1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/acpi.h> 21 #include <linux/delay.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/sched.h> 25 #include <linux/interrupt.h> 26 #include <linux/cache.h> 27 #include <linux/profile.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/err.h> 31 #include <linux/cpu.h> 32 #include <linux/smp.h> 33 #include <linux/seq_file.h> 34 #include <linux/irq.h> 35 #include <linux/percpu.h> 36 #include <linux/clockchips.h> 37 #include <linux/completion.h> 38 #include <linux/of.h> 39 #include <linux/irq_work.h> 40 41 #include <asm/alternative.h> 42 #include <asm/atomic.h> 43 #include <asm/cacheflush.h> 44 #include <asm/cpu.h> 45 #include <asm/cputype.h> 46 #include <asm/cpu_ops.h> 47 #include <asm/mmu_context.h> 48 #include <asm/numa.h> 49 #include <asm/pgtable.h> 50 #include <asm/pgalloc.h> 51 #include <asm/processor.h> 52 #include <asm/smp_plat.h> 53 #include <asm/sections.h> 54 #include <asm/tlbflush.h> 55 #include <asm/ptrace.h> 56 #include <asm/virt.h> 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ipi.h> 60 61 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 62 EXPORT_PER_CPU_SYMBOL(cpu_number); 63 64 /* 65 * as from 2.5, kernels no longer have an init_tasks structure 66 * so we need some other way of telling a new secondary core 67 * where to place its SVC stack 68 */ 69 struct secondary_data secondary_data; 70 /* Number of CPUs which aren't online, but looping in kernel text. */ 71 int cpus_stuck_in_kernel; 72 73 enum ipi_msg_type { 74 IPI_RESCHEDULE, 75 IPI_CALL_FUNC, 76 IPI_CPU_STOP, 77 IPI_TIMER, 78 IPI_IRQ_WORK, 79 IPI_WAKEUP 80 }; 81 82 #ifdef CONFIG_ARM64_VHE 83 84 /* Whether the boot CPU is running in HYP mode or not*/ 85 static bool boot_cpu_hyp_mode; 86 87 static inline void save_boot_cpu_run_el(void) 88 { 89 boot_cpu_hyp_mode = is_kernel_in_hyp_mode(); 90 } 91 92 static inline bool is_boot_cpu_in_hyp_mode(void) 93 { 94 return boot_cpu_hyp_mode; 95 } 96 97 /* 98 * Verify that a secondary CPU is running the kernel at the same 99 * EL as that of the boot CPU. 100 */ 101 void verify_cpu_run_el(void) 102 { 103 bool in_el2 = is_kernel_in_hyp_mode(); 104 bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode(); 105 106 if (in_el2 ^ boot_cpu_el2) { 107 pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n", 108 smp_processor_id(), 109 in_el2 ? 2 : 1, 110 boot_cpu_el2 ? 2 : 1); 111 cpu_panic_kernel(); 112 } 113 } 114 115 #else 116 static inline void save_boot_cpu_run_el(void) {} 117 #endif 118 119 #ifdef CONFIG_HOTPLUG_CPU 120 static int op_cpu_kill(unsigned int cpu); 121 #else 122 static inline int op_cpu_kill(unsigned int cpu) 123 { 124 return -ENOSYS; 125 } 126 #endif 127 128 129 /* 130 * Boot a secondary CPU, and assign it the specified idle task. 131 * This also gives us the initial stack to use for this CPU. 132 */ 133 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 134 { 135 if (cpu_ops[cpu]->cpu_boot) 136 return cpu_ops[cpu]->cpu_boot(cpu); 137 138 return -EOPNOTSUPP; 139 } 140 141 static DECLARE_COMPLETION(cpu_running); 142 143 int __cpu_up(unsigned int cpu, struct task_struct *idle) 144 { 145 int ret; 146 long status; 147 148 /* 149 * We need to tell the secondary core where to find its stack and the 150 * page tables. 151 */ 152 secondary_data.task = idle; 153 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 154 update_cpu_boot_status(CPU_MMU_OFF); 155 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 156 157 /* 158 * Now bring the CPU into our world. 