xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 179dd8c0)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40 
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/processor.h>
51 #include <asm/smp_plat.h>
52 #include <asm/sections.h>
53 #include <asm/tlbflush.h>
54 #include <asm/ptrace.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/ipi.h>
58 
59 /*
60  * as from 2.5, kernels no longer have an init_tasks structure
61  * so we need some other way of telling a new secondary core
62  * where to place its SVC stack
63  */
64 struct secondary_data secondary_data;
65 
66 enum ipi_msg_type {
67 	IPI_RESCHEDULE,
68 	IPI_CALL_FUNC,
69 	IPI_CPU_STOP,
70 	IPI_TIMER,
71 	IPI_IRQ_WORK,
72 };
73 
74 /*
75  * Boot a secondary CPU, and assign it the specified idle task.
76  * This also gives us the initial stack to use for this CPU.
77  */
78 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
79 {
80 	if (cpu_ops[cpu]->cpu_boot)
81 		return cpu_ops[cpu]->cpu_boot(cpu);
82 
83 	return -EOPNOTSUPP;
84 }
85 
86 static DECLARE_COMPLETION(cpu_running);
87 
88 int __cpu_up(unsigned int cpu, struct task_struct *idle)
89 {
90 	int ret;
91 
92 	/*
93 	 * We need to tell the secondary core where to find its stack and the
94 	 * page tables.
95 	 */
96 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
97 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
98 
99 	/*
100 	 * Now bring the CPU into our world.
101 	 */
102 	ret = boot_secondary(cpu, idle);
103 	if (ret == 0) {
104 		/*
105 		 * CPU was successfully started, wait for it to come online or
106 		 * time out.
107 		 */
108 		wait_for_completion_timeout(&cpu_running,
109 					    msecs_to_jiffies(1000));
110 
111 		if (!cpu_online(cpu)) {
112 			pr_crit("CPU%u: failed to come online\n", cpu);
113 			ret = -EIO;
114 		}
115 	} else {
116 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
117 	}
118 
119 	secondary_data.stack = NULL;
120 
121 	return ret;
122 }
123 
124 static void smp_store_cpu_info(unsigned int cpuid)
125 {
126 	store_cpu_topology(cpuid);
127 }
128 
129 /*
130  * This is the secondary CPU boot entry.  We're using this CPUs
131  * idle thread stack, but a set of temporary page tables.
132  */
133 asmlinkage void secondary_start_kernel(void)
134 {
135 	struct mm_struct *mm = &init_mm;
136 	unsigned int cpu = smp_processor_id();
137 
138 	/*
139 	 * All kernel threads share the same mm context; grab a
140 	 * reference and switch to it.
141 	 */
142 	atomic_inc(&mm->mm_count);
143 	current->active_mm = mm;
144 	cpumask_set_cpu(cpu, mm_cpumask(mm));
145 
146 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
147 	printk("CPU%u: Booted secondary processor\n", cpu);
148 
149 	/*
150 	 * TTBR0 is only used for the identity mapping at this stage. Make it
151 	 * point to zero page to avoid speculatively fetching new entries.
152 	 */
153 	cpu_set_reserved_ttbr0();
154 	flush_tlb_all();
155 	cpu_set_default_tcr_t0sz();
156 
157 	preempt_disable();
158 	trace_hardirqs_off();
159 
160 	if (cpu_ops[cpu]->cpu_postboot)
161 		cpu_ops[cpu]->cpu_postboot();
162 
163 	/*
164 	 * Log the CPU info before it is marked online and might get read.
165 	 */
166 	cpuinfo_store_cpu();
167 
168 	/*
169 	 * Enable GIC and timers.
170 	 */
171 	notify_cpu_starting(cpu);
172 
173 	smp_store_cpu_info(cpu);
174 
175 	/*
176 	 * OK, now it's safe to let the boot CPU continue.  Wait for
177 	 * the CPU migration code to notice that the CPU is online
178 	 * before we continue.
