xref: /openbmc/linux/arch/arm64/kernel/setup.c (revision 3d8c1a01)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/setup.c
4  *
5  * Copyright (C) 1995-2001 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/proc_fs.h>
27 #include <linux/memblock.h>
28 #include <linux/of_fdt.h>
29 #include <linux/efi.h>
30 #include <linux/psci.h>
31 #include <linux/sched/task.h>
32 #include <linux/mm.h>
33 
34 #include <asm/acpi.h>
35 #include <asm/fixmap.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/daifflags.h>
39 #include <asm/elf.h>
40 #include <asm/cpufeature.h>
41 #include <asm/cpu_ops.h>
42 #include <asm/kasan.h>
43 #include <asm/numa.h>
44 #include <asm/sections.h>
45 #include <asm/setup.h>
46 #include <asm/smp_plat.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlbflush.h>
49 #include <asm/traps.h>
50 #include <asm/efi.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/mmu_context.h>
53 
54 static int num_standard_resources;
55 static struct resource *standard_resources;
56 
57 phys_addr_t __fdt_pointer __initdata;
58 
59 /*
60  * Standard memory resources
61  */
62 static struct resource mem_res[] = {
63 	{
64 		.name = "Kernel code",
65 		.start = 0,
66 		.end = 0,
67 		.flags = IORESOURCE_SYSTEM_RAM
68 	},
69 	{
70 		.name = "Kernel data",
71 		.start = 0,
72 		.end = 0,
73 		.flags = IORESOURCE_SYSTEM_RAM
74 	}
75 };
76 
77 #define kernel_code mem_res[0]
78 #define kernel_data mem_res[1]
79 
80 /*
81  * The recorded values of x0 .. x3 upon kernel entry.
82  */
83 u64 __cacheline_aligned boot_args[4];
84 
85 void __init smp_setup_processor_id(void)
86 {
87 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
88 	set_cpu_logical_map(0, mpidr);
89 
90 	pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
91 		(unsigned long)mpidr, read_cpuid_id());
92 }
93 
94 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
95 {
96 	return phys_id == cpu_logical_map(cpu);
97 }
98 
99 struct mpidr_hash mpidr_hash;
100 /**
101  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
102  *			  level in order to build a linear index from an
103  *			  MPIDR value. Resulting algorithm is a collision
104  *			  free hash carried out through shifting and ORing
105  */
106 static void __init smp_build_mpidr_hash(void)
107 {
108 	u32 i, affinity, fs[4], bits[4], ls;
109 	u64 mask = 0;
110 	/*
111 	 * Pre-scan the list of MPIDRS and filter out bits that do
112 	 * not contribute to affinity levels, ie they never toggle.
113 	 */
114 	for_each_possible_cpu(i)
115 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
116 	pr_debug("mask of set bits %#llx\n", mask);
117 	/*
118 	 * Find and stash the last and first bit set at all affinity levels to
119 	 * check how many bits are required to represent them.
120 	 */
121 	for (i = 0; i < 4; i++) {
122 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
123 		/*
124 		 * Find the MSB bit and LSB bits position
125 		 * to determine how many bits are required
126 		 * to express the affinity level.
127 		 */
128 		ls = fls(affinity);
129 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
130 		bits[i] = ls - fs[i];
131 	}
132 	/*
133 	 * An index can be created from the MPIDR_EL1 by isolating the
134 	 * significant bits at each affinity level and by shifting
135 	 * them in order to compress the 32 bits values space to a
136 	 * compressed set of values. This is equivalent to hashing
137 	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
138 	 * hash though not minimal since some levels might contain a number
139 	 * of CPUs that is not an exact power of 2 and their bit
140 	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
141 	 */
142 	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
143 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
144 	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
145 						(bits[1] + bits[0]);
146 	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
147 				  fs[3] - (bits[2] + bits[1] + bits[0]);
148 	mpidr_hash.mask = mask;
149 	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
150 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
151 		mpidr_hash.shift_aff[0],
152 		mpidr_hash.shift_aff[1],
153 		mpidr_hash.shift_aff[2],
154 		mpidr_hash.shift_aff[3],
155 		mpidr_hash.mask,
156 		mpidr_hash.bits);
157 	/*
158 	 * 4x is an arbitrary value used to warn on a hash table much bigger
159 	 * than expected on most systems.
