xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 174cd4b1)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40 
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/pgtable.h>
50 #include <asm/pgalloc.h>
51 #include <asm/processor.h>
52 #include <asm/smp_plat.h>
53 #include <asm/sections.h>
54 #include <asm/tlbflush.h>
55 #include <asm/ptrace.h>
56 #include <asm/virt.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ipi.h>
60 
61 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
62 EXPORT_PER_CPU_SYMBOL(cpu_number);
63 
64 /*
65  * as from 2.5, kernels no longer have an init_tasks structure
66  * so we need some other way of telling a new secondary core
67  * where to place its SVC stack
68  */
69 struct secondary_data secondary_data;
70 /* Number of CPUs which aren't online, but looping in kernel text. */
71 int cpus_stuck_in_kernel;
72 
73 enum ipi_msg_type {
74 	IPI_RESCHEDULE,
75 	IPI_CALL_FUNC,
76 	IPI_CPU_STOP,
77 	IPI_TIMER,
78 	IPI_IRQ_WORK,
79 	IPI_WAKEUP
80 };
81 
82 #ifdef CONFIG_ARM64_VHE
83 
84 /* Whether the boot CPU is running in HYP mode or not*/
85 static bool boot_cpu_hyp_mode;
86 
87 static inline void save_boot_cpu_run_el(void)
88 {
89 	boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
90 }
91 
92 static inline bool is_boot_cpu_in_hyp_mode(void)
93 {
94 	return boot_cpu_hyp_mode;
95 }
96 
97 /*
98  * Verify that a secondary CPU is running the kernel at the same
99  * EL as that of the boot CPU.
100  */
101 void verify_cpu_run_el(void)
102 {
103 	bool in_el2 = is_kernel_in_hyp_mode();
104 	bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
105 
106 	if (in_el2 ^ boot_cpu_el2) {
107 		pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
108 					smp_processor_id(),
109 					in_el2 ? 2 : 1,
110 					boot_cpu_el2 ? 2 : 1);
111 		cpu_panic_kernel();
112 	}
113 }
114 
115 #else
116 static inline void save_boot_cpu_run_el(void) {}
117 #endif
118 
119 #ifdef CONFIG_HOTPLUG_CPU
120 static int op_cpu_kill(unsigned int cpu);
121 #else
122 static inline int op_cpu_kill(unsigned int cpu)
123 {
124 	return -ENOSYS;
125 }
126 #endif
127 
128 
129 /*
130  * Boot a secondary CPU, and assign it the specified idle task.
131  * This also gives us the initial stack to use for this CPU.
132  */
133 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
134 {
135 	if (cpu_ops[cpu]->cpu_boot)
136 		return cpu_ops[cpu]->cpu_boot(cpu);
137 
138 	return -EOPNOTSUPP;
139 }
140 
141 static DECLARE_COMPLETION(cpu_running);
142 
143 int __cpu_up(unsigned int cpu, struct task_struct *idle)
144 {
145 	int ret;
146 	long status;
147 
148 	/*
149 	 * We need to tell the secondary core where to find its stack and the
150 	 * page tables.
151 	 */
152 	secondary_data.task = idle;
153 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
154 	update_cpu_boot_status(CPU_MMU_OFF);
155 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
156 
157 	/*
158 	 * Now bring the CPU into our world.
159 	 */
160 	ret = boot_secondary(cpu, idle);
161 	if (ret == 0) {
162 		/*
163 		 * CPU was successfully started, wait for it to come online or
164 		 * time out.
165 		 */
166 		wait_for_completion_timeout(&cpu_running,
167 					    msecs_to_jiffies(1000));
168 
169 		if (!cpu_online(cpu)) {
170 			pr_crit("CPU%u: failed to come online\n", cpu);
171 			ret = -EIO;
172 		}
173 	} else {
174 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
175 	}
176 
177 	secondary_data.task = NULL;
178 	secondary_data.stack = NULL;
179 	status = READ_ONCE(secondary_data.status);
180 	if (ret && status) {
181 
182 		if (status == CPU_MMU_OFF)
183 			status = READ_ONCE(__early_cpu_boot_status);
184 
185 		switch (status) {
186 		default:
187 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
188 					cpu, status);
189 			break;
190 		case CPU_KILL_ME:
191 			if (!op_cpu_kill(cpu)) {
192 				pr_crit("CPU%u: died during early boot\n", cpu);
193 				break;
194 			}
195 			/* Fall through */
196 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
197 		case CPU_STUCK_IN_KERNEL:
198 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
199 			cpus_stuck_in_kernel++;
200 			break;
201 		case CPU_PANIC_KERNEL:
202 			panic("CPU%u detected unsupported configuration\n", cpu);
203 		}
204 	}
205 
206 	return ret;
207 }
208 
209 /*
210  * This is the secondary CPU boot entry.  We're using this CPUs
211  * idle thread stack, but a set of temporary page tables.
