1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/delay.h> 21 #include <linux/init.h> 22 #include <linux/spinlock.h> 23 #include <linux/sched.h> 24 #include <linux/interrupt.h> 25 #include <linux/cache.h> 26 #include <linux/profile.h> 27 #include <linux/errno.h> 28 #include <linux/mm.h> 29 #include <linux/err.h> 30 #include <linux/cpu.h> 31 #include <linux/smp.h> 32 #include <linux/seq_file.h> 33 #include <linux/irq.h> 34 #include <linux/percpu.h> 35 #include <linux/clockchips.h> 36 #include <linux/completion.h> 37 #include <linux/of.h> 38 39 #include <asm/atomic.h> 40 #include <asm/cacheflush.h> 41 #include <asm/cputype.h> 42 #include <asm/mmu_context.h> 43 #include <asm/pgtable.h> 44 #include <asm/pgalloc.h> 45 #include <asm/processor.h> 46 #include <asm/smp_plat.h> 47 #include <asm/sections.h> 48 #include <asm/tlbflush.h> 49 #include <asm/ptrace.h> 50 51 /* 52 * as from 2.5, kernels no longer have an init_tasks structure 53 * so we need some other way of telling a new secondary core 54 * where to place its SVC stack 55 */ 56 struct secondary_data secondary_data; 57 volatile unsigned long secondary_holding_pen_release = INVALID_HWID; 58 59 enum ipi_msg_type { 60 IPI_RESCHEDULE, 61 IPI_CALL_FUNC, 62 IPI_CALL_FUNC_SINGLE, 63 IPI_CPU_STOP, 64 }; 65 66 static DEFINE_RAW_SPINLOCK(boot_lock); 67 68 /* 69 * Write secondary_holding_pen_release in a way that is guaranteed to be 70 * visible to all observers, irrespective of whether they're taking part 71 * in coherency or not. This is necessary for the hotplug code to work 72 * reliably. 73 */ 74 static void write_pen_release(u64 val) 75 { 76 void *start = (void *)&secondary_holding_pen_release; 77 unsigned long size = sizeof(secondary_holding_pen_release); 78 79 secondary_holding_pen_release = val; 80 __flush_dcache_area(start, size); 81 } 82 83 /* 84 * Boot a secondary CPU, and assign it the specified idle task. 85 * This also gives us the initial stack to use for this CPU. 86 */ 87 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 88 { 89 unsigned long timeout; 90 91 /* 92 * Set synchronisation state between this boot processor 93 * and the secondary one 94 */ 95 raw_spin_lock(&boot_lock); 96 97 /* 98 * Update the pen release flag. 99 */ 100 write_pen_release(cpu_logical_map(cpu)); 101 102 /* 103 * Send an event, causing the secondaries to read pen_release. 104 */ 105 sev(); 106 107 timeout = jiffies + (1 * HZ); 108 while (time_before(jiffies, timeout)) { 109 if (secondary_holding_pen_release == INVALID_HWID) 110 break; 111 udelay(10); 112 } 113 114 /* 115 * Now the secondary core is starting up let it run its 116 * calibrations, then wait for it to finish 117 */ 118 raw_spin_unlock(&boot_lock); 119 120 return secondary_holding_pen_release != INVALID_HWID ? -ENOSYS : 0; 121 } 122 123 static DECLARE_COMPLETION(cpu_running); 124 125 int __cpu_up(unsigned int cpu, struct task_struct *idle) 126 { 127 int ret; 128 129 /* 130 * We need to tell the secondary core where to find its stack and the 131 * page tables. 132 */ 133 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 134 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 135 136 /* 137 * Now bring the CPU into our world. 