xref: /openbmc/linux/arch/arm64/kernel/setup.c (revision 5f32c314)
1 /*
2  * Based on arch/arm/kernel/setup.c
3  *
4  * Copyright (C) 1995-2001 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/export.h>
21 #include <linux/kernel.h>
22 #include <linux/stddef.h>
23 #include <linux/ioport.h>
24 #include <linux/delay.h>
25 #include <linux/utsname.h>
26 #include <linux/initrd.h>
27 #include <linux/console.h>
28 #include <linux/bootmem.h>
29 #include <linux/seq_file.h>
30 #include <linux/screen_info.h>
31 #include <linux/init.h>
32 #include <linux/kexec.h>
33 #include <linux/crash_dump.h>
34 #include <linux/root_dev.h>
35 #include <linux/clk-provider.h>
36 #include <linux/cpu.h>
37 #include <linux/interrupt.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/proc_fs.h>
41 #include <linux/memblock.h>
42 #include <linux/of_fdt.h>
43 #include <linux/of_platform.h>
44 
45 #include <asm/cputype.h>
46 #include <asm/elf.h>
47 #include <asm/cputable.h>
48 #include <asm/cpu_ops.h>
49 #include <asm/sections.h>
50 #include <asm/setup.h>
51 #include <asm/smp_plat.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 #include <asm/traps.h>
55 #include <asm/memblock.h>
56 #include <asm/psci.h>
57 
58 unsigned int processor_id;
59 EXPORT_SYMBOL(processor_id);
60 
61 unsigned long elf_hwcap __read_mostly;
62 EXPORT_SYMBOL_GPL(elf_hwcap);
63 
64 #ifdef CONFIG_COMPAT
65 #define COMPAT_ELF_HWCAP_DEFAULT	\
66 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
67 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
68 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
69 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
70 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV)
71 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
72 #endif
73 
74 static const char *cpu_name;
75 static const char *machine_name;
76 phys_addr_t __fdt_pointer __initdata;
77 
78 /*
79  * Standard memory resources
80  */
81 static struct resource mem_res[] = {
82 	{
83 		.name = "Kernel code",
84 		.start = 0,
85 		.end = 0,
86 		.flags = IORESOURCE_MEM
87 	},
88 	{
89 		.name = "Kernel data",
90 		.start = 0,
91 		.end = 0,
92 		.flags = IORESOURCE_MEM
93 	}
94 };
95 
96 #define kernel_code mem_res[0]
97 #define kernel_data mem_res[1]
98 
99 void __init early_print(const char *str, ...)
100 {
101 	char buf[256];
102 	va_list ap;
103 
104 	va_start(ap, str);
105 	vsnprintf(buf, sizeof(buf), str, ap);
106 	va_end(ap);
107 
108 	printk("%s", buf);
109 }
110 
111 void __init smp_setup_processor_id(void)
112 {
113 	/*
114 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
115 	 * using percpu variable early, for example, lockdep will
116 	 * access percpu variable inside lock_release
117 	 */
118 	set_my_cpu_offset(0);
119 }
120 
121 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
122 {
123 	return phys_id == cpu_logical_map(cpu);
124 }
125 
126 struct mpidr_hash mpidr_hash;
127 #ifdef CONFIG_SMP
128 /**
129  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
130  *			  level in order to build a linear index from an
131  *			  MPIDR value. Resulting algorithm is a collision
132  *			  free hash carried out through shifting and ORing
133  */
134 static void __init smp_build_mpidr_hash(void)
135 {
136 	u32 i, affinity, fs[4], bits[4], ls;
137 	u64 mask = 0;
138 	/*
139 	 * Pre-scan the list of MPIDRS and filter out bits that do
140 	 * not contribute to affinity levels, ie they never toggle.
141 	 */
142 	for_each_possible_cpu(i)
143 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
144 	pr_debug("mask of set bits %#llx\n", mask);
145 	/*
146 	 * Find and stash the last and first bit set at all affinity levels to
147 	 * check how many bits are required to represent them.
148 	 */
149 	for (i = 0; i < 4; i++) {
150 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
151 		/*
152 		 * Find the MSB bit and LSB bits position
153 		 * to determine how many bits are required
154 		 * to express the affinity level.