212  */
213 asmlinkage void secondary_start_kernel(void)
214 {
215 	struct mm_struct *mm = &init_mm;
216 	unsigned int cpu;
217 
218 	cpu = task_cpu(current);
219 	set_my_cpu_offset(per_cpu_offset(cpu));
220 
221 	/*
222 	 * All kernel threads share the same mm context; grab a
223 	 * reference and switch to it.
224 	 */
225 	mmgrab(mm);
226 	current->active_mm = mm;
227 
228 	/*
229 	 * TTBR0 is only used for the identity mapping at this stage. Make it
230 	 * point to zero page to avoid speculatively fetching new entries.
231 	 */
232 	cpu_uninstall_idmap();
233 
234 	preempt_disable();
235 	trace_hardirqs_off();
236 
237 	/*
238 	 * If the system has established the capabilities, make sure
239 	 * this CPU ticks all of those. If it doesn't, the CPU will
240 	 * fail to come online.
241 	 */
242 	check_local_cpu_capabilities();
243 
244 	if (cpu_ops[cpu]->cpu_postboot)
245 		cpu_ops[cpu]->cpu_postboot();
246 
247 	/*
248 	 * Log the CPU info before it is marked online and might get read.
249 	 */
250 	cpuinfo_store_cpu();
251 
252 	/*
253 	 * Enable GIC and timers.
254 	 */
255 	notify_cpu_starting(cpu);
256 
257 	store_cpu_topology(cpu);
258 
259 	/*
260 	 * OK, now it's safe to let the boot CPU continue.  Wait for
261 	 * the CPU migration code to notice that the CPU is online
262 	 * before we continue.
263 	 */
264 	pr_info("CPU%u: Booted secondary processor [%08x]\n",
265 					 cpu, read_cpuid_id());
266 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
267 	set_cpu_online(cpu, true);
268 	complete(&cpu_running);
269 
270 	local_irq_enable();
271 	local_async_enable();
272 
273 	/*
274 	 * OK, it's off to the idle thread for us
275 	 */
276 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
277 }
278 
279 #ifdef CONFIG_HOTPLUG_CPU
280 static int op_cpu_disable(unsigned int cpu)
281 {
282 	/*
283 	 * If we don't have a cpu_die method, abort before we reach the point
284 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
285 	 */
286 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
287 		return -EOPNOTSUPP;
288 
289 	/*
290 	 * We may need to abort a hot unplug for some other mechanism-specific
291 	 * reason.
292 	 */
293 	if (cpu_ops[cpu]->cpu_disable)
294 		return cpu_ops[cpu]->cpu_disable(cpu);
295 
296 	return 0;
297 }
298 
299 /*
300  * __cpu_disable runs on the processor to be shutdown.
301  */
302 int __cpu_disable(void)
303 {
304 	unsigned int cpu = smp_processor_id();
305 	int ret;
306 
307 	ret = op_cpu_disable(cpu);
308 	if (ret)
309 		return ret;
310 
311 	/*
312 	 * Take this CPU offline.  Once we clear this, we can't return,
313 	 * and we must not schedule until we're ready to give up the cpu.
314 	 */
315 	set_cpu_online(cpu, false);
316 
317 	/*
318 	 * OK - migrate IRQs away from this CPU
319 	 */
320 	irq_migrate_all_off_this_cpu();
321 
322 	return 0;
323 }
324 
325 static int op_cpu_kill(unsigned int cpu)
326 {
327 	/*
328 	 * If we have no means of synchronising with the dying CPU, then assume
329 	 * that it is really dead. We can only wait for an arbitrary length of
330 	 * time and hope that it's dead, so let's skip the wait and just hope.
331 	 */
332 	if (!cpu_ops[cpu]->cpu_kill)
333 		return 0;
334 
335 	return cpu_ops[cpu]->cpu_kill(cpu);
336 }
337 
338 /*
339  * called on the thread which is asking for a CPU to be shutdown -
340  * waits until shutdown has completed, or it is timed out.