138 */ 139 ret = boot_secondary(cpu, idle); 140 if (ret == 0) { 141 /* 142 * CPU was successfully started, wait for it to come online or 143 * time out. 144 */ 145 wait_for_completion_timeout(&cpu_running, 146 msecs_to_jiffies(1000)); 147 148 if (!cpu_online(cpu)) { 149 pr_crit("CPU%u: failed to come online\n", cpu); 150 ret = -EIO; 151 } 152 } else { 153 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 154 } 155 156 secondary_data.stack = NULL; 157 158 return ret; 159 } 160 161 /* 162 * This is the secondary CPU boot entry. We're using this CPUs 163 * idle thread stack, but a set of temporary page tables. 164 */ 165 asmlinkage void secondary_start_kernel(void) 166 { 167 struct mm_struct *mm = &init_mm; 168 unsigned int cpu = smp_processor_id(); 169 170 printk("CPU%u: Booted secondary processor\n", cpu); 171 172 /* 173 * All kernel threads share the same mm context; grab a 174 * reference and switch to it. 175 */ 176 atomic_inc(&mm->mm_count); 177 current->active_mm = mm; 178 cpumask_set_cpu(cpu, mm_cpumask(mm)); 179 180 /* 181 * TTBR0 is only used for the identity mapping at this stage. Make it 182 * point to zero page to avoid speculatively fetching new entries. 183 */ 184 cpu_set_reserved_ttbr0(); 185 flush_tlb_all(); 186 187 preempt_disable(); 188 trace_hardirqs_off(); 189 190 /* 191 * Let the primary processor know we're out of the 192 * pen, then head off into the C entry point 193 */ 194 write_pen_release(INVALID_HWID); 195 196 /* 197 * Synchronise with the boot thread. 198 */ 199 raw_spin_lock(&boot_lock); 200 raw_spin_unlock(&boot_lock); 201 202 /* 203 * OK, now it's safe to let the boot CPU continue. Wait for 204 * the CPU migration code to notice that the CPU is online 205 * before we continue. 206 */ 207 set_cpu_online(cpu, true); 208 complete(&cpu_running); 209 210 /* 211 * Enable GIC and timers. 212 */ 213 notify_cpu_starting(cpu); 214 215 local_irq_enable(); 216 local_fiq_enable(); 217 218 /* 219 * OK, it's off to the idle thread for us 220 */ 221 cpu_startup_entry(CPUHP_ONLINE); 222 } 223 224 void __init smp_cpus_done(unsigned int max_cpus) 225 { 226 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 227 } 228 229 void __init smp_prepare_boot_cpu(void) 230 { 231 } 232 233 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 234 235 static const struct smp_enable_ops *enable_ops[] __initconst = { 236 &smp_spin_table_ops, 237 &smp_psci_ops, 238 NULL, 239 }; 240 241 static const struct smp_enable_ops *smp_enable_ops[NR_CPUS]; 242 243 static const struct smp_enable_ops * __init smp_get_enable_ops(const char *name) 244 { 245 const struct smp_enable_ops **ops = enable_ops; 246 247 while (*ops) { 248 if (!strcmp(name, (*ops)->name)) 249 return *ops; 250 251 ops++; 252 } 253 254 return NULL; 255 } 256 257 /* 258 * Enumerate the possible CPU set from the device tree and build the 259 * cpu logical map array containing MPIDR values related to logical 260 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 261 */ 262 void __init smp_init_cpus(void) 263 { 264 const char *enable_method; 265 struct device_node *dn = NULL; 266 int i, cpu = 1; 267 bool bootcpu_valid = false; 268 269 while ((dn = of_find_node_by_type(dn, "cpu"))) { 270 const u32 *cell; 271 u64 hwid; 272 273 /* 274 * A cpu node with missing "reg" property is 275 * considered invalid to build a cpu_logical_map 276 * entry. 