xref: /openbmc/linux/arch/arm64/kernel/setup.c (revision 65a0d3c1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/setup.c
4  *
5  * Copyright (C) 1995-2001 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/proc_fs.h>
28 #include <linux/memblock.h>
29 #include <linux/of_fdt.h>
30 #include <linux/efi.h>
31 #include <linux/psci.h>
32 #include <linux/sched/task.h>
33 #include <linux/mm.h>
34 
35 #include <asm/acpi.h>
36 #include <asm/fixmap.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/daifflags.h>
40 #include <asm/elf.h>
41 #include <asm/cpufeature.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/kasan.h>
44 #include <asm/numa.h>
45 #include <asm/sections.h>
46 #include <asm/setup.h>
47 #include <asm/smp_plat.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlbflush.h>
50 #include <asm/traps.h>
51 #include <asm/efi.h>
52 #include <asm/xen/hypervisor.h>
53 #include <asm/mmu_context.h>
54 
55 static int num_standard_resources;
56 static struct resource *standard_resources;
57 
58 phys_addr_t __fdt_pointer __initdata;
59 
60 /*
61  * Standard memory resources
62  */
63 static struct resource mem_res[] = {
64 	{
65 		.name = "Kernel code",
66 		.start = 0,
67 		.end = 0,
68 		.flags = IORESOURCE_SYSTEM_RAM
69 	},
70 	{
71 		.name = "Kernel data",
72 		.start = 0,
73 		.end = 0,
74 		.flags = IORESOURCE_SYSTEM_RAM
75 	}
76 };
77 
78 #define kernel_code mem_res[0]
79 #define kernel_data mem_res[1]
80 
81 /*
82  * The recorded values of x0 .. x3 upon kernel entry.
83  */
84 u64 __cacheline_aligned boot_args[4];
85 
86 void __init smp_setup_processor_id(void)
87 {
88 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
89 	set_cpu_logical_map(0, mpidr);
90 
91 	/*
92 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
93 	 * using percpu variable early, for example, lockdep will
94 	 * access percpu variable inside lock_release
95 	 */
96 	set_my_cpu_offset(0);
97 	pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
98 		(unsigned long)mpidr, read_cpuid_id());
99 }
100 
101 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
102 {
103 	return phys_id == cpu_logical_map(cpu);
104 }
105 
106 struct mpidr_hash mpidr_hash;
107 /**
108  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
109  *			  level in order to build a linear index from an
110  *			  MPIDR value. Resulting algorithm is a collision
111  *			  free hash carried out through shifting and ORing
112  */
113 static void __init smp_build_mpidr_hash(void)
114 {
115 	u32 i, affinity, fs[4], bits[4], ls;
116 	u64 mask = 0;
117 	/*
118 	 * Pre-scan the list of MPIDRS and filter out bits that do
119 	 * not contribute to affinity levels, ie they never toggle.
120 	 */
121 	for_each_possible_cpu(i)
122 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
123 	pr_debug("mask of set bits %#llx\n", mask);
124 	/*
125 	 * Find and stash the last and first bit set at all affinity levels to
126 	 * check how many bits are required to represent them.
127 	 */
128 	for (i = 0; i < 4; i++) {
129 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
130 		/*
131 		 * Find the MSB bit and LSB bits position
132 		 * to determine how many bits are required
133 		 * to express the affinity level.
134 		 */
135 		ls = fls(affinity);
136 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
137 		bits[i] = ls - fs[i];
138 	}
139 	/*
140 	 * An index can be created from the MPIDR_EL1 by isolating the
141 	 * significant bits at each affinity level and by shifting
142 	 * them in order to compress the 32 bits values space to a
143 	 * compressed set of values. This is equivalent to hashing
144 	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
145 	 * hash though not minimal since some levels might contain a number
146 	 * of CPUs that is not an exact power of 2 and their bit
147 	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
148 	 */
149 	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
150 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
151 	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
152 						(bits[1] + bits[0]);
153 	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
154 				  fs[3] - (bits[2] + bits[1] + bits[0]);
155 	mpidr_hash.mask = mask;
156 	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
157 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
158 		mpidr_hash.shift_aff[0],
159 		mpidr_hash.shift_aff[1],
160 		mpidr_hash.shift_aff[2],
161 		mpidr_hash.shift_aff[3],
162 		mpidr_hash.mask,
163 		mpidr_hash.bits);
164 	/*
165 	 * 4x is an arbitrary value used to warn on a hash table much bigger
166 	 * than expected on most systems.