341  */
342 void __cpu_die(unsigned int cpu)
343 {
344 	int err;
345 
346 	if (!cpu_wait_death(cpu, 5)) {
347 		pr_crit("CPU%u: cpu didn't die\n", cpu);
348 		return;
349 	}
350 	pr_notice("CPU%u: shutdown\n", cpu);
351 
352 	/*
353 	 * Now that the dying CPU is beyond the point of no return w.r.t.
354 	 * in-kernel synchronisation, try to get the firwmare to help us to
355 	 * verify that it has really left the kernel before we consider
356 	 * clobbering anything it might still be using.
357 	 */
358 	err = op_cpu_kill(cpu);
359 	if (err)
360 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
361 			cpu, err);
362 }
363 
364 /*
365  * Called from the idle thread for the CPU which has been shutdown.
366  *
367  * Note that we disable IRQs here, but do not re-enable them
368  * before returning to the caller. This is also the behaviour
369  * of the other hotplug-cpu capable cores, so presumably coming
370  * out of idle fixes this.
371  */
372 void cpu_die(void)
373 {
374 	unsigned int cpu = smp_processor_id();
375 
376 	idle_task_exit();
377 
378 	local_irq_disable();
379 
380 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
381 	(void)cpu_report_death();
382 
383 	/*
384 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
385 	 * mechanism must perform all required cache maintenance to ensure that
386 	 * no dirty lines are lost in the process of shutting down the CPU.
387 	 */
388 	cpu_ops[cpu]->cpu_die(cpu);
389 
390 	BUG();
391 }
392 #endif
393 
394 /*
395  * Kill the calling secondary CPU, early in bringup before it is turned
396  * online.
397  */
398 void cpu_die_early(void)
399 {
400 	int cpu = smp_processor_id();
401 
402 	pr_crit("CPU%d: will not boot\n", cpu);
403 
404 	/* Mark this CPU absent */
405 	set_cpu_present(cpu, 0);
406 
407 #ifdef CONFIG_HOTPLUG_CPU
408 	update_cpu_boot_status(CPU_KILL_ME);
409 	/* Check if we can park ourselves */
410 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
411 		cpu_ops[cpu]->cpu_die(cpu);
412 #endif
413 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
414 
415 	cpu_park_loop();
416 }
417 
418 static void __init hyp_mode_check(void)
419 {
420 	if (is_hyp_mode_available())
421 		pr_info("CPU: All CPU(s) started at EL2\n");
422 	else if (is_hyp_mode_mismatched())
423 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
424 			   "CPU: CPUs started in inconsistent modes");
425 	else
426 		pr_info("CPU: All CPU(s) started at EL1\n");
427 }
428 
429 void __init smp_cpus_done(unsigned int max_cpus)
430 {
431 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
432 	setup_cpu_features();
433 	hyp_mode_check();
434 	apply_alternatives_all();
435 }
436 
437 void __init smp_prepare_boot_cpu(void)
438 {
439 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
440 	/*
441 	 * Initialise the static keys early as they may be enabled by the
442 	 * cpufeature code.
443 	 */
444 	jump_label_init();
445 	cpuinfo_store_boot_cpu();
446 	save_boot_cpu_run_el();
447 	/*
448 	 * Run the errata work around checks on the boot CPU, once we have
449 	 * initialised the cpu feature infrastructure from
450 	 * cpuinfo_store_boot_cpu() above.
451 	 */
452 	update_cpu_errata_workarounds();
453 }
454 
455 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
456 {
457 	const __be32 *cell;
458 	u64 hwid;
459 
460 	/*
461 	 * A cpu node with missing "reg" property is
462 	 * considered invalid to build a cpu_logical_map
463 	 * entry.
464 	 */
465 	cell = of_get_property(dn, "reg", NULL);
466 	if (!cell) {
467 		pr_err("%s: missing reg property\n", dn->full_name);
468 		return INVALID_HWID;
469 	}
470 
471 	hwid = of_read_number(cell, of_n_addr_cells(dn));
472 	/*
473 	 * Non affinity bits must be set to 0 in the DT
474 	 */
475 	if (hwid & ~MPIDR_HWID_BITMASK) {
476 		pr_err("%s: invalid reg property\n", dn->full_name);
477 		return INVALID_HWID;
478 	}
479 	return hwid;
480 }
481 
482 /*
483  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
484  * entries and check for duplicates. If any is found just ignore the
485  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
486  * matching valid MPIDR values.