159 */ 160 ret = boot_secondary(cpu, idle); 161 if (ret == 0) { 162 /* 163 * CPU was successfully started, wait for it to come online or 164 * time out. 165 */ 166 wait_for_completion_timeout(&cpu_running, 167 msecs_to_jiffies(1000)); 168 169 if (!cpu_online(cpu)) { 170 pr_crit("CPU%u: failed to come online\n", cpu); 171 ret = -EIO; 172 } 173 } else { 174 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 175 } 176 177 secondary_data.task = NULL; 178 secondary_data.stack = NULL; 179 status = READ_ONCE(secondary_data.status); 180 if (ret && status) { 181 182 if (status == CPU_MMU_OFF) 183 status = READ_ONCE(__early_cpu_boot_status); 184 185 switch (status) { 186 default: 187 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 188 cpu, status); 189 break; 190 case CPU_KILL_ME: 191 if (!op_cpu_kill(cpu)) { 192 pr_crit("CPU%u: died during early boot\n", cpu); 193 break; 194 } 195 /* Fall through */ 196 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 197 case CPU_STUCK_IN_KERNEL: 198 pr_crit("CPU%u: is stuck in kernel\n", cpu); 199 cpus_stuck_in_kernel++; 200 break; 201 case CPU_PANIC_KERNEL: 202 panic("CPU%u detected unsupported configuration\n", cpu); 203 } 204 } 205 206 return ret; 207 } 208 209 /* 210 * This is the secondary CPU boot entry. We're using this CPUs 211 * idle thread stack, but a set of temporary page tables. 212 */ 213 asmlinkage void secondary_start_kernel(void) 214 { 215 struct mm_struct *mm = &init_mm; 216 unsigned int cpu; 217 218 cpu = task_cpu(current); 219 set_my_cpu_offset(per_cpu_offset(cpu)); 220 221 /* 222 * All kernel threads share the same mm context; grab a 223 * reference and switch to it. 224 */ 225 mmgrab(mm); 226 current->active_mm = mm; 227 228 /* 229 * TTBR0 is only used for the identity mapping at this stage. Make it 230 * point to zero page to avoid speculatively fetching new entries. 231 */ 232 cpu_uninstall_idmap(); 233 234 preempt_disable(); 235 trace_hardirqs_off(); 236 237 /* 238 * If the system has established the capabilities, make sure 239 * this CPU ticks all of those. If it doesn't, the CPU will 240 * fail to come online. 241 */ 242 check_local_cpu_capabilities(); 243 244 if (cpu_ops[cpu]->cpu_postboot) 245 cpu_ops[cpu]->cpu_postboot(); 246 247 /* 248 * Log the CPU info before it is marked online and might get read. 249 */ 250 cpuinfo_store_cpu(); 251 252 /* 253 * Enable GIC and timers. 254 */ 255 notify_cpu_starting(cpu); 256 257 store_cpu_topology(cpu); 258 259 /* 260 * OK, now it's safe to let the boot CPU continue. Wait for 261 * the CPU migration code to notice that the CPU is online 262 * before we continue. 263 */ 264 pr_info("CPU%u: Booted secondary processor [%08x]\n", 265 cpu, read_cpuid_id()); 266 update_cpu_boot_status(CPU_BOOT_SUCCESS); 267 set_cpu_online(cpu, true); 268 complete(&cpu_running); 269 270 local_irq_enable(); 271 local_async_enable(); 272 273 /* 274 * OK, it's off to the idle thread for us 275 */ 276 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 277 } 278 279 #ifdef CONFIG_HOTPLUG_CPU 280 static int op_cpu_disable(unsigned int cpu) 281 { 282 /* 283 * If we don't have a cpu_die method, abort before we reach the point 284 * of no return. CPU0 may not have an cpu_ops, so test for it. 285 */ 286 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 287 return -EOPNOTSUPP; 288 289 /* 290 * We may need to abort a hot unplug for some other mechanism-specific 291 * reason. 292 */ 293 if (cpu_ops[cpu]->cpu_disable) 294 return cpu_ops[cpu]->cpu_disable(cpu); 295 296 return 0; 297 } 298 299 /* 300 * __cpu_disable runs on the processor to be shutdown. 301 */ 302 int __cpu_disable(void) 303 { 304 unsigned int cpu = smp_processor_id(); 305 int ret; 306 307 ret = op_cpu_disable(cpu); 308 if (ret) 309 return ret; 310 311 /* 312 * Take this CPU offline. Once we clear this, we can't return, 313 * and we must not schedule until we're ready to give up the cpu. 314 */ 315 set_cpu_online(cpu, false); 316 317 /* 318 * OK - migrate IRQs away from this CPU 319 */ 320 irq_migrate_all_off_this_cpu(); 321 322 return 0; 323 } 324 325 static int op_cpu_kill(unsigned int cpu) 326 { 327 /* 328 * If we have no means of synchronising with the dying CPU, then assume 329 * that it is really dead. We can only wait for an arbitrary length of 330 * time and hope that it's dead, so let's skip the wait and just hope. 331 */ 332 if (!cpu_ops[cpu]->cpu_kill) 