277 */ 278 cell = of_get_property(dn, "reg", NULL); 279 if (!cell) { 280 pr_err("%s: missing reg property\n", dn->full_name); 281 goto next; 282 } 283 hwid = of_read_number(cell, of_n_addr_cells(dn)); 284 285 /* 286 * Non affinity bits must be set to 0 in the DT 287 */ 288 if (hwid & ~MPIDR_HWID_BITMASK) { 289 pr_err("%s: invalid reg property\n", dn->full_name); 290 goto next; 291 } 292 293 /* 294 * Duplicate MPIDRs are a recipe for disaster. Scan 295 * all initialized entries and check for 296 * duplicates. If any is found just ignore the cpu. 297 * cpu_logical_map was initialized to INVALID_HWID to 298 * avoid matching valid MPIDR values. 299 */ 300 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) { 301 if (cpu_logical_map(i) == hwid) { 302 pr_err("%s: duplicate cpu reg properties in the DT\n", 303 dn->full_name); 304 goto next; 305 } 306 } 307 308 /* 309 * The numbering scheme requires that the boot CPU 310 * must be assigned logical id 0. Record it so that 311 * the logical map built from DT is validated and can 312 * be used. 313 */ 314 if (hwid == cpu_logical_map(0)) { 315 if (bootcpu_valid) { 316 pr_err("%s: duplicate boot cpu reg property in DT\n", 317 dn->full_name); 318 goto next; 319 } 320 321 bootcpu_valid = true; 322 323 /* 324 * cpu_logical_map has already been 325 * initialized and the boot cpu doesn't need 326 * the enable-method so continue without 327 * incrementing cpu. 328 */ 329 continue; 330 } 331 332 if (cpu >= NR_CPUS) 333 goto next; 334 335 /* 336 * We currently support only the "spin-table" enable-method. 337 */ 338 enable_method = of_get_property(dn, "enable-method", NULL); 339 if (!enable_method) { 340 pr_err("%s: missing enable-method property\n", 341 dn->full_name); 342 goto next; 343 } 344 345 smp_enable_ops[cpu] = smp_get_enable_ops(enable_method); 346 347 if (!smp_enable_ops[cpu]) { 348 pr_err("%s: invalid enable-method property: %s\n", 349 dn->full_name, enable_method); 350 goto next; 351 } 352 353 if (smp_enable_ops[cpu]->init_cpu(dn, cpu)) 354 goto next; 355 356 pr_debug("cpu logical map 0x%llx\n", hwid); 357 cpu_logical_map(cpu) = hwid; 358 next: 359 cpu++; 360 } 361 362 /* sanity check */ 363 if (cpu > NR_CPUS) 364 pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n", 365 cpu, NR_CPUS); 366 367 if (!bootcpu_valid) { 368 pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n"); 369 return; 370 } 371 372 /* 373 * All the cpus that made it to the cpu_logical_map have been 374 * validated so set them as possible cpus. 375 */ 376 for (i = 0; i < NR_CPUS; i++) 377 if (cpu_logical_map(i) != INVALID_HWID) 378 set_cpu_possible(i, true); 379 } 380 381 void __init smp_prepare_cpus(unsigned int max_cpus) 382 { 383 int cpu, err; 384 unsigned int ncores = num_possible_cpus(); 385 386 /* 387 * are we trying to boot more cores than exist? 388 */ 389 if (max_cpus > ncores) 390 max_cpus = ncores; 391 392 /* Don't bother if we're effectively UP */ 393 if (max_cpus <= 1) 394 return; 395 396 /* 397 * Initialise the present map (which describes the set of CPUs 398 * actually populated at the present time) and release the 399 * secondaries from the bootloader. 