487  */
488 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
489 {
490 	unsigned int i;
491 
492 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
493 		if (cpu_logical_map(i) == hwid)
494 			return true;
495 	return false;
496 }
497 
498 /*
499  * Initialize cpu operations for a logical cpu and
500  * set it in the possible mask on success
501  */
502 static int __init smp_cpu_setup(int cpu)
503 {
504 	if (cpu_read_ops(cpu))
505 		return -ENODEV;
506 
507 	if (cpu_ops[cpu]->cpu_init(cpu))
508 		return -ENODEV;
509 
510 	set_cpu_possible(cpu, true);
511 
512 	return 0;
513 }
514 
515 static bool bootcpu_valid __initdata;
516 static unsigned int cpu_count = 1;
517 
518 #ifdef CONFIG_ACPI
519 /*
520  * acpi_map_gic_cpu_interface - parse processor MADT entry
521  *
522  * Carry out sanity checks on MADT processor entry and initialize
523  * cpu_logical_map on success
524  */
525 static void __init
526 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
527 {
528 	u64 hwid = processor->arm_mpidr;
529 
530 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
531 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
532 		return;
533 	}
534 
535 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
536 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
537 		return;
538 	}
539 
540 	if (is_mpidr_duplicate(cpu_count, hwid)) {
541 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
542 		return;
543 	}
544 
545 	/* Check if GICC structure of boot CPU is available in the MADT */
546 	if (cpu_logical_map(0) == hwid) {
547 		if (bootcpu_valid) {
548 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
549 			       hwid);
550 			return;
551 		}
552 		bootcpu_valid = true;
553 		early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid));
554 		return;
555 	}
556 
557 	if (cpu_count >= NR_CPUS)
558 		return;
559 
560 	/* map the logical cpu id to cpu MPIDR */
561 	cpu_logical_map(cpu_count) = hwid;
562 
563 	/*
564 	 * Set-up the ACPI parking protocol cpu entries
565 	 * while initializing the cpu_logical_map to
566 	 * avoid parsing MADT entries multiple times for
567 	 * nothing (ie a valid cpu_logical_map entry should
568 	 * contain a valid parking protocol data set to
569 	 * initialize the cpu if the parking protocol is
570 	 * the only available enable method).
571 	 */
572 	acpi_set_mailbox_entry(cpu_count, processor);
573 
574 	early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
575 
576 	cpu_count++;
577 }
578 
579 static int __init
580 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
581 			     const unsigned long end)
582 {
583 	struct acpi_madt_generic_interrupt *processor;
584 
585 	processor = (struct acpi_madt_generic_interrupt *)header;
586 	if (BAD_MADT_GICC_ENTRY(processor, end))
587 		return -EINVAL;
588 
589 	acpi_table_print_madt_entry(header);
590 
591 	acpi_map_gic_cpu_interface(processor);
592 
593 	return 0;
594 }
595 #else
596 #define acpi_table_parse_madt(...)	do { } while (0)
597 #endif
598 
599 /*
600  * Enumerate the possible CPU set from the device tree and build the
601  * cpu logical map array containing MPIDR values related to logical
602  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
603  */
604 static void __init of_parse_and_init_cpus(void)
605 {
606 	struct device_node *dn;
607 
608 	for_each_node_by_type(dn, "cpu") {
609 		u64 hwid = of_get_cpu_mpidr(dn);
610 
611 		if (hwid == INVALID_HWID)
612 			goto next;
613 
614 		if (is_mpidr_duplicate(cpu_count, hwid)) {
615 			pr_err("%s: duplicate cpu reg properties in the DT\n",
616 				dn->full_name);
617 			goto next;
618 		}
619 
620 		/*
621 		 * The numbering scheme requires that the boot CPU
622 		 * must be assigned logical id 0. Record it so that
623 		 * the logical map built from DT is validated and can
624 		 * be used.
625 		 */
626 		if (hwid == cpu_logical_map(0)) {
627 			if (bootcpu_valid) {
628 				pr_err("%s: duplicate boot cpu reg property in DT\n",
629 					dn->full_name);
630 				goto next;
631 			}
632 
633 			bootcpu_valid = true;
634 			early_map_cpu_to_node(0, of_node_to_nid(dn));
635 
636 			/*
637 			 * cpu_logical_map has already been
638 			 * initialized and the boot cpu doesn't need
639 			 * the enable-method so continue without
640 			 * incrementing cpu.