333 return 0; 334 335 return cpu_ops[cpu]->cpu_kill(cpu); 336 } 337 338 /* 339 * called on the thread which is asking for a CPU to be shutdown - 340 * waits until shutdown has completed, or it is timed out. 341 */ 342 void __cpu_die(unsigned int cpu) 343 { 344 int err; 345 346 if (!cpu_wait_death(cpu, 5)) { 347 pr_crit("CPU%u: cpu didn't die\n", cpu); 348 return; 349 } 350 pr_notice("CPU%u: shutdown\n", cpu); 351 352 /* 353 * Now that the dying CPU is beyond the point of no return w.r.t. 354 * in-kernel synchronisation, try to get the firwmare to help us to 355 * verify that it has really left the kernel before we consider 356 * clobbering anything it might still be using. 357 */ 358 err = op_cpu_kill(cpu); 359 if (err) 360 pr_warn("CPU%d may not have shut down cleanly: %d\n", 361 cpu, err); 362 } 363 364 /* 365 * Called from the idle thread for the CPU which has been shutdown. 366 * 367 * Note that we disable IRQs here, but do not re-enable them 368 * before returning to the caller. This is also the behaviour 369 * of the other hotplug-cpu capable cores, so presumably coming 370 * out of idle fixes this. 371 */ 372 void cpu_die(void) 373 { 374 unsigned int cpu = smp_processor_id(); 375 376 idle_task_exit(); 377 378 local_irq_disable(); 379 380 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 381 (void)cpu_report_death(); 382 383 /* 384 * Actually shutdown the CPU. This must never fail. The specific hotplug 385 * mechanism must perform all required cache maintenance to ensure that 386 * no dirty lines are lost in the process of shutting down the CPU. 387 */ 388 cpu_ops[cpu]->cpu_die(cpu); 389 390 BUG(); 391 } 392 #endif 393 394 /* 395 * Kill the calling secondary CPU, early in bringup before it is turned 396 * online. 397 */ 398 void cpu_die_early(void) 399 { 400 int cpu = smp_processor_id(); 401 402 pr_crit("CPU%d: will not boot\n", cpu); 403 404 /* Mark this CPU absent */ 405 set_cpu_present(cpu, 0); 406 407 #ifdef CONFIG_HOTPLUG_CPU 408 update_cpu_boot_status(CPU_KILL_ME); 409 /* Check if we can park ourselves */ 410 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 411 cpu_ops[cpu]->cpu_die(cpu); 412 #endif 413 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 414 415 cpu_park_loop(); 416 } 417 418 static void __init hyp_mode_check(void) 419 { 420 if (is_hyp_mode_available()) 421 pr_info("CPU: All CPU(s) started at EL2\n"); 422 else if (is_hyp_mode_mismatched()) 423 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 424 "CPU: CPUs started in inconsistent modes"); 425 else 426 pr_info("CPU: All CPU(s) started at EL1\n"); 427 } 428 429 void __init smp_cpus_done(unsigned int max_cpus) 430 { 431 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 432 setup_cpu_features(); 433 hyp_mode_check(); 434 apply_alternatives_all(); 435 } 436 437 void __init smp_prepare_boot_cpu(void) 438 { 439 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 440 /* 441 * Initialise the static keys early as they may be enabled by the 442 * cpufeature code. 443 */ 444 jump_label_init(); 445 cpuinfo_store_boot_cpu(); 446 save_boot_cpu_run_el(); 447 /* 448 * Run the errata work around checks on the boot CPU, once we have 449 * initialised the cpu feature infrastructure from 450 * cpuinfo_store_boot_cpu() above. 451 */ 452 update_cpu_errata_workarounds(); 453 } 454 455 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 456 { 457 const __be32 *cell; 458 u64 hwid; 459 460 /* 461 * A cpu node with missing "reg" property is 462 * considered invalid to build a cpu_logical_map 463 * entry. 464 */ 465 cell = of_get_property(dn, "reg", NULL); 466 if (!cell) { 467 pr_err("%s: missing reg property\n", dn->full_name); 468 return INVALID_HWID; 469 } 470 471 hwid = of_read_number(cell, of_n_addr_cells(dn)); 472 /* 473 * Non affinity bits must be set to 0 in the DT 474 */ 475 if (hwid & ~MPIDR_HWID_BITMASK) { 476 pr_err("%s: invalid reg property\n", dn->full_name); 477 return INVALID_HWID; 478 } 479 return hwid; 480 } 481 482 /* 483 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 484 * entries and check for duplicates. If any is found just ignore the 485 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 486 * matching valid MPIDR values. 