1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/setup.c 4 * 5 * Copyright (C) 1995-2001 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/export.h> 11 #include <linux/kernel.h> 12 #include <linux/stddef.h> 13 #include <linux/ioport.h> 14 #include <linux/delay.h> 15 #include <linux/initrd.h> 16 #include <linux/console.h> 17 #include <linux/cache.h> 18 #include <linux/screen_info.h> 19 #include <linux/init.h> 20 #include <linux/kexec.h> 21 #include <linux/root_dev.h> 22 #include <linux/cpu.h> 23 #include <linux/interrupt.h> 24 #include <linux/smp.h> 25 #include <linux/fs.h> 26 #include <linux/panic_notifier.h> 27 #include <linux/proc_fs.h> 28 #include <linux/memblock.h> 29 #include <linux/of_fdt.h> 30 #include <linux/efi.h> 31 #include <linux/psci.h> 32 #include <linux/sched/task.h> 33 #include <linux/mm.h> 34 35 #include <asm/acpi.h> 36 #include <asm/fixmap.h> 37 #include <asm/cpu.h> 38 #include <asm/cputype.h> 39 #include <asm/daifflags.h> 40 #include <asm/elf.h> 41 #include <asm/cpufeature.h> 42 #include <asm/cpu_ops.h> 43 #include <asm/kasan.h> 44 #include <asm/numa.h> 45 #include <asm/sections.h> 46 #include <asm/setup.h> 47 #include <asm/smp_plat.h> 48 #include <asm/cacheflush.h> 49 #include <asm/tlbflush.h> 50 #include <asm/traps.h> 51 #include <asm/efi.h> 52 #include <asm/xen/hypervisor.h> 53 #include <asm/mmu_context.h> 54 55 static int num_standard_resources; 56 static struct resource *standard_resources; 57 58 phys_addr_t __fdt_pointer __initdata; 59 60 /* 61 * Standard memory resources 62 */ 63 static struct resource mem_res[] = { 64 { 65 .name = "Kernel code", 66 .start = 0, 67 .end = 0, 68 .flags = IORESOURCE_SYSTEM_RAM 69 }, 70 { 71 .name = "Kernel data", 72 .start = 0, 73 .end = 0, 74 .flags = IORESOURCE_SYSTEM_RAM 75 } 76 }; 77 78 #define kernel_code mem_res[0] 79 #define kernel_data mem_res[1] 80 81 /* 82 * The recorded values of x0 .. x3 upon kernel entry. 83 */ 84 u64 __cacheline_aligned boot_args[4]; 85 86 void __init smp_setup_processor_id(void) 87 { 88 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 89 set_cpu_logical_map(0, mpidr); 90 91 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n", 92 (unsigned long)mpidr, read_cpuid_id()); 93 } 94 95 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 96 { 97 return phys_id == cpu_logical_map(cpu); 98 } 99 100 struct mpidr_hash mpidr_hash; 101 /** 102 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity 103 * level in order to build a linear index from an 104 * MPIDR value. Resulting algorithm is a collision 105 * free hash carried out through shifting and ORing 106 */ 107 static void __init smp_build_mpidr_hash(void) 108 { 109 u32 i, affinity, fs[4], bits[4], ls; 110 u64 mask = 0; 111 /* 112 * Pre-scan the list of MPIDRS and filter out bits that do 113 * not contribute to affinity levels, ie they never toggle. 114 */ 115 for_each_possible_cpu(i) 116 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); 117 pr_debug("mask of set bits %#llx\n", mask); 118 /* 119 * Find and stash the last and first bit set at all affinity levels to 120 * check how many bits are required to represent them. 121 */ 122 for (i = 0; i < 4; i++) { 123 affinity = MPIDR_AFFINITY_LEVEL(mask, i); 124 /* 125 * Find the MSB bit and LSB bits position 126 * to determine how many bits are required 127 * to express the affinity level. 128 */ 129 ls = fls(affinity); 130 fs[i] = affinity ? ffs(affinity) - 1 : 0; 131 bits[i] = ls - fs[i]; 132 } 133 /* 134 * An index can be created from the MPIDR_EL1 by isolating the 135 * significant bits at each affinity level and by shifting 136 * them in order to compress the 32 bits values space to a 137 * compressed set of values. This is equivalent to hashing 138 * the MPIDR_EL1 through shifting and ORing. It is a collision free 139 * hash though not minimal since some levels might contain a number 140 * of CPUs that is not an exact power of 2 and their bit 141 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}. 