155 		 */
156 		ls = fls(affinity);
157 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
158 		bits[i] = ls - fs[i];
159 	}
160 	/*
161 	 * An index can be created from the MPIDR_EL1 by isolating the
162 	 * significant bits at each affinity level and by shifting
163 	 * them in order to compress the 32 bits values space to a
164 	 * compressed set of values. This is equivalent to hashing
165 	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
166 	 * hash though not minimal since some levels might contain a number
167 	 * of CPUs that is not an exact power of 2 and their bit
168 	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
169 	 */
170 	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
171 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
172 	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
173 						(bits[1] + bits[0]);
174 	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
175 				  fs[3] - (bits[2] + bits[1] + bits[0]);
176 	mpidr_hash.mask = mask;
177 	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
178 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
179 		mpidr_hash.shift_aff[0],
180 		mpidr_hash.shift_aff[1],
181 		mpidr_hash.shift_aff[2],
182 		mpidr_hash.shift_aff[3],
183 		mpidr_hash.mask,
184 		mpidr_hash.bits);
185 	/*
186 	 * 4x is an arbitrary value used to warn on a hash table much bigger
187 	 * than expected on most systems.
188 	 */
189 	if (mpidr_hash_size() > 4 * num_possible_cpus())
190 		pr_warn("Large number of MPIDR hash buckets detected\n");
191 	__flush_dcache_area(&mpidr_hash, sizeof(struct mpidr_hash));
192 }
193 #endif
194 
195 static void __init setup_processor(void)
196 {
197 	struct cpu_info *cpu_info;
198 	u64 features, block;
199 
200 	cpu_info = lookup_processor_type(read_cpuid_id());
201 	if (!cpu_info) {
202 		printk("CPU configuration botched (ID %08x), unable to continue.\n",
203 		       read_cpuid_id());
204 		while (1);
205 	}
206 
207 	cpu_name = cpu_info->cpu_name;
208 
209 	printk("CPU: %s [%08x] revision %d\n",
210 	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15);
211 
212 	sprintf(init_utsname()->machine, ELF_PLATFORM);
213 	elf_hwcap = 0;
214 
215 	/*
216 	 * ID_AA64ISAR0_EL1 contains 4-bit wide signed feature blocks.
217 	 * The blocks we test below represent incremental functionality
218 	 * for non-negative values. Negative values are reserved.
219 	 */
220 	features = read_cpuid(ID_AA64ISAR0_EL1);
221 	block = (features >> 4) & 0xf;
222 	if (!(block & 0x8)) {
223 		switch (block) {
224 		default:
225 		case 2:
226 			elf_hwcap |= HWCAP_PMULL;
227 		case 1:
228 			elf_hwcap |= HWCAP_AES;
229 		case 0:
230 			break;
231 		}
232 	}
233 
234 	block = (features >> 8) & 0xf;
235 	if (block && !(block & 0x8))
236 		elf_hwcap |= HWCAP_SHA1;
237 
238 	block = (features >> 12) & 0xf;
239 	if (block && !(block & 0x8))
240 		elf_hwcap |= HWCAP_SHA2;
241 
242 	block = (features >> 16) & 0xf;
243 	if (block && !(block & 0x8))
244 		elf_hwcap |= HWCAP_CRC32;
245 }
246 
247 static void __init setup_machine_fdt(phys_addr_t dt_phys)
248 {
249 	if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys))) {
250 		early_print("\n"
251 			"Error: invalid device tree blob at physical address 0x%p (virtual address 0x%p)\n"
252 			"The dtb must be 8-byte aligned and passed in the first 512MB of memory\n"
253 			"\nPlease check your bootloader.\n",
254 			dt_phys, phys_to_virt(dt_phys));
255 
256 		while (true)
257 			cpu_relax();
258 	}
259 
260 	machine_name = of_flat_dt_get_machine_name();
261 }
262 
263 /*
264  * Limit the memory size that was specified via FDT.
265  */
266 static int __init early_mem(char *p)
267 {
268 	phys_addr_t limit;
269 
270 	if (!p)
271 		return 1;
272 
273 	limit = memparse(p, &p) & PAGE_MASK;
274 	pr_notice("Memory limited to %lldMB\n", limit >> 20);
275 
276 	memblock_enforce_memory_limit(limit);
277 
278 	return 0;
279 }
280 early_param("mem", early_mem);
281 
282 static void __init request_standard_resources(void)
283 {
284 	struct memblock_region *region;
285 	struct resource *res;
286 
287 	kernel_code.start   = virt_to_phys(_text);
288 	kernel_code.end     = virt_to_phys(_etext - 1);
289 	kernel_data.start   = virt_to_phys(_sdata);
290 	kernel_data.end     = virt_to_phys(_end - 1);
291 
292 	for_each_memblock(memory, region) {
293 		res = alloc_bootmem_low(sizeof(*res));
294 		res->name  = "System RAM";
295 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
296 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
297 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
298 
299 		request_resource(&iomem_resource, res);
300 
301 		if (kernel_code.start >= res->start &&
302 		    kernel_code.end <= res->end)
303 			request_resource(res, &kernel_code);
304 		if (kernel_data.start >= res->start &&
305 		    kernel_data.end <= res->end)
306 			request_resource(res, &kernel_data);
307 	}
308 }
309 
310 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
311 
312 void __init setup_arch(char **cmdline_p)
313 {
314 	/*
315 	 * Unmask asynchronous aborts early to catch possible system errors.