487 */ 488 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 489 { 490 unsigned int i; 491 492 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 493 if (cpu_logical_map(i) == hwid) 494 return true; 495 return false; 496 } 497 498 /* 499 * Initialize cpu operations for a logical cpu and 500 * set it in the possible mask on success 501 */ 502 static int __init smp_cpu_setup(int cpu) 503 { 504 if (cpu_read_ops(cpu)) 505 return -ENODEV; 506 507 if (cpu_ops[cpu]->cpu_init(cpu)) 508 return -ENODEV; 509 510 set_cpu_possible(cpu, true); 511 512 return 0; 513 } 514 515 static bool bootcpu_valid __initdata; 516 static unsigned int cpu_count = 1; 517 518 #ifdef CONFIG_ACPI 519 /* 520 * acpi_map_gic_cpu_interface - parse processor MADT entry 521 * 522 * Carry out sanity checks on MADT processor entry and initialize 523 * cpu_logical_map on success 524 */ 525 static void __init 526 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 527 { 528 u64 hwid = processor->arm_mpidr; 529 530 if (!(processor->flags & ACPI_MADT_ENABLED)) { 531 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 532 return; 533 } 534 535 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 536 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 537 return; 538 } 539 540 if (is_mpidr_duplicate(cpu_count, hwid)) { 541 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 542 return; 543 } 544 545 /* Check if GICC structure of boot CPU is available in the MADT */ 546 if (cpu_logical_map(0) == hwid) { 547 if (bootcpu_valid) { 548 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 549 hwid); 550 return; 551 } 552 bootcpu_valid = true; 553 early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid)); 554 return; 555 } 556 557 if (cpu_count >= NR_CPUS) 558 return; 559 560 /* map the logical cpu id to cpu MPIDR */ 561 cpu_logical_map(cpu_count) = hwid; 562 563 /* 564 * Set-up the ACPI parking protocol cpu entries 565 * while initializing the cpu_logical_map to 566 * avoid parsing MADT entries multiple times for 567 * nothing (ie a valid cpu_logical_map entry should 568 * contain a valid parking protocol data set to 569 * initialize the cpu if the parking protocol is 570 * the only available enable method). 571 */ 572 acpi_set_mailbox_entry(cpu_count, processor); 573 574 early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid)); 575 576 cpu_count++; 577 } 578 579 static int __init 580 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, 581 const unsigned long end) 582 { 583 struct acpi_madt_generic_interrupt *processor; 584 585 processor = (struct acpi_madt_generic_interrupt *)header; 586 if (BAD_MADT_GICC_ENTRY(processor, end)) 587 return -EINVAL; 588 589 acpi_table_print_madt_entry(header); 590 591 acpi_map_gic_cpu_interface(processor); 592 593 return 0; 594 } 595 #else 596 #define acpi_table_parse_madt(...) do { } while (0) 597 #endif 598 599 /* 600 * Enumerate the possible CPU set from the device tree and build the 601 * cpu logical map array containing MPIDR values related to logical 602 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 603 */ 604 static void __init of_parse_and_init_cpus(void) 605 { 606 struct device_node *dn; 607 608 for_each_node_by_type(dn, "cpu") { 609 u64 hwid = of_get_cpu_mpidr(dn); 610 611 if (hwid == INVALID_HWID) 612 goto next; 613 614 if (is_mpidr_duplicate(cpu_count, hwid)) { 615 pr_err("%s: duplicate cpu reg properties in the DT\n", 616 dn->full_name); 617 goto next; 618 } 619 620 /* 621 * The numbering scheme requires that the boot CPU 622 * must be assigned logical id 0. Record it so that 623 * the logical map built from DT is validated and can 624 * be used. 625 */ 626 if (hwid == cpu_logical_map(0)) { 