142 */ 143 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0]; 144 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0]; 145 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] - 146 (bits[1] + bits[0]); 147 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) + 148 fs[3] - (bits[2] + bits[1] + bits[0]); 149 mpidr_hash.mask = mask; 150 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0]; 151 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n", 152 mpidr_hash.shift_aff[0], 153 mpidr_hash.shift_aff[1], 154 mpidr_hash.shift_aff[2], 155 mpidr_hash.shift_aff[3], 156 mpidr_hash.mask, 157 mpidr_hash.bits); 158 /* 159 * 4x is an arbitrary value used to warn on a hash table much bigger 160 * than expected on most systems. 161 */ 162 if (mpidr_hash_size() > 4 * num_possible_cpus()) 163 pr_warn("Large number of MPIDR hash buckets detected\n"); 164 } 165 166 static void *early_fdt_ptr __initdata; 167 168 void __init *get_early_fdt_ptr(void) 169 { 170 return early_fdt_ptr; 171 } 172 173 asmlinkage void __init early_fdt_map(u64 dt_phys) 174 { 175 int fdt_size; 176 177 early_fixmap_init(); 178 early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL); 179 } 180 181 static void __init setup_machine_fdt(phys_addr_t dt_phys) 182 { 183 int size; 184 void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL); 185 const char *name; 186 187 if (dt_virt) 188 memblock_reserve(dt_phys, size); 189 190 if (!dt_virt || !early_init_dt_scan(dt_virt)) { 191 pr_crit("\n" 192 "Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n" 193 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n" 194 "\nPlease check your bootloader.", 195 &dt_phys, dt_virt); 196 197 /* 198 * Note that in this _really_ early stage we cannot even BUG() 199 * or oops, so the least terrible thing to do is cpu_relax(), 200 * or else we could end-up printing non-initialized data, etc. 201 */ 202 while (true) 203 cpu_relax(); 204 } 205 206 /* Early fixups are done, map the FDT as read-only now */ 207 fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO); 208 209 name = of_flat_dt_get_machine_name(); 210 if (!name) 211 return; 212 213 pr_info("Machine model: %s\n", name); 214 dump_stack_set_arch_desc("%s (DT)", name); 215 } 216 217 static void __init request_standard_resources(void) 218 { 219 struct memblock_region *region; 220 struct resource *res; 221 unsigned long i = 0; 222 size_t res_size; 223 224 kernel_code.start = __pa_symbol(_stext); 225 kernel_code.end = __pa_symbol(__init_begin - 1); 226 kernel_data.start = __pa_symbol(_sdata); 227 kernel_data.end = __pa_symbol(_end - 1); 228 229 num_standard_resources = memblock.memory.cnt; 230 res_size = num_standard_resources * sizeof(*standard_resources); 231 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES); 232 if (!standard_resources) 233 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size); 234 235 for_each_mem_region(region) { 236 res = &standard_resources[i++]; 237 if (memblock_is_nomap(region)) { 238 res->name = "reserved"; 239 res->flags = IORESOURCE_MEM; 240 res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region)); 241 res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1; 242 } else { 243 res->name = "System RAM"; 244 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 245 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); 246 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; 247 } 248 249 request_resource(&iomem_resource, res); 250 251 if (kernel_code.start >= res->start && 252 kernel_code.end <= res->end) 253 request_resource(res, &kernel_code); 254 if (kernel_data.start >= res->start && 255 kernel_data.end <= res->end) 256 request_resource(res, &kernel_data); 257 #ifdef CONFIG_KEXEC_CORE 258 /* Userspace will find "Crash kernel" region in /proc/iomem. */ 259 if (crashk_res.end && crashk_res.start >= res->start && 260 crashk_res.end <= res->end) 261 request_resource(res, &crashk_res); 262 #endif 263 } 264 } 265 266 static int __init reserve_memblock_reserved_regions(void) 267 { 268 u64 i, j; 269 270 for (i = 0; i < num_standard_resources; ++i) { 271 struct resource *mem = &standard_resources[i]; 272 phys_addr_t r_start, r_end, mem_size = resource_size(mem); 273 274 if (!memblock_is_region_reserved(mem->start, mem_size)) 275 continue; 276 277 for_each_reserved_mem_range(j, &r_start, &r_end) { 278 resource_size_t start, end; 279 280 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start); 281 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end); 282 283 if (start > mem->end || end < mem->start) 284 continue; 