160 	 */
161 	if (mpidr_hash_size() > 4 * num_possible_cpus())
162 		pr_warn("Large number of MPIDR hash buckets detected\n");
163 }
164 
165 static void *early_fdt_ptr __initdata;
166 
167 void __init *get_early_fdt_ptr(void)
168 {
169 	return early_fdt_ptr;
170 }
171 
172 asmlinkage void __init early_fdt_map(u64 dt_phys)
173 {
174 	int fdt_size;
175 
176 	early_fixmap_init();
177 	early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
178 }
179 
180 static void __init setup_machine_fdt(phys_addr_t dt_phys)
181 {
182 	int size;
183 	void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
184 	const char *name;
185 
186 	if (dt_virt)
187 		memblock_reserve(dt_phys, size);
188 
189 	if (!dt_virt || !early_init_dt_scan(dt_virt)) {
190 		pr_crit("\n"
191 			"Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
192 			"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
193 			"\nPlease check your bootloader.",
194 			&dt_phys, dt_virt);
195 
196 		while (true)
197 			cpu_relax();
198 	}
199 
200 	/* Early fixups are done, map the FDT as read-only now */
201 	fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
202 
203 	name = of_flat_dt_get_machine_name();
204 	if (!name)
205 		return;
206 
207 	pr_info("Machine model: %s\n", name);
208 	dump_stack_set_arch_desc("%s (DT)", name);
209 }
210 
211 static void __init request_standard_resources(void)
212 {
213 	struct memblock_region *region;
214 	struct resource *res;
215 	unsigned long i = 0;
216 	size_t res_size;
217 
218 	kernel_code.start   = __pa_symbol(_stext);
219 	kernel_code.end     = __pa_symbol(__init_begin - 1);
220 	kernel_data.start   = __pa_symbol(_sdata);
221 	kernel_data.end     = __pa_symbol(_end - 1);
222 
223 	num_standard_resources = memblock.memory.cnt;
224 	res_size = num_standard_resources * sizeof(*standard_resources);
225 	standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
226 	if (!standard_resources)
227 		panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
228 
229 	for_each_mem_region(region) {
230 		res = &standard_resources[i++];
231 		if (memblock_is_nomap(region)) {
232 			res->name  = "reserved";
233 			res->flags = IORESOURCE_MEM;
234 		} else {
235 			res->name  = "System RAM";
236 			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
237 		}
238 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
239 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
240 
241 		request_resource(&iomem_resource, res);
242 
243 		if (kernel_code.start >= res->start &&
244 		    kernel_code.end <= res->end)
245 			request_resource(res, &kernel_code);
246 		if (kernel_data.start >= res->start &&
247 		    kernel_data.end <= res->end)
248 			request_resource(res, &kernel_data);
249 #ifdef CONFIG_KEXEC_CORE
250 		/* Userspace will find "Crash kernel" region in /proc/iomem. */
251 		if (crashk_res.end && crashk_res.start >= res->start &&
252 		    crashk_res.end <= res->end)
253 			request_resource(res, &crashk_res);
254 #endif
255 	}
256 }
257 
258 static int __init reserve_memblock_reserved_regions(void)
259 {
260 	u64 i, j;
261 
262 	for (i = 0; i < num_standard_resources; ++i) {
263 		struct resource *mem = &standard_resources[i];
264 		phys_addr_t r_start, r_end, mem_size = resource_size(mem);
265 
266 		if (!memblock_is_region_reserved(mem->start, mem_size))
267 			continue;
268 
269 		for_each_reserved_mem_range(j, &r_start, &r_end) {
270 			resource_size_t start, end;
271 
272 			start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
273 			end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
274 
275 			if (start > mem->end || end < mem->start)
276 				continue;
277 
278 			reserve_region_with_split(mem, start, end, "reserved");
279 		}
280 	}
281 
282 	return 0;
283 }
284 arch_initcall(reserve_memblock_reserved_regions);
285 
286 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
287 
288 u64 cpu_logical_map(unsigned int cpu)
289 {
290 	return __cpu_logical_map[cpu];
291 }
292 
293 void __init __no_sanitize_address setup_arch(char **cmdline_p)
294 {
295 	init_mm.start_code = (unsigned long) _stext;
296 	init_mm.end_code   = (unsigned long) _etext;
297 	init_mm.end_data   = (unsigned long) _edata;
298 	init_mm.brk	   = (unsigned long) _end;
299 
300 	*cmdline_p = boot_command_line;
301 
302 	/*
303 	 * If know now we are going to need KPTI then use non-global
304 	 * mappings from the start, avoiding the cost of rewriting
305 	 * everything later.
