cpu_die method, abort before we reach the point 269 * of no return. CPU0 may not have an cpu_ops, so test for it. 270 */ 271 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 272 return -EOPNOTSUPP; 273 274 /* 275 * We may need to abort a hot unplug for some other mechanism-specific 276 * reason. 277 */ 278 if (cpu_ops[cpu]->cpu_disable) 279 return cpu_ops[cpu]->cpu_disable(cpu); 280 281 return 0; 282 } 283 284 /* 285 * __cpu_disable runs on the processor to be shutdown. 286 */ 287 int __cpu_disable(void) 288 { 289 unsigned int cpu = smp_processor_id(); 290 int ret; 291 292 ret = op_cpu_disable(cpu); 293 if (ret) 294 return ret; 295 296 remove_cpu_topology(cpu); 297 numa_remove_cpu(cpu); 298 299 /* 300 * Take this CPU offline. Once we clear this, we can't return, 301 * and we must not schedule until we're ready to give up the cpu. 302 */ 303 set_cpu_online(cpu, false); 304 305 /* 306 * OK - migrate IRQs away from this CPU 307 */ 308 irq_migrate_all_off_this_cpu(); 309 310 return 0; 311 } 312 313 static int op_cpu_kill(unsigned int cpu) 314 { 315 /* 316 * If we have no means of synchronising with the dying CPU, then assume 317 * that it is really dead. We can only wait for an arbitrary length of 318 * time and hope that it's dead, so let's skip the wait and just hope. 319 */ 320 if (!cpu_ops[cpu]->cpu_kill) 321 return 0; 322 323 return cpu_ops[cpu]->cpu_kill(cpu); 324 } 325 326 /* 327 * called on the thread which is asking for a CPU to be shutdown - 328 * waits until shutdown has completed, or it is timed out. 329 */ 330 void __cpu_die(unsigned int cpu) 331 { 332 int err; 333 334 if (!cpu_wait_death(cpu, 5)) { 335 pr_crit("CPU%u: cpu didn't die\n", cpu); 336 return; 337 } 338 pr_notice("CPU%u: shutdown\n", cpu); 339 340 /* 341 * Now that the dying CPU is beyond the point of no return w.r.t. 342 * in-kernel synchronisation, try to get the firwmare to help us to 343 * verify that it has really left the kernel before we consider 344 * clobbering anything it might still be using. 345 */ 346 err = op_cpu_kill(cpu); 347 if (err) 348 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 349 } 350 351 /* 352 * Called from the idle thread for the CPU which has been shutdown. 353 * 354 */ 355 void cpu_die(void) 356 { 357 unsigned int cpu = smp_processor_id(); 358 359 idle_task_exit(); 360 361 local_daif_mask(); 362 363 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 364 (void)cpu_report_death(); 365 366 /* 367 * Actually shutdown the CPU. This must never fail. The specific hotplug 368 * mechanism must perform all required cache maintenance to ensure that 369 * no dirty lines are lost in the process of shutting down the CPU. 370 */ 371 cpu_ops[cpu]->cpu_die(cpu); 372 373 BUG(); 374 } 375 #endif 376 377 /* 378 * Kill the calling secondary CPU, early in bringup before it is turned 379 * online. 380 */ 381 void cpu_die_early(void) 382 { 383 int cpu = smp_processor_id(); 384 385 pr_crit("CPU%d: will not boot\n", cpu); 386 387 /* Mark this CPU absent */ 388 set_cpu_present(cpu, 0); 389 390 #ifdef CONFIG_HOTPLUG_CPU 391 update_cpu_boot_status(CPU_KILL_ME); 392 /* Check if we can park ourselves */ 393 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 394 cpu_ops[cpu]->cpu_die(cpu); 395 #endif 396 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 397 398 cpu_park_loop(); 399 } 400 401 static void __init hyp_mode_check(void) 402 { 403 if (is_hyp_mode_available()) 404 pr_info("CPU: All CPU(s) started at EL2\n"); 405 else if (is_hyp_mode_mismatched()) 406 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 407 "CPU: CPUs started in inconsistent modes"); 408 else 409 pr_info("CPU: All CPU(s) started at EL1\n"); 410 } 411 412 void __init smp_cpus_done(unsigned int max_cpus) 413 { 414 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 415 setup_cpu_features(); 416 hyp_mode_check(); 417 apply_alternatives_all(); 418 mark_linear_text_alias_ro(); 419 } 420 421 void __init smp_prepare_boot_cpu(void) 422 { 423 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 424 cpuinfo_store_boot_cpu(); 425 426 /* 427 * We now know enough about the boot CPU to apply the 428 * alternatives that cannot wait until interrupt handling 429 * and/or scheduling is enabled. 