285 286 reserve_region_with_split(mem, start, end, "reserved"); 287 } 288 } 289 290 return 0; 291 } 292 arch_initcall(reserve_memblock_reserved_regions); 293 294 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; 295 296 u64 cpu_logical_map(unsigned int cpu) 297 { 298 return __cpu_logical_map[cpu]; 299 } 300 301 void __init __no_sanitize_address setup_arch(char **cmdline_p) 302 { 303 setup_initial_init_mm(_stext, _etext, _edata, _end); 304 305 *cmdline_p = boot_command_line; 306 307 /* 308 * If know now we are going to need KPTI then use non-global 309 * mappings from the start, avoiding the cost of rewriting 310 * everything later. 311 */ 312 arm64_use_ng_mappings = kaslr_requires_kpti(); 313 314 early_fixmap_init(); 315 early_ioremap_init(); 316 317 setup_machine_fdt(__fdt_pointer); 318 319 /* 320 * Initialise the static keys early as they may be enabled by the 321 * cpufeature code and early parameters. 322 */ 323 jump_label_init(); 324 parse_early_param(); 325 326 /* 327 * Unmask asynchronous aborts and fiq after bringing up possible 328 * earlycon. (Report possible System Errors once we can report this 329 * occurred). 330 */ 331 local_daif_restore(DAIF_PROCCTX_NOIRQ); 332 333 /* 334 * TTBR0 is only used for the identity mapping at this stage. Make it 335 * point to zero page to avoid speculatively fetching new entries. 336 */ 337 cpu_uninstall_idmap(); 338 339 xen_early_init(); 340 efi_init(); 341 342 if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0) 343 pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!"); 344 345 arm64_memblock_init(); 346 347 paging_init(); 348 349 acpi_table_upgrade(); 350 351 /* Parse the ACPI tables for possible boot-time configuration */ 352 acpi_boot_table_init(); 353 354 if (acpi_disabled) 355 unflatten_device_tree(); 356 357 bootmem_init(); 358 359 kasan_init(); 360 361 request_standard_resources(); 362 363 early_ioremap_reset(); 364 365 if (acpi_disabled) 366 psci_dt_init(); 367 else 368 psci_acpi_init(); 369 370 init_bootcpu_ops(); 371 smp_init_cpus(); 372 smp_build_mpidr_hash(); 373 374 /* Init percpu seeds for random tags after cpus are set up. */ 375 kasan_init_sw_tags(); 376 377 #ifdef CONFIG_ARM64_SW_TTBR0_PAN 378 /* 379 * Make sure init_thread_info.ttbr0 always generates translation 380 * faults in case uaccess_enable() is inadvertently called by the init 381 * thread. 382 */ 383 init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir)); 384 #endif 385 386 if (boot_args[1] || boot_args[2] || boot_args[3]) { 387 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n" 388 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n" 389 "This indicates a broken bootloader or old kernel\n", 390 boot_args[1], boot_args[2], boot_args[3]); 391 } 392 } 393 394 static inline bool cpu_can_disable(unsigned int cpu) 395 { 396 #ifdef CONFIG_HOTPLUG_CPU 397 const struct cpu_operations *ops = get_cpu_ops(cpu); 398 399 if (ops && ops->cpu_can_disable) 400 return ops->cpu_can_disable(cpu); 401 #endif 402 return false; 403 } 404 405 static int __init topology_init(void) 406 { 407 int i; 408 409 for_each_online_node(i) 410 register_one_node(i); 411 412 for_each_possible_cpu(i) { 413 struct cpu *cpu = &per_cpu(cpu_data.cpu, i); 414 cpu->hotpluggable = cpu_can_disable(i); 415 register_cpu(cpu, i); 416 } 417 418 return 0; 419 } 420 subsys_initcall(topology_init); 421 422 static void dump_kernel_offset(void) 423 { 424 const unsigned long offset = kaslr_offset(); 425 426 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) { 427 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n", 428 offset, KIMAGE_VADDR); 429 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET); 430 } else { 431 pr_emerg("Kernel Offset: disabled\n"); 432 } 433 } 434 435 static int arm64_panic_block_dump(struct notifier_block *self, 436 unsigned long v, void *p) 437 { 438 dump_kernel_offset(); 439 dump_cpu_features(); 440 dump_mem_limit(); 441 return 0; 442 } 443 444 static struct notifier_block arm64_panic_block = { 445 .notifier_call = arm64_panic_block_dump 446 }; 447 448 static int __init register_arm64_panic_block(void) 449 { 450 atomic_notifier_chain_register(&panic_notifier_list, 451 &arm64_panic_block); 452 return 0; 453 } 454 device_initcall(register_arm64_panic_block); 455