179 	 */
180 	set_cpu_online(cpu, true);
181 	complete(&cpu_running);
182 
183 	local_dbg_enable();
184 	local_irq_enable();
185 	local_async_enable();
186 
187 	/*
188 	 * OK, it's off to the idle thread for us
189 	 */
190 	cpu_startup_entry(CPUHP_ONLINE);
191 }
192 
193 #ifdef CONFIG_HOTPLUG_CPU
194 static int op_cpu_disable(unsigned int cpu)
195 {
196 	/*
197 	 * If we don't have a cpu_die method, abort before we reach the point
198 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
199 	 */
200 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
201 		return -EOPNOTSUPP;
202 
203 	/*
204 	 * We may need to abort a hot unplug for some other mechanism-specific
205 	 * reason.
206 	 */
207 	if (cpu_ops[cpu]->cpu_disable)
208 		return cpu_ops[cpu]->cpu_disable(cpu);
209 
210 	return 0;
211 }
212 
213 /*
214  * __cpu_disable runs on the processor to be shutdown.
215  */
216 int __cpu_disable(void)
217 {
218 	unsigned int cpu = smp_processor_id();
219 	int ret;
220 
221 	ret = op_cpu_disable(cpu);
222 	if (ret)
223 		return ret;
224 
225 	/*
226 	 * Take this CPU offline.  Once we clear this, we can't return,
227 	 * and we must not schedule until we're ready to give up the cpu.
228 	 */
229 	set_cpu_online(cpu, false);
230 
231 	/*
232 	 * OK - migrate IRQs away from this CPU
233 	 */
234 	migrate_irqs();
235 
236 	/*
237 	 * Remove this CPU from the vm mask set of all processes.
238 	 */
239 	clear_tasks_mm_cpumask(cpu);
240 
241 	return 0;
242 }
243 
244 static int op_cpu_kill(unsigned int cpu)
245 {
246 	/*
247 	 * If we have no means of synchronising with the dying CPU, then assume
248 	 * that it is really dead. We can only wait for an arbitrary length of
249 	 * time and hope that it's dead, so let's skip the wait and just hope.
250 	 */
251 	if (!cpu_ops[cpu]->cpu_kill)
252 		return 0;
253 
254 	return cpu_ops[cpu]->cpu_kill(cpu);
255 }
256 
257 /*
258  * called on the thread which is asking for a CPU to be shutdown -
259  * waits until shutdown has completed, or it is timed out.
260  */
261 void __cpu_die(unsigned int cpu)
262 {
263 	int err;
264 
265 	if (!cpu_wait_death(cpu, 5)) {
266 		pr_crit("CPU%u: cpu didn't die\n", cpu);
267 		return;
268 	}
269 	pr_notice("CPU%u: shutdown\n", cpu);
270 
271 	/*
272 	 * Now that the dying CPU is beyond the point of no return w.r.t.
273 	 * in-kernel synchronisation, try to get the firwmare to help us to
274 	 * verify that it has really left the kernel before we consider
275 	 * clobbering anything it might still be using.
276 	 */
277 	err = op_cpu_kill(cpu);
278 	if (err)
279 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
280 			cpu, err);
281 }
282 
283 /*
284  * Called from the idle thread for the CPU which has been shutdown.
285  *
286  * Note that we disable IRQs here, but do not re-enable them
287  * before returning to the caller. This is also the behaviour
288  * of the other hotplug-cpu capable cores, so presumably coming
289  * out of idle fixes this.
290  */
291 void cpu_die(void)
292 {
293 	unsigned int cpu = smp_processor_id();
294 
295 	idle_task_exit();
296 
297 	local_irq_disable();
298 
299 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
300 	(void)cpu_report_death();
301 
302 	/*
303 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
304 	 * mechanism must perform all required cache maintenance to ensure that
305 	 * no dirty lines are lost in the process of shutting down the CPU.
306 	 */
307 	cpu_ops[cpu]->cpu_die(cpu);
308 
309 	BUG();
310 }
311 #endif
312 
313 void __init smp_cpus_done(unsigned int max_cpus)
314 {
315 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
316 	do_post_cpus_up_work();
317 }
318 
319 void __init smp_prepare_boot_cpu(void)
320 {
321 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
322 }
323 
324 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
325 {
326 	const __be32 *cell;
327 	u64 hwid;
328 
329 	/*
330 	 * A cpu node with missing "reg" property is
331 	 * considered invalid to build a cpu_logical_map
332 	 * entry.