641 			 */
642 			continue;
643 		}
644 
645 		if (cpu_count >= NR_CPUS)
646 			goto next;
647 
648 		pr_debug("cpu logical map 0x%llx\n", hwid);
649 		cpu_logical_map(cpu_count) = hwid;
650 
651 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
652 next:
653 		cpu_count++;
654 	}
655 }
656 
657 /*
658  * Enumerate the possible CPU set from the device tree or ACPI and build the
659  * cpu logical map array containing MPIDR values related to logical
660  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
661  */
662 void __init smp_init_cpus(void)
663 {
664 	int i;
665 
666 	if (acpi_disabled)
667 		of_parse_and_init_cpus();
668 	else
669 		/*
670 		 * do a walk of MADT to determine how many CPUs
671 		 * we have including disabled CPUs, and get information
672 		 * we need for SMP init
673 		 */
674 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
675 				      acpi_parse_gic_cpu_interface, 0);
676 
677 	if (cpu_count > nr_cpu_ids)
678 		pr_warn("Number of cores (%d) exceeds configured maximum of %d - clipping\n",
679 			cpu_count, nr_cpu_ids);
680 
681 	if (!bootcpu_valid) {
682 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
683 		return;
684 	}
685 
686 	/*
687 	 * We need to set the cpu_logical_map entries before enabling
688 	 * the cpus so that cpu processor description entries (DT cpu nodes
689 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
690 	 * with entries in cpu_logical_map while initializing the cpus.
691 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
692 	 */
693 	for (i = 1; i < nr_cpu_ids; i++) {
694 		if (cpu_logical_map(i) != INVALID_HWID) {
695 			if (smp_cpu_setup(i))
696 				cpu_logical_map(i) = INVALID_HWID;
697 		}
698 	}
699 }
700 
701 void __init smp_prepare_cpus(unsigned int max_cpus)
702 {
703 	int err;
704 	unsigned int cpu;
705 	unsigned int this_cpu;
706 
707 	init_cpu_topology();
708 
709 	this_cpu = smp_processor_id();
710 	store_cpu_topology(this_cpu);
711 	numa_store_cpu_info(this_cpu);
712 
713 	/*
714 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
715 	 * secondary CPUs present.
716 	 */
717 	if (max_cpus == 0)
718 		return;
719 
720 	/*
721 	 * Initialise the present map (which describes the set of CPUs
722 	 * actually populated at the present time) and release the
723 	 * secondaries from the bootloader.
724 	 */
725 	for_each_possible_cpu(cpu) {
726 
727 		per_cpu(cpu_number, cpu) = cpu;
728 
729 		if (cpu == smp_processor_id())
730 			continue;
731 
732 		if (!cpu_ops[cpu])
733 			continue;
734 
735 		err = cpu_ops[cpu]->cpu_prepare(cpu);
736 		if (err)
737 			continue;
738 
739 		set_cpu_present(cpu, true);
740 		numa_store_cpu_info(cpu);
741 	}
742 }
743 
744 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
745 
746 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
747 {
748 	__smp_cross_call = fn;
749 }
750 
751 static const char *ipi_types[NR_IPI] __tracepoint_string = {
752 #define S(x,s)	[x] = s
753 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
754 	S(IPI_CALL_FUNC, "Function call interrupts"),
755 	S(IPI_CPU_STOP, "CPU stop interrupts"),
756 	S(IPI_TIMER, "Timer broadcast interrupts"),
757 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
758 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
759 };
760 
761 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
762 {
763 	trace_ipi_raise(target, ipi_types[ipinr]);
764 	__smp_cross_call(target, ipinr);
765 }
766 
767 void show_ipi_list(struct seq_file *p, int prec)
768 {
769 	unsigned int cpu, i;
770 
771 	for (i = 0; i < NR_IPI; i++) {
772 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
773 			   prec >= 4 ? " " : "");
774 		for_each_online_cpu(cpu)
775 			seq_printf(p, "%10u ",
776 				   __get_irq_stat(cpu, ipi_irqs[i]));
777 		seq_printf(p, "      %s\n", ipi_types[i]);
778 	}
779 }
780 
781 u64 smp_irq_stat_cpu(unsigned int cpu)
782 {
783 	u64 sum = 0;
784 	int i;
785 
786 	for (i = 0; i < NR_IPI; i++)
