1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/delay.h> 21 #include <linux/init.h> 22 #include <linux/spinlock.h> 23 #include <linux/sched.h> 24 #include <linux/interrupt.h> 25 #include <linux/cache.h> 26 #include <linux/profile.h> 27 #include <linux/errno.h> 28 #include <linux/mm.h> 29 #include <linux/err.h> 30 #include <linux/cpu.h> 31 #include <linux/smp.h> 32 #include <linux/seq_file.h> 33 #include <linux/irq.h> 34 #include <linux/percpu.h> 35 #include <linux/clockchips.h> 36 #include <linux/completion.h> 37 #include <linux/of.h> 38 39 #include <asm/atomic.h> 40 #include <asm/cacheflush.h> 41 #include <asm/cputype.h> 42 #include <asm/cpu_ops.h> 43 #include <asm/mmu_context.h> 44 #include <asm/pgtable.h> 45 #include <asm/pgalloc.h> 46 #include <asm/processor.h> 47 #include <asm/smp_plat.h> 48 #include <asm/sections.h> 49 #include <asm/tlbflush.h> 50 #include <asm/ptrace.h> 51 52 /* 53 * as from 2.5, kernels no longer have an init_tasks structure 54 * so we need some other way of telling a new secondary core 55 * where to place its SVC stack 56 */ 57 struct secondary_data secondary_data; 58 59 enum ipi_msg_type { 60 IPI_RESCHEDULE, 61 IPI_CALL_FUNC, 62 IPI_CALL_FUNC_SINGLE, 63 IPI_CPU_STOP, 64 }; 65 66 /* 67 * Boot a secondary CPU, and assign it the specified idle task. 68 * This also gives us the initial stack to use for this CPU. 69 */ 70 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 71 { 72 if (cpu_ops[cpu]->cpu_boot) 73 return cpu_ops[cpu]->cpu_boot(cpu); 74 75 return -EOPNOTSUPP; 76 } 77 78 static DECLARE_COMPLETION(cpu_running); 79 80 int __cpu_up(unsigned int cpu, struct task_struct *idle) 81 { 82 int ret; 83 84 /* 85 * We need to tell the secondary core where to find its stack and the 86 * page tables. 87 */ 88 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 89 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 90 91 /* 92 * Now bring the CPU into our world. 93 */ 94 ret = boot_secondary(cpu, idle); 95 if (ret == 0) { 96 /* 97 * CPU was successfully started, wait for it to come online or 98 * time out. 99 */ 100 wait_for_completion_timeout(&cpu_running, 101 msecs_to_jiffies(1000)); 102 103 if (!cpu_online(cpu)) { 104 pr_crit("CPU%u: failed to come online\n", cpu); 105 ret = -EIO; 106 } 107 } else { 108 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 109 } 110 111 secondary_data.stack = NULL; 112 113 return ret; 114 } 115 116 /* 117 * This is the secondary CPU boot entry. We're using this CPUs 118 * idle thread stack, but a set of temporary page tables. 119 */ 120 asmlinkage void secondary_start_kernel(void) 121 { 122 struct mm_struct *mm = &init_mm; 123 unsigned int cpu = smp_processor_id(); 124 125 printk("CPU%u: Booted secondary processor\n", cpu); 126 127 /* 128 * All kernel threads share the same mm context; grab a 129 * reference and switch to it. 130 */ 131 atomic_inc(&mm->mm_count); 132 current->active_mm = mm; 133 cpumask_set_cpu(cpu, mm_cpumask(mm)); 134 135 /* 136 * TTBR0 is only used for the identity mapping at this stage. Make it 137 * point to zero page to avoid speculatively fetching new entries. 138 */ 139 cpu_set_reserved_ttbr0(); 140 flush_tlb_all(); 141 142 preempt_disable(); 143 trace_hardirqs_off(); 144 145 if (cpu_ops[cpu]->cpu_postboot) 146 cpu_ops[cpu]->cpu_postboot(); 147 148 /* 149 * Enable GIC and timers. 