333 	 */
334 	cell = of_get_property(dn, "reg", NULL);
335 	if (!cell) {
336 		pr_err("%s: missing reg property\n", dn->full_name);
337 		return INVALID_HWID;
338 	}
339 
340 	hwid = of_read_number(cell, of_n_addr_cells(dn));
341 	/*
342 	 * Non affinity bits must be set to 0 in the DT
343 	 */
344 	if (hwid & ~MPIDR_HWID_BITMASK) {
345 		pr_err("%s: invalid reg property\n", dn->full_name);
346 		return INVALID_HWID;
347 	}
348 	return hwid;
349 }
350 
351 /*
352  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
353  * entries and check for duplicates. If any is found just ignore the
354  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
355  * matching valid MPIDR values.
356  */
357 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
358 {
359 	unsigned int i;
360 
361 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
362 		if (cpu_logical_map(i) == hwid)
363 			return true;
364 	return false;
365 }
366 
367 /*
368  * Initialize cpu operations for a logical cpu and
369  * set it in the possible mask on success
370  */
371 static int __init smp_cpu_setup(int cpu)
372 {
373 	if (cpu_read_ops(cpu))
374 		return -ENODEV;
375 
376 	if (cpu_ops[cpu]->cpu_init(cpu))
377 		return -ENODEV;
378 
379 	set_cpu_possible(cpu, true);
380 
381 	return 0;
382 }
383 
384 static bool bootcpu_valid __initdata;
385 static unsigned int cpu_count = 1;
386 
387 #ifdef CONFIG_ACPI
388 /*
389  * acpi_map_gic_cpu_interface - parse processor MADT entry
390  *
391  * Carry out sanity checks on MADT processor entry and initialize
392  * cpu_logical_map on success
393  */
394 static void __init
395 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
396 {
397 	u64 hwid = processor->arm_mpidr;
398 
399 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
400 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
401 		return;
402 	}
403 
404 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
405 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
406 		return;
407 	}
408 
409 	if (is_mpidr_duplicate(cpu_count, hwid)) {
410 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
411 		return;
412 	}
413 
414 	/* Check if GICC structure of boot CPU is available in the MADT */
415 	if (cpu_logical_map(0) == hwid) {
416 		if (bootcpu_valid) {
417 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
418 			       hwid);
419 			return;
420 		}
421 		bootcpu_valid = true;
422 		return;
423 	}
424 
425 	if (cpu_count >= NR_CPUS)
426 		return;
427 
428 	/* map the logical cpu id to cpu MPIDR */
429 	cpu_logical_map(cpu_count) = hwid;
430 
431 	cpu_count++;
432 }
433 
434 static int __init
435 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
436 			     const unsigned long end)
437 {
438 	struct acpi_madt_generic_interrupt *processor;
439 
440 	processor = (struct acpi_madt_generic_interrupt *)header;
441 	if (BAD_MADT_GICC_ENTRY(processor, end))
442 		return -EINVAL;
443 
444 	acpi_table_print_madt_entry(header);
445 
446 	acpi_map_gic_cpu_interface(processor);
447 
448 	return 0;
449 }
450 #else
451 #define acpi_table_parse_madt(...)	do { } while (0)
452 #endif
453 
454 /*
455  * Enumerate the possible CPU set from the device tree and build the
456  * cpu logical map array containing MPIDR values related to logical
457  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
458  */
459 void __init of_parse_and_init_cpus(void)
460 {
461 	struct device_node *dn = NULL;
462 
463 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
464 		u64 hwid = of_get_cpu_mpidr(dn);
465 
466 		if (hwid == INVALID_HWID)
467 			goto next;
468 
469 		if (is_mpidr_duplicate(cpu_count, hwid)) {
470 			pr_err("%s: duplicate cpu reg properties in the DT\n",
471 				dn->full_name);
472 			goto next;
473 		}
474 
475 		/*
476 		 * The numbering scheme requires that the boot CPU
477 		 * must be assigned logical id 0. Record it so that
478 		 * the logical map built from DT is validated and can
479 		 * be used.