430 */ 431 apply_boot_alternatives(); 432 433 /* Conditionally switch to GIC PMR for interrupt masking */ 434 if (system_uses_irq_prio_masking()) 435 init_gic_priority_masking(); 436 } 437 438 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 439 { 440 const __be32 *cell; 441 u64 hwid; 442 443 /* 444 * A cpu node with missing "reg" property is 445 * considered invalid to build a cpu_logical_map 446 * entry. 447 */ 448 cell = of_get_property(dn, "reg", NULL); 449 if (!cell) { 450 pr_err("%pOF: missing reg property\n", dn); 451 return INVALID_HWID; 452 } 453 454 hwid = of_read_number(cell, of_n_addr_cells(dn)); 455 /* 456 * Non affinity bits must be set to 0 in the DT 457 */ 458 if (hwid & ~MPIDR_HWID_BITMASK) { 459 pr_err("%pOF: invalid reg property\n", dn); 460 return INVALID_HWID; 461 } 462 return hwid; 463 } 464 465 /* 466 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 467 * entries and check for duplicates. If any is found just ignore the 468 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 469 * matching valid MPIDR values. 470 */ 471 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 472 { 473 unsigned int i; 474 475 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 476 if (cpu_logical_map(i) == hwid) 477 return true; 478 return false; 479 } 480 481 /* 482 * Initialize cpu operations for a logical cpu and 483 * set it in the possible mask on success 484 */ 485 static int __init smp_cpu_setup(int cpu) 486 { 487 if (cpu_read_ops(cpu)) 488 return -ENODEV; 489 490 if (cpu_ops[cpu]->cpu_init(cpu)) 491 return -ENODEV; 492 493 set_cpu_possible(cpu, true); 494 495 return 0; 496 } 497 498 static bool bootcpu_valid __initdata; 499 static unsigned int cpu_count = 1; 500 501 #ifdef CONFIG_ACPI 502 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 503 504 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 505 { 506 return &cpu_madt_gicc[cpu]; 507 } 508 509 /* 510 * acpi_map_gic_cpu_interface - parse processor MADT entry 511 * 512 * Carry out sanity checks on MADT processor entry and initialize 513 * cpu_logical_map on success 514 */ 515 static void __init 516 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 517 { 518 u64 hwid = processor->arm_mpidr; 519 520 if (!(processor->flags & ACPI_MADT_ENABLED)) { 521 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 522 return; 523 } 524 525 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 526 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 527 return; 528 } 529 530 if (is_mpidr_duplicate(cpu_count, hwid)) { 531 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 532 return; 533 } 534 535 /* Check if GICC structure of boot CPU is available in the MADT */ 536 if (cpu_logical_map(0) == hwid) { 537 if (bootcpu_valid) { 538 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 539 hwid); 540 return; 541 } 542 bootcpu_valid = true; 543 cpu_madt_gicc[0] = *processor; 544 return; 545 } 546 547 if (cpu_count >= NR_CPUS) 548 return; 549 550 /* map the logical cpu id to cpu MPIDR */ 551 cpu_logical_map(cpu_count) = hwid; 552 553 cpu_madt_gicc[cpu_count] = *processor; 554 555 /* 556 * Set-up the ACPI parking protocol cpu entries 557 * while initializing the cpu_logical_map to 558 * avoid parsing MADT entries multiple times for 559 * nothing (ie a valid cpu_logical_map entry should 560 * contain a valid parking protocol data set to 561 * initialize the cpu if the parking protocol is 562 * the only available enable method). 