1 /* 2 * Based on arch/arm/kernel/setup.c 3 * 4 * Copyright (C) 1995-2001 Russell King 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/export.h> 21 #include <linux/kernel.h> 22 #include <linux/stddef.h> 23 #include <linux/ioport.h> 24 #include <linux/delay.h> 25 #include <linux/utsname.h> 26 #include <linux/initrd.h> 27 #include <linux/console.h> 28 #include <linux/cache.h> 29 #include <linux/bootmem.h> 30 #include <linux/seq_file.h> 31 #include <linux/screen_info.h> 32 #include <linux/init.h> 33 #include <linux/kexec.h> 34 #include <linux/crash_dump.h> 35 #include <linux/root_dev.h> 36 #include <linux/clk-provider.h> 37 #include <linux/cpu.h> 38 #include <linux/interrupt.h> 39 #include <linux/smp.h> 40 #include <linux/fs.h> 41 #include <linux/proc_fs.h> 42 #include <linux/memblock.h> 43 #include <linux/of_fdt.h> 44 #include <linux/of_platform.h> 45 #include <linux/efi.h> 46 47 #include <asm/fixmap.h> 48 #include <asm/cputype.h> 49 #include <asm/elf.h> 50 #include <asm/cputable.h> 51 #include <asm/cpu_ops.h> 52 #include <asm/sections.h> 53 #include <asm/setup.h> 54 #include <asm/smp_plat.h> 55 #include <asm/cacheflush.h> 56 #include <asm/tlbflush.h> 57 #include <asm/traps.h> 58 #include <asm/memblock.h> 59 #include <asm/psci.h> 60 #include <asm/efi.h> 61 62 unsigned int processor_id; 63 EXPORT_SYMBOL(processor_id); 64 65 unsigned long elf_hwcap __read_mostly; 66 EXPORT_SYMBOL_GPL(elf_hwcap); 67 68 #ifdef CONFIG_COMPAT 69 #define COMPAT_ELF_HWCAP_DEFAULT \ 70 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ 71 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ 72 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\ 73 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\ 74 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV) 75 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; 76 unsigned int compat_elf_hwcap2 __read_mostly; 77 #endif 78 79 static const char *cpu_name; 80 static const char *machine_name; 81 phys_addr_t __fdt_pointer __initdata; 82 83 /* 84 * Standard memory resources 85 */ 86 static struct resource mem_res[] = { 87 { 88 .name = "Kernel code", 89 .start = 0, 90 .end = 0, 91 .flags = IORESOURCE_MEM 92 }, 93 { 94 .name = "Kernel data", 95 .start = 0, 96 .end = 0, 97 .flags = IORESOURCE_MEM 98 } 99 }; 100 101 #define kernel_code mem_res[0] 102 #define kernel_data mem_res[1] 103 104 void __init early_print(const char *str, ...) 105 { 106 char buf[256]; 107 va_list ap; 108 109 va_start(ap, str); 110 vsnprintf(buf, sizeof(buf), str, ap); 111 va_end(ap); 112 113 printk("%s", buf); 114 } 115 116 void __init smp_setup_processor_id(void) 117 { 118 /* 119 * clear __my_cpu_offset on boot CPU to avoid hang caused by 120 * using percpu variable early, for example, lockdep will 121 * access percpu variable inside lock_release 122 */ 123 set_my_cpu_offset(0); 124 } 125 126 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 127 { 128 return phys_id == cpu_logical_map(cpu); 129 } 130 131 struct mpidr_hash mpidr_hash; 132 #ifdef CONFIG_SMP 133 /** 134 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity 135 * level in order to build a linear index from an 136 * MPIDR value. Resulting algorithm is a collision 137 * free hash carried out through shifting and ORing 138 */ 139 static void __init smp_build_mpidr_hash(void) 140 { 141 u32 i, affinity, fs[4], bits[4], ls; 142 u64 mask = 0; 143 /* 144 * Pre-scan the list of MPIDRS and filter out bits that do 145 * not contribute to affinity levels, ie they never toggle. 146 */ 147 for_each_possible_cpu(i) 148 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); 149 pr_debug("mask of set bits %#llx\n", mask); 150 /* 151 * Find and stash the last and first bit set at all affinity levels to 152 * check how many bits are required to represent them. 153 */ 154 for (i = 0; i < 4; i++) { 155 affinity = MPIDR_AFFINITY_LEVEL(mask, i); 156 /* 157 * Find the MSB bit and LSB bits position 158 * to determine how many bits are required 159 * to express the affinity level. 160 */ 161 ls = fls(affinity); 162 fs[i] = affinity ? ffs(affinity) - 1 : 0; 163 bits[i] = ls - fs[i]; 164 } 165 /* 166 * An index can be created from the MPIDR_EL1 by isolating the 167 * significant bits at each affinity level and by shifting 168 * them in order to compress the 32 bits values space to a 169 * compressed set of values. This is equivalent to hashing 170 * the MPIDR_EL1 through shifting and ORing. It is a collision free 171 * hash though not minimal since some levels might contain a number 172 * of CPUs that is not an exact power of 2 and their bit 173 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}. 