316 	 */
317 	local_async_enable();
318 
319 	setup_processor();
320 
321 	setup_machine_fdt(__fdt_pointer);
322 
323 	init_mm.start_code = (unsigned long) _text;
324 	init_mm.end_code   = (unsigned long) _etext;
325 	init_mm.end_data   = (unsigned long) _edata;
326 	init_mm.brk	   = (unsigned long) _end;
327 
328 	*cmdline_p = boot_command_line;
329 
330 	parse_early_param();
331 
332 	arm64_memblock_init();
333 
334 	paging_init();
335 	request_standard_resources();
336 
337 	unflatten_device_tree();
338 
339 	psci_init();
340 
341 	cpu_logical_map(0) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
342 	cpu_read_bootcpu_ops();
343 #ifdef CONFIG_SMP
344 	smp_init_cpus();
345 	smp_build_mpidr_hash();
346 #endif
347 
348 #ifdef CONFIG_VT
349 #if defined(CONFIG_VGA_CONSOLE)
350 	conswitchp = &vga_con;
351 #elif defined(CONFIG_DUMMY_CONSOLE)
352 	conswitchp = &dummy_con;
353 #endif
354 #endif
355 }
356 
357 static int __init arm64_device_init(void)
358 {
359 	of_clk_init(NULL);
360 	of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
361 	return 0;
362 }
363 arch_initcall(arm64_device_init);
364 
365 static DEFINE_PER_CPU(struct cpu, cpu_data);
366 
367 static int __init topology_init(void)
368 {
369 	int i;
370 
371 	for_each_possible_cpu(i) {
372 		struct cpu *cpu = &per_cpu(cpu_data, i);
373 		cpu->hotpluggable = 1;
374 		register_cpu(cpu, i);
375 	}
376 
377 	return 0;
378 }
379 subsys_initcall(topology_init);
380 
381 static const char *hwcap_str[] = {
382 	"fp",
383 	"asimd",
384 	"evtstrm",
385 	"aes",
386 	"pmull",
387 	"sha1",
388 	"sha2",
389 	"crc32",
390 	NULL
391 };
392 
393 static int c_show(struct seq_file *m, void *v)
394 {
395 	int i;
396 
397 	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
398 		   cpu_name, read_cpuid_id() & 15, ELF_PLATFORM);
399 
400 	for_each_online_cpu(i) {
401 		/*
402 		 * glibc reads /proc/cpuinfo to determine the number of
403 		 * online processors, looking for lines beginning with
404 		 * "processor".  Give glibc what it expects.
405 		 */
406 #ifdef CONFIG_SMP
407 		seq_printf(m, "processor\t: %d\n", i);
408 #endif
409 	}
410 
411 	/* dump out the processor features */
412 	seq_puts(m, "Features\t: ");
413 
414 	for (i = 0; hwcap_str[i]; i++)
415 		if (elf_hwcap & (1 << i))
416 			seq_printf(m, "%s ", hwcap_str[i]);
417 
418 	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
419 	seq_printf(m, "CPU architecture: AArch64\n");
420 	seq_printf(m, "CPU variant\t: 0x%x\n", (read_cpuid_id() >> 20) & 15);
421 	seq_printf(m, "CPU part\t: 0x%03x\n", (read_cpuid_id() >> 4) & 0xfff);
422 	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
423 
424 	seq_puts(m, "\n");
425 
426 	seq_printf(m, "Hardware\t: %s\n", machine_name);
427 
428 	return 0;
429 }
430 
431 static void *c_start(struct seq_file *m, loff_t *pos)
432 {
433 	return *pos < 1 ? (void *)1 : NULL;
434 }
435 
436 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
437 {
438 	++*pos;
439 	return NULL;
440 }
441 
442 static void c_stop(struct seq_file *m, void *v)
443 {
444 }
445 
446 const struct seq_operations cpuinfo_op = {
447 	.start	= c_start,
448 	.next	= c_next,
449 	.stop	= c_stop,
450 	.show	= c_show
451 };
452