150 */ 151 notify_cpu_starting(cpu); 152 153 /* 154 * OK, now it's safe to let the boot CPU continue. Wait for 155 * the CPU migration code to notice that the CPU is online 156 * before we continue. 157 */ 158 set_cpu_online(cpu, true); 159 complete(&cpu_running); 160 161 local_irq_enable(); 162 local_fiq_enable(); 163 164 /* 165 * OK, it's off to the idle thread for us 166 */ 167 cpu_startup_entry(CPUHP_ONLINE); 168 } 169 170 #ifdef CONFIG_HOTPLUG_CPU 171 static int op_cpu_disable(unsigned int cpu) 172 { 173 /* 174 * If we don't have a cpu_die method, abort before we reach the point 175 * of no return. CPU0 may not have an cpu_ops, so test for it. 176 */ 177 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 178 return -EOPNOTSUPP; 179 180 /* 181 * We may need to abort a hot unplug for some other mechanism-specific 182 * reason. 183 */ 184 if (cpu_ops[cpu]->cpu_disable) 185 return cpu_ops[cpu]->cpu_disable(cpu); 186 187 return 0; 188 } 189 190 /* 191 * __cpu_disable runs on the processor to be shutdown. 192 */ 193 int __cpu_disable(void) 194 { 195 unsigned int cpu = smp_processor_id(); 196 int ret; 197 198 ret = op_cpu_disable(cpu); 199 if (ret) 200 return ret; 201 202 /* 203 * Take this CPU offline. Once we clear this, we can't return, 204 * and we must not schedule until we're ready to give up the cpu. 205 */ 206 set_cpu_online(cpu, false); 207 208 /* 209 * OK - migrate IRQs away from this CPU 210 */ 211 migrate_irqs(); 212 213 /* 214 * Remove this CPU from the vm mask set of all processes. 215 */ 216 clear_tasks_mm_cpumask(cpu); 217 218 return 0; 219 } 220 221 static DECLARE_COMPLETION(cpu_died); 222 223 /* 224 * called on the thread which is asking for a CPU to be shutdown - 225 * waits until shutdown has completed, or it is timed out. 226 */ 227 void __cpu_die(unsigned int cpu) 228 { 229 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 230 pr_crit("CPU%u: cpu didn't die\n", cpu); 231 return; 232 } 233 pr_notice("CPU%u: shutdown\n", cpu); 234 } 235 236 /* 237 * Called from the idle thread for the CPU which has been shutdown. 238 * 239 * Note that we disable IRQs here, but do not re-enable them 240 * before returning to the caller. This is also the behaviour 241 * of the other hotplug-cpu capable cores, so presumably coming 242 * out of idle fixes this. 243 */ 244 void cpu_die(void) 245 { 246 unsigned int cpu = smp_processor_id(); 247 248 idle_task_exit(); 249 250 local_irq_disable(); 251 252 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 253 complete(&cpu_died); 254 255 /* 256 * Actually shutdown the CPU. This must never fail. The specific hotplug 257 * mechanism must perform all required cache maintenance to ensure that 258 * no dirty lines are lost in the process of shutting down the CPU. 259 */ 260 cpu_ops[cpu]->cpu_die(cpu); 261 262 BUG(); 263 } 264 #endif 265 266 void __init smp_cpus_done(unsigned int max_cpus) 267 { 268 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 269 } 270 271 void __init smp_prepare_boot_cpu(void) 272 { 273 } 274 275 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 276 277 /* 278 * Enumerate the possible CPU set from the device tree and build the 279 * cpu logical map array containing MPIDR values related to logical 280 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 281 */ 282 void __init smp_init_cpus(void) 283 { 284 struct device_node *dn = NULL; 285 unsigned int i, cpu = 1; 286 bool bootcpu_valid = false; 287 288 while ((dn = of_find_node_by_type(dn, "cpu"))) { 289 const u32 *cell; 290 u64 hwid; 291 292 /* 293 * A cpu node with missing "reg" property is 294 * considered invalid to build a cpu_logical_map 295 * entry. 