174 */ 175 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0]; 176 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0]; 177 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] - 178 (bits[1] + bits[0]); 179 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) + 180 fs[3] - (bits[2] + bits[1] + bits[0]); 181 mpidr_hash.mask = mask; 182 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0]; 183 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n", 184 mpidr_hash.shift_aff[0], 185 mpidr_hash.shift_aff[1], 186 mpidr_hash.shift_aff[2], 187 mpidr_hash.shift_aff[3], 188 mpidr_hash.mask, 189 mpidr_hash.bits); 190 /* 191 * 4x is an arbitrary value used to warn on a hash table much bigger 192 * than expected on most systems. 193 */ 194 if (mpidr_hash_size() > 4 * num_possible_cpus()) 195 pr_warn("Large number of MPIDR hash buckets detected\n"); 196 __flush_dcache_area(&mpidr_hash, sizeof(struct mpidr_hash)); 197 } 198 #endif 199 200 static void __init setup_processor(void) 201 { 202 struct cpu_info *cpu_info; 203 u64 features, block; 204 u32 cwg; 205 int cls; 206 207 cpu_info = lookup_processor_type(read_cpuid_id()); 208 if (!cpu_info) { 209 printk("CPU configuration botched (ID %08x), unable to continue.\n", 210 read_cpuid_id()); 211 while (1); 212 } 213 214 cpu_name = cpu_info->cpu_name; 215 216 printk("CPU: %s [%08x] revision %d\n", 217 cpu_name, read_cpuid_id(), read_cpuid_id() & 15); 218 219 sprintf(init_utsname()->machine, ELF_PLATFORM); 220 elf_hwcap = 0; 221 222 /* 223 * Check for sane CTR_EL0.CWG value. 224 */ 225 cwg = cache_type_cwg(); 226 cls = cache_line_size(); 227 if (!cwg) 228 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n", 229 cls); 230 if (L1_CACHE_BYTES < cls) 231 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n", 232 L1_CACHE_BYTES, cls); 233 234 /* 235 * ID_AA64ISAR0_EL1 contains 4-bit wide signed feature blocks. 236 * The blocks we test below represent incremental functionality 237 * for non-negative values. Negative values are reserved. 238 */ 239 features = read_cpuid(ID_AA64ISAR0_EL1); 240 block = (features >> 4) & 0xf; 241 if (!(block & 0x8)) { 242 switch (block) { 243 default: 244 case 2: 245 elf_hwcap |= HWCAP_PMULL; 246 case 1: 247 elf_hwcap |= HWCAP_AES; 248 case 0: 249 break; 250 } 251 } 252 253 block = (features >> 8) & 0xf; 254 if (block && !(block & 0x8)) 255 elf_hwcap |= HWCAP_SHA1; 256 257 block = (features >> 12) & 0xf; 258 if (block && !(block & 0x8)) 259 elf_hwcap |= HWCAP_SHA2; 260 261 block = (features >> 16) & 0xf; 262 if (block && !(block & 0x8)) 263 elf_hwcap |= HWCAP_CRC32; 264 265 #ifdef CONFIG_COMPAT 266 /* 267 * ID_ISAR5_EL1 carries similar information as above, but pertaining to 268 * the Aarch32 32-bit execution state. 269 */ 270 features = read_cpuid(ID_ISAR5_EL1); 271 block = (features >> 4) & 0xf; 272 if (!(block & 0x8)) { 273 switch (block) { 274 default: 275 case 2: 276 compat_elf_hwcap2 |= COMPAT_HWCAP2_PMULL; 277 case 1: 278 compat_elf_hwcap2 |= COMPAT_HWCAP2_AES; 279 case 0: 280 break; 281 } 282 } 283 284 block = (features >> 8) & 0xf; 285 if (block && !(block & 0x8)) 286 compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA1; 287 288 block = (features >> 12) & 0xf; 289 if (block && !(block & 0x8)) 290 compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA2; 291 292 block = (features >> 16) & 0xf; 293 if (block && !(block & 0x8)) 294 compat_elf_hwcap2 |= COMPAT_HWCAP2_CRC32; 295 #endif 296 } 297 298 static void __init setup_machine_fdt(phys_addr_t dt_phys) 299 { 300 if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys))) { 301 early_print("\n" 302 "Error: invalid device tree blob at physical address 0x%p (virtual address 0x%p)\n" 303 "The dtb must be 8-byte aligned and passed in the first 512MB of memory\n" 304 "\nPlease check your bootloader.