306 	 */
307 	arm64_use_ng_mappings = kaslr_requires_kpti();
308 
309 	early_fixmap_init();
310 	early_ioremap_init();
311 
312 	setup_machine_fdt(__fdt_pointer);
313 
314 	/*
315 	 * Initialise the static keys early as they may be enabled by the
316 	 * cpufeature code and early parameters.
317 	 */
318 	jump_label_init();
319 	parse_early_param();
320 
321 	/*
322 	 * Unmask asynchronous aborts and fiq after bringing up possible
323 	 * earlycon. (Report possible System Errors once we can report this
324 	 * occurred).
325 	 */
326 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
327 
328 	/*
329 	 * TTBR0 is only used for the identity mapping at this stage. Make it
330 	 * point to zero page to avoid speculatively fetching new entries.
331 	 */
332 	cpu_uninstall_idmap();
333 
334 	xen_early_init();
335 	efi_init();
336 
337 	if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
338 	     pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
339 
340 	arm64_memblock_init();
341 
342 	paging_init();
343 
344 	acpi_table_upgrade();
345 
346 	/* Parse the ACPI tables for possible boot-time configuration */
347 	acpi_boot_table_init();
348 
349 	if (acpi_disabled)
350 		unflatten_device_tree();
351 
352 	bootmem_init();
353 
354 	kasan_init();
355 
356 	request_standard_resources();
357 
358 	early_ioremap_reset();
359 
360 	if (acpi_disabled)
361 		psci_dt_init();
362 	else
363 		psci_acpi_init();
364 
365 	init_bootcpu_ops();
366 	smp_init_cpus();
367 	smp_build_mpidr_hash();
368 
369 	/* Init percpu seeds for random tags after cpus are set up. */
370 	kasan_init_sw_tags();
371 
372 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
373 	/*
374 	 * Make sure init_thread_info.ttbr0 always generates translation
375 	 * faults in case uaccess_enable() is inadvertently called by the init
376 	 * thread.
377 	 */
378 	init_task.thread_info.ttbr0 = __pa_symbol(reserved_pg_dir);
379 #endif
380 
381 	if (boot_args[1] || boot_args[2] || boot_args[3]) {
382 		pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
383 			"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
384 			"This indicates a broken bootloader or old kernel\n",
385 			boot_args[1], boot_args[2], boot_args[3]);
386 	}
387 }
388 
389 static inline bool cpu_can_disable(unsigned int cpu)
390 {
391 #ifdef CONFIG_HOTPLUG_CPU
392 	const struct cpu_operations *ops = get_cpu_ops(cpu);
393 
394 	if (ops && ops->cpu_can_disable)
395 		return ops->cpu_can_disable(cpu);
396 #endif
397 	return false;
398 }
399 
400 static int __init topology_init(void)
401 {
402 	int i;
403 
404 	for_each_online_node(i)
405 		register_one_node(i);
406 
407 	for_each_possible_cpu(i) {
408 		struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
409 		cpu->hotpluggable = cpu_can_disable(i);
410 		register_cpu(cpu, i);
411 	}
412 
413 	return 0;
414 }
415 subsys_initcall(topology_init);
416 
417 static void dump_kernel_offset(void)
418 {
419 	const unsigned long offset = kaslr_offset();
420 
421 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
422 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
423 			 offset, KIMAGE_VADDR);
424 		pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
425 	} else {
426 		pr_emerg("Kernel Offset: disabled\n");
427 	}
428 }
429 
430 static int arm64_panic_block_dump(struct notifier_block *self,
431 				  unsigned long v, void *p)
432 {
433 	dump_kernel_offset();
434 	dump_cpu_features();
435 	dump_mem_limit();
436 	return 0;
437 }
438 
439 static struct notifier_block arm64_panic_block = {
440 	.notifier_call = arm64_panic_block_dump
441 };
442 
443 static int __init register_arm64_panic_block(void)
444 {
445 	atomic_notifier_chain_register(&panic_notifier_list,
446 				       &arm64_panic_block);
447 	return 0;
448 }
449 device_initcall(register_arm64_panic_block);
450