1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/setup.c 4 * 5 * Copyright (C) 1995-2001 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/export.h> 11 #include <linux/kernel.h> 12 #include <linux/stddef.h> 13 #include <linux/ioport.h> 14 #include <linux/delay.h> 15 #include <linux/initrd.h> 16 #include <linux/console.h> 17 #include <linux/cache.h> 18 #include <linux/screen_info.h> 19 #include <linux/init.h> 20 #include <linux/kexec.h> 21 #include <linux/root_dev.h> 22 #include <linux/cpu.h> 23 #include <linux/interrupt.h> 24 #include <linux/smp.h> 25 #include <linux/fs.h> 26 #include <linux/panic_notifier.h> 27 #include <linux/proc_fs.h> 28 #include <linux/memblock.h> 29 #include <linux/of_fdt.h> 30 #include <linux/efi.h> 31 #include <linux/psci.h> 32 #include <linux/sched/task.h> 33 #include <linux/mm.h> 34 35 #include <asm/acpi.h> 36 #include <asm/fixmap.h> 37 #include <asm/cpu.h> 38 #include <asm/cputype.h> 39 #include <asm/daifflags.h> 40 #include <asm/elf.h> 41 #include <asm/cpufeature.h> 42 #include <asm/cpu_ops.h> 43 #include <asm/kasan.h> 44 #include <asm/numa.h> 45 #include <asm/sections.h> 46 #include <asm/setup.h> 47 #include <asm/smp_plat.h> 48 #include <asm/cacheflush.h> 49 #include <asm/tlbflush.h> 50 #include <asm/traps.h> 51 #include <asm/efi.h> 52 #include <asm/xen/hypervisor.h> 53 #include <asm/mmu_context.h> 54 55 static int num_standard_resources; 56 static struct resource *standard_resources; 57 58 phys_addr_t __fdt_pointer __initdata; 59 60 /* 61 * Standard memory resources 62 */ 63 static struct resource mem_res[] = { 64 { 65 .name = "Kernel code", 66 .start = 0, 67 .end = 0, 68 .flags = IORESOURCE_SYSTEM_RAM 69 }, 70 { 71 .name = "Kernel data", 72 .start = 0, 73 .end = 0, 74 .flags = IORESOURCE_SYSTEM_RAM 75 } 76 }; 77 78 #define kernel_code mem_res[0] 79 #define kernel_data mem_res[1] 80 81 /* 82 * The recorded values of x0 .. x3 upon kernel entry. 83 */ 84 u64 __cacheline_aligned boot_args[4]; 85 86 void __init smp_setup_processor_id(void) 87 { 88 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 89 set_cpu_logical_map(0, mpidr); 90 91 /* 92 * clear __my_cpu_offset on boot CPU to avoid hang caused by 93 * using percpu variable early, for example, lockdep will 94 * access percpu variable inside lock_release 95 */ 96 set_my_cpu_offset(0); 97 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n", 98 (unsigned long)mpidr, read_cpuid_id()); 99 } 100 101 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 102 { 103 return phys_id == cpu_logical_map(cpu); 104 } 105 106 struct mpidr_hash mpidr_hash; 107 /** 108 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity 109 * level in order to build a linear index from an 110 * MPIDR value. Resulting algorithm is a collision 111 * free hash carried out through shifting and ORing 112 */ 113 static void __init smp_build_mpidr_hash(void) 114 { 115 u32 i, affinity, fs[4], bits[4], ls; 116 u64 mask = 0; 117 /* 118 * Pre-scan the list of MPIDRS and filter out bits that do 119 * not contribute to affinity levels, ie they never toggle. 120 */ 121 for_each_possible_cpu(i) 122 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); 123 pr_debug("mask of set bits %#llx\n", mask); 124 /* 125 * Find and stash the last and first bit set at all affinity levels to 126 * check how many bits are required to represent them. 127 */ 128 for (i = 0; i < 4; i++) { 129 affinity = MPIDR_AFFINITY_LEVEL(mask, i); 130 /* 131 * Find the MSB bit and LSB bits position 132 * to determine how many bits are required 133 * to express the affinity level. 134 */ 135 ls = fls(affinity); 136 fs[i] = affinity ? ffs(affinity) - 1 : 0; 137 bits[i] = ls - fs[i]; 138 } 139 /* 140 * An index can be created from the MPIDR_EL1 by isolating the 141 * significant bits at each affinity level and by shifting 142 * them in order to compress the 32 bits values space to a 143 * compressed set of values. This is equivalent to hashing 144 * the MPIDR_EL1 through shifting and ORing. It is a collision free 145 * hash though not minimal since some levels might contain a number 146 * of CPUs that is not an exact power of 2 and their bit 147 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}. 