296 */ 297 cell = of_get_property(dn, "reg", NULL); 298 if (!cell) { 299 pr_err("%s: missing reg property\n", dn->full_name); 300 goto next; 301 } 302 hwid = of_read_number(cell, of_n_addr_cells(dn)); 303 304 /* 305 * Non affinity bits must be set to 0 in the DT 306 */ 307 if (hwid & ~MPIDR_HWID_BITMASK) { 308 pr_err("%s: invalid reg property\n", dn->full_name); 309 goto next; 310 } 311 312 /* 313 * Duplicate MPIDRs are a recipe for disaster. Scan 314 * all initialized entries and check for 315 * duplicates. If any is found just ignore the cpu. 316 * cpu_logical_map was initialized to INVALID_HWID to 317 * avoid matching valid MPIDR values. 318 */ 319 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) { 320 if (cpu_logical_map(i) == hwid) { 321 pr_err("%s: duplicate cpu reg properties in the DT\n", 322 dn->full_name); 323 goto next; 324 } 325 } 326 327 /* 328 * The numbering scheme requires that the boot CPU 329 * must be assigned logical id 0. Record it so that 330 * the logical map built from DT is validated and can 331 * be used. 332 */ 333 if (hwid == cpu_logical_map(0)) { 334 if (bootcpu_valid) { 335 pr_err("%s: duplicate boot cpu reg property in DT\n", 336 dn->full_name); 337 goto next; 338 } 339 340 bootcpu_valid = true; 341 342 /* 343 * cpu_logical_map has already been 344 * initialized and the boot cpu doesn't need 345 * the enable-method so continue without 346 * incrementing cpu. 347 */ 348 continue; 349 } 350 351 if (cpu >= NR_CPUS) 352 goto next; 353 354 if (cpu_read_ops(dn, cpu) != 0) 355 goto next; 356 357 if (cpu_ops[cpu]->cpu_init(dn, cpu)) 358 goto next; 359 360 pr_debug("cpu logical map 0x%llx\n", hwid); 361 cpu_logical_map(cpu) = hwid; 362 next: 363 cpu++; 364 } 365 366 /* sanity check */ 367 if (cpu > NR_CPUS) 368 pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n", 369 cpu, NR_CPUS); 370 371 if (!bootcpu_valid) { 372 pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n"); 373 return; 374 } 375 376 /* 377 * All the cpus that made it to the cpu_logical_map have been 378 * validated so set them as possible cpus. 379 */ 380 for (i = 0; i < NR_CPUS; i++) 381 if (cpu_logical_map(i) != INVALID_HWID) 382 set_cpu_possible(i, true); 383 } 384 385 void __init smp_prepare_cpus(unsigned int max_cpus) 386 { 387 int err; 388 unsigned int cpu, ncores = num_possible_cpus(); 389 390 /* 391 * are we trying to boot more cores than exist? 392 */ 393 if (max_cpus > ncores) 394 max_cpus = ncores; 395 396 /* Don't bother if we're effectively UP */ 397 if (max_cpus <= 1) 398 return; 399 400 /* 401 * Initialise the present map (which describes the set of CPUs 402 * actually populated at the present time) and release the 403 * secondaries from the bootloader. 