480 		 */
481 		if (hwid == cpu_logical_map(0)) {
482 			if (bootcpu_valid) {
483 				pr_err("%s: duplicate boot cpu reg property in DT\n",
484 					dn->full_name);
485 				goto next;
486 			}
487 
488 			bootcpu_valid = true;
489 
490 			/*
491 			 * cpu_logical_map has already been
492 			 * initialized and the boot cpu doesn't need
493 			 * the enable-method so continue without
494 			 * incrementing cpu.
495 			 */
496 			continue;
497 		}
498 
499 		if (cpu_count >= NR_CPUS)
500 			goto next;
501 
502 		pr_debug("cpu logical map 0x%llx\n", hwid);
503 		cpu_logical_map(cpu_count) = hwid;
504 next:
505 		cpu_count++;
506 	}
507 }
508 
509 /*
510  * Enumerate the possible CPU set from the device tree or ACPI and build the
511  * cpu logical map array containing MPIDR values related to logical
512  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
513  */
514 void __init smp_init_cpus(void)
515 {
516 	int i;
517 
518 	if (acpi_disabled)
519 		of_parse_and_init_cpus();
520 	else
521 		/*
522 		 * do a walk of MADT to determine how many CPUs
523 		 * we have including disabled CPUs, and get information
524 		 * we need for SMP init
525 		 */
526 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
527 				      acpi_parse_gic_cpu_interface, 0);
528 
529 	if (cpu_count > NR_CPUS)
530 		pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
531 			cpu_count, NR_CPUS);
532 
533 	if (!bootcpu_valid) {
534 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
535 		return;
536 	}
537 
538 	/*
539 	 * We need to set the cpu_logical_map entries before enabling
540 	 * the cpus so that cpu processor description entries (DT cpu nodes
541 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
542 	 * with entries in cpu_logical_map while initializing the cpus.
543 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
544 	 */
545 	for (i = 1; i < NR_CPUS; i++) {
546 		if (cpu_logical_map(i) != INVALID_HWID) {
547 			if (smp_cpu_setup(i))
548 				cpu_logical_map(i) = INVALID_HWID;
549 		}
550 	}
551 }
552 
553 void __init smp_prepare_cpus(unsigned int max_cpus)
554 {
555 	int err;
556 	unsigned int cpu, ncores = num_possible_cpus();
557 
558 	init_cpu_topology();
559 
560 	smp_store_cpu_info(smp_processor_id());
561 
562 	/*
563 	 * are we trying to boot more cores than exist?
564 	 */
565 	if (max_cpus > ncores)
566 		max_cpus = ncores;
567 
568 	/* Don't bother if we're effectively UP */
569 	if (max_cpus <= 1)
570 		return;
571 
572 	/*
573 	 * Initialise the present map (which describes the set of CPUs
574 	 * actually populated at the present time) and release the
575 	 * secondaries from the bootloader.
576 	 *
577 	 * Make sure we online at most (max_cpus - 1) additional CPUs.
578 	 */
579 	max_cpus--;
580 	for_each_possible_cpu(cpu) {
581 		if (max_cpus == 0)
582 			break;
583 
584 		if (cpu == smp_processor_id())
585 			continue;
586 
587 		if (!cpu_ops[cpu])
588 			continue;
589 
590 		err = cpu_ops[cpu]->cpu_prepare(cpu);
591 		if (err)
592 			continue;
593 
594 		set_cpu_present(cpu, true);
595 		max_cpus--;
596 	}
597 }
598 
599 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
600 
601 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
602 {
603 	__smp_cross_call = fn;
604 }
605 
606 static const char *ipi_types[NR_IPI] __tracepoint_string = {
607 #define S(x,s)	[x] = s
608 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
609 	S(IPI_CALL_FUNC, "Function call interrupts"),
610 	S(IPI_CPU_STOP, "CPU stop interrupts"),
611 	S(IPI_TIMER, "Timer broadcast interrupts"),
612 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
613 };
614 
615 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
616 {
617 	trace_ipi_raise(target, ipi_types[ipinr]);
618 	__smp_cross_call(target, ipinr);