\n", 305 dt_phys, phys_to_virt(dt_phys)); 306 307 while (true) 308 cpu_relax(); 309 } 310 311 machine_name = of_flat_dt_get_machine_name(); 312 } 313 314 /* 315 * Limit the memory size that was specified via FDT. 316 */ 317 static int __init early_mem(char *p) 318 { 319 phys_addr_t limit; 320 321 if (!p) 322 return 1; 323 324 limit = memparse(p, &p) & PAGE_MASK; 325 pr_notice("Memory limited to %lldMB\n", limit >> 20); 326 327 memblock_enforce_memory_limit(limit); 328 329 return 0; 330 } 331 early_param("mem", early_mem); 332 333 static void __init request_standard_resources(void) 334 { 335 struct memblock_region *region; 336 struct resource *res; 337 338 kernel_code.start = virt_to_phys(_text); 339 kernel_code.end = virt_to_phys(_etext - 1); 340 kernel_data.start = virt_to_phys(_sdata); 341 kernel_data.end = virt_to_phys(_end - 1); 342 343 for_each_memblock(memory, region) { 344 res = alloc_bootmem_low(sizeof(*res)); 345 res->name = "System RAM"; 346 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); 347 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; 348 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 349 350 request_resource(&iomem_resource, res); 351 352 if (kernel_code.start >= res->start && 353 kernel_code.end <= res->end) 354 request_resource(res, &kernel_code); 355 if (kernel_data.start >= res->start && 356 kernel_data.end <= res->end) 357 request_resource(res, &kernel_data); 358 } 359 } 360 361 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; 362 363 void __init setup_arch(char **cmdline_p) 364 { 365 /* 366 * Unmask asynchronous aborts early to catch possible system errors. 367 */ 368 local_async_enable(); 369 370 setup_processor(); 371 372 setup_machine_fdt(__fdt_pointer); 373 374 init_mm.start_code = (unsigned long) _text; 375 init_mm.end_code = (unsigned long) _etext; 376 init_mm.end_data = (unsigned long) _edata; 377 init_mm.brk = (unsigned long) _end; 378 379 *cmdline_p = boot_command_line; 380 381 early_ioremap_init(); 382 383 parse_early_param(); 384 385 efi_init(); 386 arm64_memblock_init(); 387 388 paging_init(); 389 request_standard_resources(); 390 391 efi_idmap_init(); 392 393 unflatten_device_tree(); 394 395 psci_init(); 396 397 cpu_logical_map(0) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 398 cpu_read_bootcpu_ops(); 399 #ifdef CONFIG_SMP 400 smp_init_cpus(); 401 smp_build_mpidr_hash(); 402 #endif 403 404 #ifdef CONFIG_VT 405 #if defined(CONFIG_VGA_CONSOLE) 406 conswitchp = &vga_con; 407 #elif defined(CONFIG_DUMMY_CONSOLE) 408 conswitchp = &dummy_con; 409 #endif 410 #endif 411 } 412 413 static int __init arm64_device_init(void) 414 { 415 of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL); 416 return 0; 417 } 418 arch_initcall_sync(arm64_device_init); 419 420 static DEFINE_PER_CPU(struct cpu, cpu_data); 421 422 static int __init topology_init(void) 423 { 424 int i; 425 426 for_each_possible_cpu(i) { 427 struct cpu *cpu = &per_cpu(cpu_data, i); 428 cpu->hotpluggable = 1; 429 register_cpu(cpu, i); 430 } 431 432 return 0; 433 } 434 subsys_initcall(topology_init); 435 436 static const char *hwcap_str[] = { 437 "fp", 438 "asimd", 439 "evtstrm", 440 "aes", 441 "pmull", 442 "sha1", 443 "sha2", 444 "crc32", 445 NULL 446 }; 447 448 static int c_show(struct seq_file *m, void *v) 449 { 450 int i; 451 452 seq_printf(m, "Processor\t: %s rev %d (%s)\n", 453 cpu_name, read_cpuid_id() & 15, ELF_PLATFORM); 454 455 for_each_online_cpu(i) { 456 /* 457 * glibc reads /proc/cpuinfo to determine the number of 458 * online processors, looking for lines beginning with 459 * "processor". Give glibc what it expects. 460 */ 461 #ifdef CONFIG_SMP 462 seq_printf(m, "processor\t: %d\n", i); 463 #endif 464 } 465 466 /* dump out the processor features */ 467 seq_puts(m, "Features\t: "); 468 469 for (i = 0; hwcap_str[i]; i++) 470 if (elf_hwcap & (1 << i)) 471 seq_printf(m, "%s ", hwcap_str[i]); 472 473 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24); 474 seq_printf(m, "CPU architecture: AArch64\n"); 475 seq_printf(m, "CPU variant\t: 0x%x\n", (read_cpuid_id() >> 20) & 15); 476 seq_printf(m, "CPU part\t: 0x%03x\n", (read_cpuid_id() >> 4) & 0xfff); 477 seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15); 478 479 seq_puts(m, "\n"); 480 481 seq_printf(m, "Hardware\t: %s\n", machine_name); 482 483 return 0; 484 } 485 486 static void *c_start(struct seq_file *m, loff_t *pos) 487 { 488 return *pos < 1 ? (void *)1 : NULL; 489 } 490 491 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 492 { 493 ++*pos; 494 return NULL; 495 } 496 497 static void c_stop(struct seq_file *m, void *v) 498 { 499 } 500 501 const struct seq_operations cpuinfo_op = { 502 .start = c_start, 503 .next = c_next, 504 .stop = c_stop, 505 .show = c_show 506 }; 507