400 * 401 * Make sure we online at most (max_cpus - 1) additional CPUs. 402 */ 403 max_cpus--; 404 for_each_possible_cpu(cpu) { 405 if (max_cpus == 0) 406 break; 407 408 if (cpu == smp_processor_id()) 409 continue; 410 411 if (!smp_enable_ops[cpu]) 412 continue; 413 414 err = smp_enable_ops[cpu]->prepare_cpu(cpu); 415 if (err) 416 continue; 417 418 set_cpu_present(cpu, true); 419 max_cpus--; 420 } 421 } 422 423 424 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 425 { 426 smp_cross_call = fn; 427 } 428 429 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 430 { 431 smp_cross_call(mask, IPI_CALL_FUNC); 432 } 433 434 void arch_send_call_function_single_ipi(int cpu) 435 { 436 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 437 } 438 439 static const char *ipi_types[NR_IPI] = { 440 #define S(x,s) [x - IPI_RESCHEDULE] = s 441 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 442 S(IPI_CALL_FUNC, "Function call interrupts"), 443 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 444 S(IPI_CPU_STOP, "CPU stop interrupts"), 445 }; 446 447 void show_ipi_list(struct seq_file *p, int prec) 448 { 449 unsigned int cpu, i; 450 451 for (i = 0; i < NR_IPI; i++) { 452 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE, 453 prec >= 4 ? " " : ""); 454 for_each_present_cpu(cpu) 455 seq_printf(p, "%10u ", 456 __get_irq_stat(cpu, ipi_irqs[i])); 457 seq_printf(p, " %s\n", ipi_types[i]); 458 } 459 } 460 461 u64 smp_irq_stat_cpu(unsigned int cpu) 462 { 463 u64 sum = 0; 464 int i; 465 466 for (i = 0; i < NR_IPI; i++) 467 sum += __get_irq_stat(cpu, ipi_irqs[i]); 468 469 return sum; 470 } 471 472 static DEFINE_RAW_SPINLOCK(stop_lock); 473 474 /* 475 * ipi_cpu_stop - handle IPI from smp_send_stop() 476 */ 477 static void ipi_cpu_stop(unsigned int cpu) 478 { 479 if (system_state == SYSTEM_BOOTING || 480 system_state == SYSTEM_RUNNING) { 481 raw_spin_lock(&stop_lock); 482 pr_crit("CPU%u: stopping\n", cpu); 483 dump_stack(); 484 raw_spin_unlock(&stop_lock); 485 } 486 487 set_cpu_online(cpu, false); 488 489 local_fiq_disable(); 490 local_irq_disable(); 491 492 while (1) 493 cpu_relax(); 494 } 495 496 /* 497 * Main handler for inter-processor interrupts 498 */ 499 void handle_IPI(int ipinr, struct pt_regs *regs) 500 { 501 unsigned int cpu = smp_processor_id(); 502 struct pt_regs *old_regs = set_irq_regs(regs); 503 504 if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI) 505 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]); 506 507 switch (ipinr) { 508 case IPI_RESCHEDULE: 509 scheduler_ipi(); 510 break; 511 512 case IPI_CALL_FUNC: 513 irq_enter(); 514 generic_smp_call_function_interrupt(); 515 irq_exit(); 516 break; 517 518 case IPI_CALL_FUNC_SINGLE: 519 irq_enter(); 520 generic_smp_call_function_single_interrupt(); 521 irq_exit(); 522 break; 523 524 case IPI_CPU_STOP: 525 irq_enter(); 526 ipi_cpu_stop(cpu); 527 irq_exit(); 528 break; 529 530 default: 531 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 532 break; 533 } 534 set_irq_regs(old_regs); 535 } 536 537 void smp_send_reschedule(int cpu) 538 { 539 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 540 } 541 542 void smp_send_stop(void) 543 { 544 unsigned long timeout; 545 546 if (num_online_cpus() > 1) { 547 cpumask_t mask; 548 549 cpumask_copy(&mask, cpu_online_mask); 550 cpu_clear(smp_processor_id(), mask); 551 552 smp_cross_call(&mask, IPI_CPU_STOP); 553 } 554 555 /* Wait up to one second for other CPUs to stop */ 556 timeout = USEC_PER_SEC; 557 while (num_online_cpus() > 1 && timeout--) 558 udelay(1); 559 560 if (num_online_cpus() > 1) 561 pr_warning("SMP: failed to stop secondary CPUs\n"); 562 } 563 564 /* 565 * not supported here 566 */ 567 int setup_profiling_timer(unsigned int multiplier) 568 { 569 return -EINVAL; 570 } 571