563 */ 564 acpi_set_mailbox_entry(cpu_count, processor); 565 566 cpu_count++; 567 } 568 569 static int __init 570 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 571 const unsigned long end) 572 { 573 struct acpi_madt_generic_interrupt *processor; 574 575 processor = (struct acpi_madt_generic_interrupt *)header; 576 if (BAD_MADT_GICC_ENTRY(processor, end)) 577 return -EINVAL; 578 579 acpi_table_print_madt_entry(&header->common); 580 581 acpi_map_gic_cpu_interface(processor); 582 583 return 0; 584 } 585 586 static void __init acpi_parse_and_init_cpus(void) 587 { 588 int i; 589 590 /* 591 * do a walk of MADT to determine how many CPUs 592 * we have including disabled CPUs, and get information 593 * we need for SMP init. 594 */ 595 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 596 acpi_parse_gic_cpu_interface, 0); 597 598 /* 599 * In ACPI, SMP and CPU NUMA information is provided in separate 600 * static tables, namely the MADT and the SRAT. 601 * 602 * Thus, it is simpler to first create the cpu logical map through 603 * an MADT walk and then map the logical cpus to their node ids 604 * as separate steps. 605 */ 606 acpi_map_cpus_to_nodes(); 607 608 for (i = 0; i < nr_cpu_ids; i++) 609 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 610 } 611 #else 612 #define acpi_parse_and_init_cpus(...) do { } while (0) 613 #endif 614 615 /* 616 * Enumerate the possible CPU set from the device tree and build the 617 * cpu logical map array containing MPIDR values related to logical 618 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 619 */ 620 static void __init of_parse_and_init_cpus(void) 621 { 622 struct device_node *dn; 623 624 for_each_of_cpu_node(dn) { 625 u64 hwid = of_get_cpu_mpidr(dn); 626 627 if (hwid == INVALID_HWID) 628 goto next; 629 630 if (is_mpidr_duplicate(cpu_count, hwid)) { 631 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 632 dn); 633 goto next; 634 } 635 636 /* 637 * The numbering scheme requires that the boot CPU 638 * must be assigned logical id 0. Record it so that 639 * the logical map built from DT is validated and can 640 * be used. 641 */ 642 if (hwid == cpu_logical_map(0)) { 643 if (bootcpu_valid) { 644 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 645 dn); 646 goto next; 647 } 648 649 bootcpu_valid = true; 650 early_map_cpu_to_node(0, of_node_to_nid(dn)); 651 652 /* 653 * cpu_logical_map has already been 654 * initialized and the boot cpu doesn't need 655 * the enable-method so continue without 656 * incrementing cpu. 657 */ 658 continue; 659 } 660 661 if (cpu_count >= NR_CPUS) 662 goto next; 663 664 pr_debug("cpu logical map 0x%llx\n", hwid); 665 cpu_logical_map(cpu_count) = hwid; 666 667 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 668 next: 669 cpu_count++; 670 } 671 } 672 673 /* 674 * Enumerate the possible CPU set from the device tree or ACPI and build the 675 * cpu logical map array containing MPIDR values related to logical 676 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 677 */ 678 void __init smp_init_cpus(void) 679 { 680 int i; 681 682 if (acpi_disabled) 683 of_parse_and_init_cpus(); 684 else 685 acpi_parse_and_init_cpus(); 686 687 if (cpu_count > nr_cpu_ids) 688 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 689 cpu_count, nr_cpu_ids); 690 691 if (!bootcpu_valid) { 692 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 693 return; 694 } 695 696 /* 697 * We need to set the cpu_logical_map entries before enabling 698 * the cpus so that cpu processor description entries (DT cpu nodes 699 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 700 * with entries in cpu_logical_map while initializing the cpus. 701 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 702 */ 703 for (i = 1; i < nr_cpu_ids; i++) { 704 if (cpu_logical_map(i) != INVALID_HWID) { 705 if (smp_cpu_setup(i)) 706 cpu_logical_map(i) = INVALID_HWID; 707 } 708 } 709 } 710 711 void __init smp_prepare_cpus(unsigned int max_cpus) 712 { 713 int err; 714 unsigned int cpu; 715 unsigned int this_cpu; 716 717 init_cpu_topology(); 718 719 this_cpu = smp_processor_id(); 720 store_cpu_topology(this_cpu); 721 numa_store_cpu_info(this_cpu); 722 numa_add_cpu(this_cpu); 723 724 /* 725 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 726 * secondary CPUs present. 