619 }
620 
621 void show_ipi_list(struct seq_file *p, int prec)
622 {
623 	unsigned int cpu, i;
624 
625 	for (i = 0; i < NR_IPI; i++) {
626 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
627 			   prec >= 4 ? " " : "");
628 		for_each_online_cpu(cpu)
629 			seq_printf(p, "%10u ",
630 				   __get_irq_stat(cpu, ipi_irqs[i]));
631 		seq_printf(p, "      %s\n", ipi_types[i]);
632 	}
633 }
634 
635 u64 smp_irq_stat_cpu(unsigned int cpu)
636 {
637 	u64 sum = 0;
638 	int i;
639 
640 	for (i = 0; i < NR_IPI; i++)
641 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
642 
643 	return sum;
644 }
645 
646 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
647 {
648 	smp_cross_call(mask, IPI_CALL_FUNC);
649 }
650 
651 void arch_send_call_function_single_ipi(int cpu)
652 {
653 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
654 }
655 
656 #ifdef CONFIG_IRQ_WORK
657 void arch_irq_work_raise(void)
658 {
659 	if (__smp_cross_call)
660 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
661 }
662 #endif
663 
664 static DEFINE_RAW_SPINLOCK(stop_lock);
665 
666 /*
667  * ipi_cpu_stop - handle IPI from smp_send_stop()
668  */
669 static void ipi_cpu_stop(unsigned int cpu)
670 {
671 	if (system_state == SYSTEM_BOOTING ||
672 	    system_state == SYSTEM_RUNNING) {
673 		raw_spin_lock(&stop_lock);
674 		pr_crit("CPU%u: stopping\n", cpu);
675 		dump_stack();
676 		raw_spin_unlock(&stop_lock);
677 	}
678 
679 	set_cpu_online(cpu, false);
680 
681 	local_irq_disable();
682 
683 	while (1)
684 		cpu_relax();
685 }
686 
687 /*
688  * Main handler for inter-processor interrupts
689  */
690 void handle_IPI(int ipinr, struct pt_regs *regs)
691 {
692 	unsigned int cpu = smp_processor_id();
693 	struct pt_regs *old_regs = set_irq_regs(regs);
694 
695 	if ((unsigned)ipinr < NR_IPI) {
696 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
697 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
698 	}
699 
700 	switch (ipinr) {
701 	case IPI_RESCHEDULE:
702 		scheduler_ipi();
703 		break;
704 
705 	case IPI_CALL_FUNC:
706 		irq_enter();
707 		generic_smp_call_function_interrupt();
708 		irq_exit();
709 		break;
710 
711 	case IPI_CPU_STOP:
712 		irq_enter();
713 		ipi_cpu_stop(cpu);
714 		irq_exit();
715 		break;
716 
717 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
718 	case IPI_TIMER:
719 		irq_enter();
720 		tick_receive_broadcast();
721 		irq_exit();
722 		break;
723 #endif
724 
725 #ifdef CONFIG_IRQ_WORK
726 	case IPI_IRQ_WORK:
727 		irq_enter();
728 		irq_work_run();
729 		irq_exit();
730 		break;
731 #endif
732 
733 	default:
734 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
735 		break;
736 	}
737 
738 	if ((unsigned)ipinr < NR_IPI)
739 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
740 	set_irq_regs(old_regs);
741 }
742 
743 void smp_send_reschedule(int cpu)
744 {
745 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
746 }
747 
748 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
749 void tick_broadcast(const struct cpumask *mask)
750 {
751 	smp_cross_call(mask, IPI_TIMER);
752 }
753 #endif
754 
755 void smp_send_stop(void)
756 {
757 	unsigned long timeout;
758 
759 	if (num_online_cpus() > 1) {
760 		cpumask_t mask;
761 
762 		cpumask_copy(&mask, cpu_online_mask);
763 		cpumask_clear_cpu(smp_processor_id(), &mask);
764 
765 		smp_cross_call(&mask, IPI_CPU_STOP);
766 	}
767 
768 	/* Wait up to one second for other CPUs to stop */
769 	timeout = USEC_PER_SEC;
770 	while (num_online_cpus() > 1 && timeout--)
771 		udelay(1);
772 
773 	if (num_online_cpus() > 1)
774 		pr_warning("SMP: failed to stop secondary CPUs\n");
775 }
776 
777 /*
778  * not supported here
779  */
780 int setup_profiling_timer(unsigned int multiplier)
781 {
782 	return -EINVAL;
783 }
784