404 * 405 * Make sure we online at most (max_cpus - 1) additional CPUs. 406 */ 407 max_cpus--; 408 for_each_possible_cpu(cpu) { 409 if (max_cpus == 0) 410 break; 411 412 if (cpu == smp_processor_id()) 413 continue; 414 415 if (!cpu_ops[cpu]) 416 continue; 417 418 err = cpu_ops[cpu]->cpu_prepare(cpu); 419 if (err) 420 continue; 421 422 set_cpu_present(cpu, true); 423 max_cpus--; 424 } 425 } 426 427 428 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 429 { 430 smp_cross_call = fn; 431 } 432 433 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 434 { 435 smp_cross_call(mask, IPI_CALL_FUNC); 436 } 437 438 void arch_send_call_function_single_ipi(int cpu) 439 { 440 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 441 } 442 443 static const char *ipi_types[NR_IPI] = { 444 #define S(x,s) [x - IPI_RESCHEDULE] = s 445 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 446 S(IPI_CALL_FUNC, "Function call interrupts"), 447 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 448 S(IPI_CPU_STOP, "CPU stop interrupts"), 449 }; 450 451 void show_ipi_list(struct seq_file *p, int prec) 452 { 453 unsigned int cpu, i; 454 455 for (i = 0; i < NR_IPI; i++) { 456 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE, 457 prec >= 4 ? " " : ""); 458 for_each_online_cpu(cpu) 459 seq_printf(p, "%10u ", 460 __get_irq_stat(cpu, ipi_irqs[i])); 461 seq_printf(p, " %s\n", ipi_types[i]); 462 } 463 } 464 465 u64 smp_irq_stat_cpu(unsigned int cpu) 466 { 467 u64 sum = 0; 468 int i; 469 470 for (i = 0; i < NR_IPI; i++) 471 sum += __get_irq_stat(cpu, ipi_irqs[i]); 472 473 return sum; 474 } 475 476 static DEFINE_RAW_SPINLOCK(stop_lock); 477 478 /* 479 * ipi_cpu_stop - handle IPI from smp_send_stop() 480 */ 481 static void ipi_cpu_stop(unsigned int cpu) 482 { 483 if (system_state == SYSTEM_BOOTING || 484 system_state == SYSTEM_RUNNING) { 485 raw_spin_lock(&stop_lock); 486 pr_crit("CPU%u: stopping\n", cpu); 487 dump_stack(); 488 raw_spin_unlock(&stop_lock); 489 } 490 491 set_cpu_online(cpu, false); 492 493 local_fiq_disable(); 494 local_irq_disable(); 495 496 while (1) 497 cpu_relax(); 498 } 499 500 /* 501 * Main handler for inter-processor interrupts 502 */ 503 void handle_IPI(int ipinr, struct pt_regs *regs) 504 { 505 unsigned int cpu = smp_processor_id(); 506 struct pt_regs *old_regs = set_irq_regs(regs); 507 508 if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI) 509 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]); 510 511 switch (ipinr) { 512 case IPI_RESCHEDULE: 513 scheduler_ipi(); 514 break; 515 516 case IPI_CALL_FUNC: 517 irq_enter(); 518 generic_smp_call_function_interrupt(); 519 irq_exit(); 520 break; 521 522 case IPI_CALL_FUNC_SINGLE: 523 irq_enter(); 524 generic_smp_call_function_single_interrupt(); 525 irq_exit(); 526 break; 527 528 case IPI_CPU_STOP: 529 irq_enter(); 530 ipi_cpu_stop(cpu); 531 irq_exit(); 532 break; 533 534 default: 535 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 536 break; 537 } 538 set_irq_regs(old_regs); 539 } 540 541 void smp_send_reschedule(int cpu) 542 { 543 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 544 } 545 546 void smp_send_stop(void) 547 { 548 unsigned long timeout; 549 550 if (num_online_cpus() > 1) { 551 cpumask_t mask; 552 553 cpumask_copy(&mask, cpu_online_mask); 554 cpu_clear(smp_processor_id(), mask); 555 556 smp_cross_call(&mask, IPI_CPU_STOP); 557 } 558 559 /* Wait up to one second for other CPUs to stop */ 560 timeout = USEC_PER_SEC; 561 while (num_online_cpus() > 1 && timeout--) 562 udelay(1); 563 564 if (num_online_cpus() > 1) 565 pr_warning("SMP: failed to stop secondary CPUs\n"); 566 } 567 568 /* 569 * not supported here 570 */ 571 int setup_profiling_timer(unsigned int multiplier) 572 { 573 return -EINVAL; 574 } 575