167 	 */
168 	if (mpidr_hash_size() > 4 * num_possible_cpus())
169 		pr_warn("Large number of MPIDR hash buckets detected\n");
170 }
171 
172 static void *early_fdt_ptr __initdata;
173 
174 void __init *get_early_fdt_ptr(void)
175 {
176 	return early_fdt_ptr;
177 }
178 
179 asmlinkage void __init early_fdt_map(u64 dt_phys)
180 {
181 	int fdt_size;
182 
183 	early_fixmap_init();
184 	early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
185 }
186 
187 static void __init setup_machine_fdt(phys_addr_t dt_phys)
188 {
189 	int size;
190 	void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
191 	const char *name;
192 
193 	if (dt_virt)
194 		memblock_reserve(dt_phys, size);
195 
196 	if (!dt_virt || !early_init_dt_scan(dt_virt)) {
197 		pr_crit("\n"
198 			"Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
199 			"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
200 			"\nPlease check your bootloader.",
201 			&dt_phys, dt_virt);
202 
203 		while (true)
204 			cpu_relax();
205 	}
206 
207 	/* Early fixups are done, map the FDT as read-only now */
208 	fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
209 
210 	name = of_flat_dt_get_machine_name();
211 	if (!name)
212 		return;
213 
214 	pr_info("Machine model: %s\n", name);
215 	dump_stack_set_arch_desc("%s (DT)", name);
216 }
217 
218 static void __init request_standard_resources(void)
219 {
220 	struct memblock_region *region;
221 	struct resource *res;
222 	unsigned long i = 0;
223 	size_t res_size;
224 
225 	kernel_code.start   = __pa_symbol(_stext);
226 	kernel_code.end     = __pa_symbol(__init_begin - 1);
227 	kernel_data.start   = __pa_symbol(_sdata);
228 	kernel_data.end     = __pa_symbol(_end - 1);
229 
230 	num_standard_resources = memblock.memory.cnt;
231 	res_size = num_standard_resources * sizeof(*standard_resources);
232 	standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
233 	if (!standard_resources)
234 		panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
235 
236 	for_each_mem_region(region) {
237 		res = &standard_resources[i++];
238 		if (memblock_is_nomap(region)) {
239 			res->name  = "reserved";
240 			res->flags = IORESOURCE_MEM;
241 		} else {
242 			res->name  = "System RAM";
243 			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
244 		}
245 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
246 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
247 
248 		request_resource(&iomem_resource, res);
249 
250 		if (kernel_code.start >= res->start &&
251 		    kernel_code.end <= res->end)
252 			request_resource(res, &kernel_code);
253 		if (kernel_data.start >= res->start &&
254 		    kernel_data.end <= res->end)
255 			request_resource(res, &kernel_data);
256 #ifdef CONFIG_KEXEC_CORE
257 		/* Userspace will find "Crash kernel" region in /proc/iomem. */
258 		if (crashk_res.end && crashk_res.start >= res->start &&
259 		    crashk_res.end <= res->end)
260 			request_resource(res, &crashk_res);
261 #endif
262 	}
263 }
264 
265 static int __init reserve_memblock_reserved_regions(void)
266 {
267 	u64 i, j;
268 
269 	for (i = 0; i < num_standard_resources; ++i) {
270 		struct resource *mem = &standard_resources[i];
271 		phys_addr_t r_start, r_end, mem_size = resource_size(mem);
272 
273 		if (!memblock_is_region_reserved(mem->start, mem_size))
274 			continue;
275 
276 		for_each_reserved_mem_range(j, &r_start, &r_end) {
277 			resource_size_t start, end;
278 
279 			start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
280 			end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
281 
282 			if (start > mem->end || end < mem->start)
283 				continue;
284 
285 			reserve_region_with_split(mem, start, end, "reserved");
286 		}
287 	}
288 
289 	return 0;
290 }
291 arch_initcall(reserve_memblock_reserved_regions);
292 
293 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
294 
295 u64 cpu_logical_map(unsigned int cpu)
296 {
297 	return __cpu_logical_map[cpu];
298 }
299 
300 void __init __no_sanitize_address setup_arch(char **cmdline_p)
301 {
302 	init_mm.start_code = (unsigned long) _stext;
303 	init_mm.end_code   = (unsigned long) _etext;
304 	init_mm.end_data   = (unsigned long) _edata;
305 	init_mm.brk	   = (unsigned long) _end;
306 
307 	*cmdline_p = boot_command_line;
308 
309 	/*
310 	 * If know now we are going to need KPTI then use non-global
311 	 * mappings from the start, avoiding the cost of rewriting
312 	 * everything later.