727 */ 728 if (max_cpus == 0) 729 return; 730 731 /* 732 * Initialise the present map (which describes the set of CPUs 733 * actually populated at the present time) and release the 734 * secondaries from the bootloader. 735 */ 736 for_each_possible_cpu(cpu) { 737 738 per_cpu(cpu_number, cpu) = cpu; 739 740 if (cpu == smp_processor_id()) 741 continue; 742 743 if (!cpu_ops[cpu]) 744 continue; 745 746 err = cpu_ops[cpu]->cpu_prepare(cpu); 747 if (err) 748 continue; 749 750 set_cpu_present(cpu, true); 751 numa_store_cpu_info(cpu); 752 } 753 } 754 755 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 756 757 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 758 { 759 __smp_cross_call = fn; 760 } 761 762 static const char *ipi_types[NR_IPI] __tracepoint_string = { 763 #define S(x,s) [x] = s 764 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 765 S(IPI_CALL_FUNC, "Function call interrupts"), 766 S(IPI_CPU_STOP, "CPU stop interrupts"), 767 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 768 S(IPI_TIMER, "Timer broadcast interrupts"), 769 S(IPI_IRQ_WORK, "IRQ work interrupts"), 770 S(IPI_WAKEUP, "CPU wake-up interrupts"), 771 }; 772 773 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 774 { 775 trace_ipi_raise(target, ipi_types[ipinr]); 776 __smp_cross_call(target, ipinr); 777 } 778 779 void show_ipi_list(struct seq_file *p, int prec) 780 { 781 unsigned int cpu, i; 782 783 for (i = 0; i < NR_IPI; i++) { 784 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 785 prec >= 4 ? " " : ""); 786 for_each_online_cpu(cpu) 787 seq_printf(p, "%10u ", 788 __get_irq_stat(cpu, ipi_irqs[i])); 789 seq_printf(p, " %s\n", ipi_types[i]); 790 } 791 } 792 793 u64 smp_irq_stat_cpu(unsigned int cpu) 794 { 795 u64 sum = 0; 796 int i; 797 798 for (i = 0; i < NR_IPI; i++) 799 sum += __get_irq_stat(cpu, ipi_irqs[i]); 800 801 return sum; 802 } 803 804 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 805 { 806 smp_cross_call(mask, IPI_CALL_FUNC); 807 } 808 809 void arch_send_call_function_single_ipi(int cpu) 810 { 811 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 812 } 813 814 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 815 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 816 { 817 smp_cross_call(mask, IPI_WAKEUP); 818 } 819 #endif 820 821 #ifdef CONFIG_IRQ_WORK 822 void arch_irq_work_raise(void) 823 { 824 if (__smp_cross_call) 825 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 826 } 827 #endif 828 829 static void local_cpu_stop(void) 830 { 831 set_cpu_online(smp_processor_id(), false); 832 833 local_daif_mask(); 834 sdei_mask_local_cpu(); 835 cpu_park_loop(); 836 } 837 838 /* 839 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 840 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 841 * CPUs that have already stopped themselves. 842 */ 843 void panic_smp_self_stop(void) 844 { 845 local_cpu_stop(); 846 } 847 848 #ifdef CONFIG_KEXEC_CORE 849 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 850 #endif 851 852 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 853 { 854 #ifdef CONFIG_KEXEC_CORE 855 crash_save_cpu(regs, cpu); 856 857 atomic_dec(&waiting_for_crash_ipi); 858 859 local_irq_disable(); 860 sdei_mask_local_cpu(); 861 862 #ifdef CONFIG_HOTPLUG_CPU 863 if (cpu_ops[cpu]->cpu_die) 864 cpu_ops[cpu]->cpu_die(cpu); 865 #endif 866 867 /* just in case */ 868 cpu_park_loop(); 869 #endif 870 } 871 872 /* 873 * Main handler for inter-processor interrupts 874 */ 875 void handle_IPI(int ipinr, struct pt_regs *regs) 876 { 877 unsigned int cpu = smp_processor_id(); 878 struct pt_regs *old_regs = set_irq_regs(regs); 879 880 if ((unsigned)ipinr < NR_IPI) { 881 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 882 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 