787 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
788 
789 	return sum;
790 }
791 
792 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
793 {
794 	smp_cross_call(mask, IPI_CALL_FUNC);
795 }
796 
797 void arch_send_call_function_single_ipi(int cpu)
798 {
799 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
800 }
801 
802 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
803 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
804 {
805 	smp_cross_call(mask, IPI_WAKEUP);
806 }
807 #endif
808 
809 #ifdef CONFIG_IRQ_WORK
810 void arch_irq_work_raise(void)
811 {
812 	if (__smp_cross_call)
813 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
814 }
815 #endif
816 
817 /*
818  * ipi_cpu_stop - handle IPI from smp_send_stop()
819  */
820 static void ipi_cpu_stop(unsigned int cpu)
821 {
822 	set_cpu_online(cpu, false);
823 
824 	local_irq_disable();
825 
826 	while (1)
827 		cpu_relax();
828 }
829 
830 /*
831  * Main handler for inter-processor interrupts
832  */
833 void handle_IPI(int ipinr, struct pt_regs *regs)
834 {
835 	unsigned int cpu = smp_processor_id();
836 	struct pt_regs *old_regs = set_irq_regs(regs);
837 
838 	if ((unsigned)ipinr < NR_IPI) {
839 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
840 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
841 	}
842 
843 	switch (ipinr) {
844 	case IPI_RESCHEDULE:
845 		scheduler_ipi();
846 		break;
847 
848 	case IPI_CALL_FUNC:
849 		irq_enter();
850 		generic_smp_call_function_interrupt();
851 		irq_exit();
852 		break;
853 
854 	case IPI_CPU_STOP:
855 		irq_enter();
856 		ipi_cpu_stop(cpu);
857 		irq_exit();
858 		break;
859 
860 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
861 	case IPI_TIMER:
862 		irq_enter();
863 		tick_receive_broadcast();
864 		irq_exit();
865 		break;
866 #endif
867 
868 #ifdef CONFIG_IRQ_WORK
869 	case IPI_IRQ_WORK:
870 		irq_enter();
871 		irq_work_run();
872 		irq_exit();
873 		break;
874 #endif
875 
876 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
877 	case IPI_WAKEUP:
878 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
879 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
880 			  cpu);
881 		break;
882 #endif
883 
884 	default:
885 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
886 		break;
887 	}
888 
889 	if ((unsigned)ipinr < NR_IPI)
890 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
891 	set_irq_regs(old_regs);
892 }
893 
894 void smp_send_reschedule(int cpu)
895 {
896 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
897 }
898 
899 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
900 void tick_broadcast(const struct cpumask *mask)
901 {
902 	smp_cross_call(mask, IPI_TIMER);
903 }
904 #endif
905 
906 void smp_send_stop(void)
907 {
908 	unsigned long timeout;
909 
910 	if (num_online_cpus() > 1) {
911 		cpumask_t mask;
912 
913 		cpumask_copy(&mask, cpu_online_mask);
914 		cpumask_clear_cpu(smp_processor_id(), &mask);
915 
916 		if (system_state == SYSTEM_BOOTING ||
917 		    system_state == SYSTEM_RUNNING)
918 			pr_crit("SMP: stopping secondary CPUs\n");
919 		smp_cross_call(&mask, IPI_CPU_STOP);
920 	}
921 
922 	/* Wait up to one second for other CPUs to stop */
923 	timeout = USEC_PER_SEC;
924 	while (num_online_cpus() > 1 && timeout--)
925 		udelay(1);
926 
927 	if (num_online_cpus() > 1)
928 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
929 			   cpumask_pr_args(cpu_online_mask));
930 }
931 
932 /*
933  * not supported here
934  */
935 int setup_profiling_timer(unsigned int multiplier)
936 {
937 	return -EINVAL;
938 }
939 
940 static bool have_cpu_die(void)
941 {
942 #ifdef CONFIG_HOTPLUG_CPU
943 	int any_cpu = raw_smp_processor_id();
944 
945 	if (cpu_ops[any_cpu]->cpu_die)
946 		return true;
947 #endif
948 	return false;
949 }
950 
951 bool cpus_are_stuck_in_kernel(void)
952 {
953 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
954 
955 	return !!cpus_stuck_in_kernel || smp_spin_tables;
956 }
957