148 */ 149 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0]; 150 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0]; 151 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] - 152 (bits[1] + bits[0]); 153 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) + 154 fs[3] - (bits[2] + bits[1] + bits[0]); 155 mpidr_hash.mask = mask; 156 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0]; 157 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n", 158 mpidr_hash.shift_aff[0], 159 mpidr_hash.shift_aff[1], 160 mpidr_hash.shift_aff[2], 161 mpidr_hash.shift_aff[3], 162 mpidr_hash.mask, 163 mpidr_hash.bits); 164 /* 165 * 4x is an arbitrary value used to warn on a hash table much bigger 166 * than expected on most systems. 167 */ 168 if (mpidr_hash_size() > 4 * num_possible_cpus()) 169 pr_warn("Large number of MPIDR hash buckets detected\n"); 170 } 171 172 static void *early_fdt_ptr __initdata; 173 174 void __init *get_early_fdt_ptr(void) 175 { 176 return early_fdt_ptr; 177 } 178 179 asmlinkage void __init early_fdt_map(u64 dt_phys) 180 { 181 int fdt_size; 182 183 early_fixmap_init(); 184 early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL); 185 } 186 187 static void __init setup_machine_fdt(phys_addr_t dt_phys) 188 { 189 int size; 190 void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL); 191 const char *name; 192 193 if (dt_virt) 194 memblock_reserve(dt_phys, size); 195 196 if (!dt_virt || !early_init_dt_scan(dt_virt)) { 197 pr_crit("\n" 198 "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n" 199 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n" 200 "\nPlease check your bootloader.", 201 &dt_phys, dt_virt); 202 203 while (true) 204 cpu_relax(); 205 } 206 207 /* Early fixups are done, map the FDT as read-only now */ 208 fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO); 209 210 name = of_flat_dt_get_machine_name(); 211 if (!name) 212 return; 213 214 pr_info("Machine model: %s\n", name); 215 dump_stack_set_arch_desc("%s (DT)", name); 216 } 217 218 static void __init request_standard_resources(void) 219 { 220 struct memblock_region *region; 221 struct resource *res; 222 unsigned long i = 0; 223 size_t res_size; 224 225 kernel_code.start = __pa_symbol(_stext); 226 kernel_code.end = __pa_symbol(__init_begin - 1); 227 kernel_data.start = __pa_symbol(_sdata); 228 kernel_data.end = __pa_symbol(_end - 1); 229 230 num_standard_resources = memblock.memory.cnt; 231 res_size = num_standard_resources * sizeof(*standard_resources); 232 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES); 233 if (!standard_resources) 234 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size); 235 236 for_each_mem_region(region) { 237 res = &standard_resources[i++]; 238 if (memblock_is_nomap(region)) { 239 res->name = "reserved"; 240 res->flags = IORESOURCE_MEM; 241 } else { 242 res->name = "System RAM"; 243 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 244 } 245 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); 246 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; 247 248 request_resource(&iomem_resource, res); 249 250 if (kernel_code.start >= res->start && 251 kernel_code.end <= res->end) 252 request_resource(res, &kernel_code); 253 if (kernel_data.start >= res->start && 254 kernel_data.end <= res->end) 255 request_resource(res, &kernel_data); 256 #ifdef CONFIG_KEXEC_CORE 257 /* Userspace will find "Crash kernel" region in /proc/iomem. */ 258 if (crashk_res.end && crashk_res.start >= res->start && 259 crashk_res.end <= res->end) 260 request_resource(res, &crashk_res); 261 #endif 262 } 263 } 264 265 static int __init reserve_memblock_reserved_regions(void) 266 { 267 u64 i, j; 268 269 for (i = 0; i < num_standard_resources; ++i) { 270 struct resource *mem = &standard_resources[i]; 271 phys_addr_t r_start, r_end, mem_size = resource_size(mem); 272 273 if (!memblock_is_region_reserved(mem->start, mem_size)) 274 continue; 275 276 for_each_reserved_mem_range(j, &r_start, &r_end) { 277 resource_size_t start, end; 278 279 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start); 280 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end); 281 282 if (start > mem->end || end < mem->start) 283 continue; 284 285 reserve_region_with_split(mem, start, end, "reserved"); 286 } 287 } 288 289 return 0; 290 } 291 