883 } 884 885 switch (ipinr) { 886 case IPI_RESCHEDULE: 887 scheduler_ipi(); 888 break; 889 890 case IPI_CALL_FUNC: 891 irq_enter(); 892 generic_smp_call_function_interrupt(); 893 irq_exit(); 894 break; 895 896 case IPI_CPU_STOP: 897 irq_enter(); 898 local_cpu_stop(); 899 irq_exit(); 900 break; 901 902 case IPI_CPU_CRASH_STOP: 903 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 904 irq_enter(); 905 ipi_cpu_crash_stop(cpu, regs); 906 907 unreachable(); 908 } 909 break; 910 911 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 912 case IPI_TIMER: 913 irq_enter(); 914 tick_receive_broadcast(); 915 irq_exit(); 916 break; 917 #endif 918 919 #ifdef CONFIG_IRQ_WORK 920 case IPI_IRQ_WORK: 921 irq_enter(); 922 irq_work_run(); 923 irq_exit(); 924 break; 925 #endif 926 927 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 928 case IPI_WAKEUP: 929 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 930 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 931 cpu); 932 break; 933 #endif 934 935 default: 936 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 937 break; 938 } 939 940 if ((unsigned)ipinr < NR_IPI) 941 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 942 set_irq_regs(old_regs); 943 } 944 945 void smp_send_reschedule(int cpu) 946 { 947 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 948 } 949 950 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 951 void tick_broadcast(const struct cpumask *mask) 952 { 953 smp_cross_call(mask, IPI_TIMER); 954 } 955 #endif 956 957 void smp_send_stop(void) 958 { 959 unsigned long timeout; 960 961 if (num_online_cpus() > 1) { 962 cpumask_t mask; 963 964 cpumask_copy(&mask, cpu_online_mask); 965 cpumask_clear_cpu(smp_processor_id(), &mask); 966 967 if (system_state <= SYSTEM_RUNNING) 968 pr_crit("SMP: stopping secondary CPUs\n"); 969 smp_cross_call(&mask, IPI_CPU_STOP); 970 } 971 972 /* Wait up to one second for other CPUs to stop */ 973 timeout = USEC_PER_SEC; 974 while (num_online_cpus() > 1 && timeout--) 975 udelay(1); 976 977 if (num_online_cpus() > 1) 978 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 979 cpumask_pr_args(cpu_online_mask)); 980 981 sdei_mask_local_cpu(); 982 } 983 984 #ifdef CONFIG_KEXEC_CORE 985 void crash_smp_send_stop(void) 986 { 987 static int cpus_stopped; 988 cpumask_t mask; 989 unsigned long timeout; 990 991 /* 992 * This function can be called twice in panic path, but obviously 993 * we execute this only once. 994 */ 995 if (cpus_stopped) 996 return; 997 998 cpus_stopped = 1; 999 1000 if (num_online_cpus() == 1) { 1001 sdei_mask_local_cpu(); 1002 return; 1003 } 1004 1005 cpumask_copy(&mask, cpu_online_mask); 1006 cpumask_clear_cpu(smp_processor_id(), &mask); 1007 1008 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); 1009 1010 pr_crit("SMP: stopping secondary CPUs\n"); 1011 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1012 1013 /* Wait up to one second for other CPUs to stop */ 1014 timeout = USEC_PER_SEC; 1015 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1016 udelay(1); 1017 1018 if (atomic_read(&waiting_for_crash_ipi) > 0) 1019 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1020 cpumask_pr_args(&mask)); 1021 1022 sdei_mask_local_cpu(); 1023 } 1024 1025 bool smp_crash_stop_failed(void) 1026 { 1027 return (atomic_read(&waiting_for_crash_ipi) > 0); 1028 } 1029 #endif 1030 1031 /* 1032 * not supported here 1033 */ 1034 int setup_profiling_timer(unsigned int multiplier) 1035 { 1036 return -EINVAL; 1037 } 1038 1039 static bool have_cpu_die(void) 1040 { 1041 #ifdef CONFIG_HOTPLUG_CPU 1042 int any_cpu = raw_smp_processor_id(); 1043 1044 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 1045 return true; 1046 #endif 1047 return false; 1048 } 1049 1050 bool cpus_are_stuck_in_kernel(void) 1051 { 1052 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1053 1054 return !!cpus_stuck_in_kernel || smp_spin_tables; 1055 } 1056