627 if (bootcpu_valid) { 628 pr_err("%s: duplicate boot cpu reg property in DT\n", 629 dn->full_name); 630 goto next; 631 } 632 633 bootcpu_valid = true; 634 early_map_cpu_to_node(0, of_node_to_nid(dn)); 635 636 /* 637 * cpu_logical_map has already been 638 * initialized and the boot cpu doesn't need 639 * the enable-method so continue without 640 * incrementing cpu. 641 */ 642 continue; 643 } 644 645 if (cpu_count >= NR_CPUS) 646 goto next; 647 648 pr_debug("cpu logical map 0x%llx\n", hwid); 649 cpu_logical_map(cpu_count) = hwid; 650 651 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 652 next: 653 cpu_count++; 654 } 655 } 656 657 /* 658 * Enumerate the possible CPU set from the device tree or ACPI and build the 659 * cpu logical map array containing MPIDR values related to logical 660 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 661 */ 662 void __init smp_init_cpus(void) 663 { 664 int i; 665 666 if (acpi_disabled) 667 of_parse_and_init_cpus(); 668 else 669 /* 670 * do a walk of MADT to determine how many CPUs 671 * we have including disabled CPUs, and get information 672 * we need for SMP init 673 */ 674 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 675 acpi_parse_gic_cpu_interface, 0); 676 677 if (cpu_count > nr_cpu_ids) 678 pr_warn("Number of cores (%d) exceeds configured maximum of %d - clipping\n", 679 cpu_count, nr_cpu_ids); 680 681 if (!bootcpu_valid) { 682 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 683 return; 684 } 685 686 /* 687 * We need to set the cpu_logical_map entries before enabling 688 * the cpus so that cpu processor description entries (DT cpu nodes 689 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 690 * with entries in cpu_logical_map while initializing the cpus. 691 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 692 */ 693 for (i = 1; i < nr_cpu_ids; i++) { 694 if (cpu_logical_map(i) != INVALID_HWID) { 695 if (smp_cpu_setup(i)) 696 cpu_logical_map(i) = INVALID_HWID; 697 } 698 } 699 } 700 701 void __init smp_prepare_cpus(unsigned int max_cpus) 702 { 703 int err; 704 unsigned int cpu; 705 unsigned int this_cpu; 706 707 init_cpu_topology(); 708 709 this_cpu = smp_processor_id(); 710 store_cpu_topology(this_cpu); 711 numa_store_cpu_info(this_cpu); 712 713 /* 714 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 715 * secondary CPUs present. 716 */ 717 if (max_cpus == 0) 718 return; 719 720 /* 721 * Initialise the present map (which describes the set of CPUs 722 * actually populated at the present time) and release the 723 * secondaries from the bootloader. 724 */ 725 for_each_possible_cpu(cpu) { 726 727 per_cpu(cpu_number, cpu) = cpu; 728 729 if (cpu == smp_processor_id()) 730 continue; 731 732 if (!cpu_ops[cpu]) 733 continue; 734 735 err = cpu_ops[cpu]->cpu_prepare(cpu); 736 if (err) 737 continue; 738 739 set_cpu_present(cpu, true); 740 numa_store_cpu_info(cpu); 741 } 742 } 743 744 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 745 746 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 747 { 748 __smp_cross_call = fn; 749 } 750 751 static const char *ipi_types[NR_IPI] __tracepoint_string = { 752 #define S(x,s) [x] = s 753 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 754 S(IPI_CALL_FUNC, "Function call interrupts"), 755 S(IPI_CPU_STOP, "CPU stop interrupts"), 756 S(IPI_TIMER, "Timer broadcast interrupts"), 757 S(IPI_IRQ_WORK, "IRQ work interrupts"), 758 S(IPI_WAKEUP, "CPU wake-up interrupts"), 759 }; 760 761 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 762 { 763 trace_ipi_raise(target, ipi_types[ipinr]); 764 __smp_cross_call(target, ipinr); 765 } 766 767 void show_ipi_list(struct seq_file *p, int prec) 768 { 769 unsigned int cpu, i; 770 771 for (i = 0; i < NR_IPI; i++) { 772 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 773 prec >= 4 ? " " : ""); 774 for_each_online_cpu(cpu) 775 seq_printf(p, "%10u ", 776 __get_irq_stat(cpu, ipi_irqs[i])); 777 seq_printf(p, " %s\n", ipi_types[i]); 