313 	 */
314 	arm64_use_ng_mappings = kaslr_requires_kpti();
315 
316 	early_fixmap_init();
317 	early_ioremap_init();
318 
319 	setup_machine_fdt(__fdt_pointer);
320 
321 	/*
322 	 * Initialise the static keys early as they may be enabled by the
323 	 * cpufeature code and early parameters.
324 	 */
325 	jump_label_init();
326 	parse_early_param();
327 
328 	/*
329 	 * Unmask asynchronous aborts and fiq after bringing up possible
330 	 * earlycon. (Report possible System Errors once we can report this
331 	 * occurred).
332 	 */
333 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
334 
335 	/*
336 	 * TTBR0 is only used for the identity mapping at this stage. Make it
337 	 * point to zero page to avoid speculatively fetching new entries.
338 	 */
339 	cpu_uninstall_idmap();
340 
341 	xen_early_init();
342 	efi_init();
343 
344 	if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
345 	     pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
346 
347 	arm64_memblock_init();
348 
349 	paging_init();
350 
351 	acpi_table_upgrade();
352 
353 	/* Parse the ACPI tables for possible boot-time configuration */
354 	acpi_boot_table_init();
355 
356 	if (acpi_disabled)
357 		unflatten_device_tree();
358 
359 	bootmem_init();
360 
361 	kasan_init();
362 
363 	request_standard_resources();
364 
365 	early_ioremap_reset();
366 
367 	if (acpi_disabled)
368 		psci_dt_init();
369 	else
370 		psci_acpi_init();
371 
372 	init_bootcpu_ops();
373 	smp_init_cpus();
374 	smp_build_mpidr_hash();
375 
376 	/* Init percpu seeds for random tags after cpus are set up. */
377 	kasan_init_sw_tags();
378 
379 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
380 	/*
381 	 * Make sure init_thread_info.ttbr0 always generates translation
382 	 * faults in case uaccess_enable() is inadvertently called by the init
383 	 * thread.
384 	 */
385 	init_task.thread_info.ttbr0 = __pa_symbol(reserved_pg_dir);
386 #endif
387 
388 	if (boot_args[1] || boot_args[2] || boot_args[3]) {
389 		pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
390 			"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
391 			"This indicates a broken bootloader or old kernel\n",
392 			boot_args[1], boot_args[2], boot_args[3]);
393 	}
394 }
395 
396 static inline bool cpu_can_disable(unsigned int cpu)
397 {
398 #ifdef CONFIG_HOTPLUG_CPU
399 	const struct cpu_operations *ops = get_cpu_ops(cpu);
400 
401 	if (ops && ops->cpu_can_disable)
402 		return ops->cpu_can_disable(cpu);
403 #endif
404 	return false;
405 }
406 
407 static int __init topology_init(void)
408 {
409 	int i;
410 
411 	for_each_online_node(i)
412 		register_one_node(i);
413 
414 	for_each_possible_cpu(i) {
415 		struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
416 		cpu->hotpluggable = cpu_can_disable(i);
417 		register_cpu(cpu, i);
418 	}
419 
420 	return 0;
421 }
422 subsys_initcall(topology_init);
423 
424 static void dump_kernel_offset(void)
425 {
426 	const unsigned long offset = kaslr_offset();
427 
428 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
429 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
430 			 offset, KIMAGE_VADDR);
431 		pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
432 	} else {
433 		pr_emerg("Kernel Offset: disabled\n");
434 	}
435 }
436 
437 static int arm64_panic_block_dump(struct notifier_block *self,
438 				  unsigned long v, void *p)
439 {
440 	dump_kernel_offset();
441 	dump_cpu_features();
442 	dump_mem_limit();
443 	return 0;
444 }
445 
446 static struct notifier_block arm64_panic_block = {
447 	.notifier_call = arm64_panic_block_dump
448 };
449 
450 static int __init register_arm64_panic_block(void)
451 {
452 	atomic_notifier_chain_register(&panic_notifier_list,
453 				       &arm64_panic_block);
454 	return 0;
455 }
456 device_initcall(register_arm64_panic_block);
457