arch_initcall(reserve_memblock_reserved_regions); 292 293 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; 294 295 u64 cpu_logical_map(unsigned int cpu) 296 { 297 return __cpu_logical_map[cpu]; 298 } 299 300 void __init __no_sanitize_address setup_arch(char **cmdline_p) 301 { 302 init_mm.start_code = (unsigned long) _stext; 303 init_mm.end_code = (unsigned long) _etext; 304 init_mm.end_data = (unsigned long) _edata; 305 init_mm.brk = (unsigned long) _end; 306 307 *cmdline_p = boot_command_line; 308 309 /* 310 * If know now we are going to need KPTI then use non-global 311 * mappings from the start, avoiding the cost of rewriting 312 * everything later. 313 */ 314 arm64_use_ng_mappings = kaslr_requires_kpti(); 315 316 early_fixmap_init(); 317 early_ioremap_init(); 318 319 setup_machine_fdt(__fdt_pointer); 320 321 /* 322 * Initialise the static keys early as they may be enabled by the 323 * cpufeature code and early parameters. 324 */ 325 jump_label_init(); 326 parse_early_param(); 327 328 /* 329 * Unmask asynchronous aborts and fiq after bringing up possible 330 * earlycon. (Report possible System Errors once we can report this 331 * occurred). 332 */ 333 local_daif_restore(DAIF_PROCCTX_NOIRQ); 334 335 /* 336 * TTBR0 is only used for the identity mapping at this stage. Make it 337 * point to zero page to avoid speculatively fetching new entries. 338 */ 339 cpu_uninstall_idmap(); 340 341 xen_early_init(); 342 efi_init(); 343 344 if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0) 345 pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!"); 346 347 arm64_memblock_init(); 348 349 paging_init(); 350 351 acpi_table_upgrade(); 352 353 /* Parse the ACPI tables for possible boot-time configuration */ 354 acpi_boot_table_init(); 355 356 if (acpi_disabled) 357 unflatten_device_tree(); 358 359 bootmem_init(); 360 361 kasan_init(); 362 363 request_standard_resources(); 364 365 early_ioremap_reset(); 366 367 if (acpi_disabled) 368 psci_dt_init(); 369 else 370 psci_acpi_init(); 371 372 init_bootcpu_ops(); 373 smp_init_cpus(); 374 smp_build_mpidr_hash(); 375 376 /* Init percpu seeds for random tags after cpus are set up. */ 377 kasan_init_sw_tags(); 378 379 #ifdef CONFIG_ARM64_SW_TTBR0_PAN 380 /* 381 * Make sure init_thread_info.ttbr0 always generates translation 382 * faults in case uaccess_enable() is inadvertently called by the init 383 * thread. 384 */ 385 init_task.thread_info.ttbr0 = __pa_symbol(reserved_pg_dir); 386 #endif 387 388 if (boot_args[1] || boot_args[2] || boot_args[3]) { 389 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n" 390 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n" 391 "This indicates a broken bootloader or old kernel\n", 392 boot_args[1], boot_args[2], boot_args[3]); 393 } 394 } 395 396 static inline bool cpu_can_disable(unsigned int cpu) 397 { 398 #ifdef CONFIG_HOTPLUG_CPU 399 const struct cpu_operations *ops = get_cpu_ops(cpu); 400 401 if (ops && ops->cpu_can_disable) 402 return ops->cpu_can_disable(cpu); 403 #endif 404 return false; 405 } 406 407 static int __init topology_init(void) 408 { 409 int i; 410 411 for_each_online_node(i) 412 register_one_node(i); 413 414 for_each_possible_cpu(i) { 415 struct cpu *cpu = &per_cpu(cpu_data.cpu, i); 416 cpu->hotpluggable = cpu_can_disable(i); 417 register_cpu(cpu, i); 418 } 419 420 return 0; 421 } 422 subsys_initcall(topology_init); 423 424 static void dump_kernel_offset(void) 425 { 426 const unsigned long offset = kaslr_offset(); 427 428 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) { 429 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n", 430 offset, KIMAGE_VADDR); 431 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET); 432 } else { 433 pr_emerg("Kernel Offset: disabled\n"); 434 } 435 } 436 437 static int arm64_panic_block_dump(struct notifier_block *self, 438 unsigned long v, void *p) 439 { 440 dump_kernel_offset(); 441 dump_cpu_features(); 442 dump_mem_limit(); 443 return 0; 444 } 445 446 static struct notifier_block arm64_panic_block = { 447 .notifier_call = arm64_panic_block_dump 448 }; 449 450 static int __init register_arm64_panic_block(void) 451 { 452 atomic_notifier_chain_register(&panic_notifier_list, 453 &arm64_panic_block); 454 return 0; 455 } 456 device_initcall(register_arm64_panic_block); 457