778 } 779 } 780 781 u64 smp_irq_stat_cpu(unsigned int cpu) 782 { 783 u64 sum = 0; 784 int i; 785 786 for (i = 0; i < NR_IPI; i++) 787 sum += __get_irq_stat(cpu, ipi_irqs[i]); 788 789 return sum; 790 } 791 792 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 793 { 794 smp_cross_call(mask, IPI_CALL_FUNC); 795 } 796 797 void arch_send_call_function_single_ipi(int cpu) 798 { 799 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 800 } 801 802 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 803 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 804 { 805 smp_cross_call(mask, IPI_WAKEUP); 806 } 807 #endif 808 809 #ifdef CONFIG_IRQ_WORK 810 void arch_irq_work_raise(void) 811 { 812 if (__smp_cross_call) 813 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 814 } 815 #endif 816 817 /* 818 * ipi_cpu_stop - handle IPI from smp_send_stop() 819 */ 820 static void ipi_cpu_stop(unsigned int cpu) 821 { 822 set_cpu_online(cpu, false); 823 824 local_irq_disable(); 825 826 while (1) 827 cpu_relax(); 828 } 829 830 /* 831 * Main handler for inter-processor interrupts 832 */ 833 void handle_IPI(int ipinr, struct pt_regs *regs) 834 { 835 unsigned int cpu = smp_processor_id(); 836 struct pt_regs *old_regs = set_irq_regs(regs); 837 838 if ((unsigned)ipinr < NR_IPI) { 839 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 840 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 841 } 842 843 switch (ipinr) { 844 case IPI_RESCHEDULE: 845 scheduler_ipi(); 846 break; 847 848 case IPI_CALL_FUNC: 849 irq_enter(); 850 generic_smp_call_function_interrupt(); 851 irq_exit(); 852 break; 853 854 case IPI_CPU_STOP: 855 irq_enter(); 856 ipi_cpu_stop(cpu); 857 irq_exit(); 858 break; 859 860 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 861 case IPI_TIMER: 862 irq_enter(); 863 tick_receive_broadcast(); 864 irq_exit(); 865 break; 866 #endif 867 868 #ifdef CONFIG_IRQ_WORK 869 case IPI_IRQ_WORK: 870 irq_enter(); 871 irq_work_run(); 872 irq_exit(); 873 break; 874 #endif 875 876 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 877 case IPI_WAKEUP: 878 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 879 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 880 cpu); 881 break; 882 #endif 883 884 default: 885 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 886 break; 887 } 888 889 if ((unsigned)ipinr < NR_IPI) 890 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 891 set_irq_regs(old_regs); 892 } 893 894 void smp_send_reschedule(int cpu) 895 { 896 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 897 } 898 899 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 900 void tick_broadcast(const struct cpumask *mask) 901 { 902 smp_cross_call(mask, IPI_TIMER); 903 } 904 #endif 905 906 void smp_send_stop(void) 907 { 908 unsigned long timeout; 909 910 if (num_online_cpus() > 1) { 911 cpumask_t mask; 912 913 cpumask_copy(&mask, cpu_online_mask); 914 cpumask_clear_cpu(smp_processor_id(), &mask); 915 916 if (system_state == SYSTEM_BOOTING || 917 system_state == SYSTEM_RUNNING) 918 pr_crit("SMP: stopping secondary CPUs\n"); 919 smp_cross_call(&mask, IPI_CPU_STOP); 920 } 921 922 /* Wait up to one second for other CPUs to stop */ 923 timeout = USEC_PER_SEC; 924 while (num_online_cpus() > 1 && timeout--) 925 udelay(1); 926 927 if (num_online_cpus() > 1) 928 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 929 cpumask_pr_args(cpu_online_mask)); 930 } 931 932 /* 933 * not supported here 934 */ 935 int setup_profiling_timer(unsigned int multiplier) 936 { 937 return -EINVAL; 938 } 939 940 static bool have_cpu_die(void) 941 { 942 #ifdef CONFIG_HOTPLUG_CPU 943 int any_cpu = raw_smp_processor_id(); 944 945 if (cpu_ops[any_cpu]->cpu_die) 946 return true; 947 #endif 948 return false; 949 } 950 951 bool cpus_are_stuck_in_kernel(void) 952 { 953 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 954 955 return !!cpus_stuck_in_kernel || smp_spin_tables; 956 } 957