xref: /openbmc/linux/arch/arm64/kernel/sdei.c (revision c000c4f1)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2017 Arm Ltd.
3 #define pr_fmt(fmt) "sdei: " fmt
4 
5 #include <linux/arm_sdei.h>
6 #include <linux/hardirq.h>
7 #include <linux/irqflags.h>
8 #include <linux/sched/task_stack.h>
9 #include <linux/uaccess.h>
10 
11 #include <asm/alternative.h>
12 #include <asm/kprobes.h>
13 #include <asm/mmu.h>
14 #include <asm/ptrace.h>
15 #include <asm/sections.h>
16 #include <asm/sysreg.h>
17 #include <asm/vmap_stack.h>
18 
19 unsigned long sdei_exit_mode;
20 
21 /*
22  * VMAP'd stacks checking for stack overflow on exception using sp as a scratch
23  * register, meaning SDEI has to switch to its own stack. We need two stacks as
24  * a critical event may interrupt a normal event that has just taken a
25  * synchronous exception, and is using sp as scratch register. For a critical
26  * event interrupting a normal event, we can't reliably tell if we were on the
27  * sdei stack.
28  * For now, we allocate stacks when the driver is probed.
29  */
30 DECLARE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
31 DECLARE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
32 
33 #ifdef CONFIG_VMAP_STACK
34 DEFINE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
35 DEFINE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
36 #endif
37 
38 static void _free_sdei_stack(unsigned long * __percpu *ptr, int cpu)
39 {
40 	unsigned long *p;
41 
42 	p = per_cpu(*ptr, cpu);
43 	if (p) {
44 		per_cpu(*ptr, cpu) = NULL;
45 		vfree(p);
46 	}
47 }
48 
49 static void free_sdei_stacks(void)
50 {
51 	int cpu;
52 
53 	for_each_possible_cpu(cpu) {
54 		_free_sdei_stack(&sdei_stack_normal_ptr, cpu);
55 		_free_sdei_stack(&sdei_stack_critical_ptr, cpu);
56 	}
57 }
58 
59 static int _init_sdei_stack(unsigned long * __percpu *ptr, int cpu)
60 {
61 	unsigned long *p;
62 
63 	p = arch_alloc_vmap_stack(SDEI_STACK_SIZE, cpu_to_node(cpu));
64 	if (!p)
65 		return -ENOMEM;
66 	per_cpu(*ptr, cpu) = p;
67 
68 	return 0;
69 }
70 
71 static int init_sdei_stacks(void)
72 {
73 	int cpu;
74 	int err = 0;
75 
76 	for_each_possible_cpu(cpu) {
77 		err = _init_sdei_stack(&sdei_stack_normal_ptr, cpu);
78 		if (err)
79 			break;
80 		err = _init_sdei_stack(&sdei_stack_critical_ptr, cpu);
81 		if (err)
82 			break;
83 	}
84 
85 	if (err)
86 		free_sdei_stacks();
87 
88 	return err;
89 }
90 
91 bool _on_sdei_stack(unsigned long sp)
92 {
93 	unsigned long low, high;
94 
95 	if (!IS_ENABLED(CONFIG_VMAP_STACK))
96 		return false;
97 
98 	low = (unsigned long)raw_cpu_read(sdei_stack_critical_ptr);
99 	high = low + SDEI_STACK_SIZE;
100 
101 	if (low <= sp && sp < high)
102 		return true;
103 
104 	low = (unsigned long)raw_cpu_read(sdei_stack_normal_ptr);
105 	high = low + SDEI_STACK_SIZE;
106 
107 	return (low <= sp && sp < high);
108 }
109 
110 unsigned long sdei_arch_get_entry_point(int conduit)
111 {
112 	/*
113 	 * SDEI works between adjacent exception levels. If we booted at EL1 we
114 	 * assume a hypervisor is marshalling events. If we booted at EL2 and
115 	 * dropped to EL1 because we don't support VHE, then we can't support
116 	 * SDEI.
117 	 */
118 	if (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
119 		pr_err("Not supported on this hardware/boot configuration\n");
120 		return 0;
121 	}
122 
123 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
124 		if (init_sdei_stacks())
125 			return 0;
126 	}
127 
128 	sdei_exit_mode = (conduit == CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC;
129 
130 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
131 	if (arm64_kernel_unmapped_at_el0()) {
132 		unsigned long offset;
133 
134 		offset = (unsigned long)__sdei_asm_entry_trampoline -
135 			 (unsigned long)__entry_tramp_text_start;
136 		return TRAMP_VALIAS + offset;
137 	} else
138 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
139 		return (unsigned long)__sdei_asm_handler;
140 
141 }
142 
143 /*
144  * __sdei_handler() returns one of:
145  *  SDEI_EV_HANDLED -  success, return to the interrupted context.
146  *  SDEI_EV_FAILED  -  failure, return this error code to firmare.
147  *  virtual-address -  success, return to this address.
148  */
149 static __kprobes unsigned long _sdei_handler(struct pt_regs *regs,
150 					     struct sdei_registered_event *arg)
151 {
152 	u32 mode;
153 	int i, err = 0;
154 	int clobbered_registers = 4;
155 	u64 elr = read_sysreg(elr_el1);
156 	u32 kernel_mode = read_sysreg(CurrentEL) | 1;	/* +SPSel */
157 	unsigned long vbar = read_sysreg(vbar_el1);
158 
159 	if (arm64_kernel_unmapped_at_el0())
160 		clobbered_registers++;
161 
162 	/* Retrieve the missing registers values */
163 	for (i = 0; i < clobbered_registers; i++) {
164 		/* from within the handler, this call always succeeds */
165 		sdei_api_event_context(i, &regs->regs[i]);
166 	}
167 
168 	/*
169 	 * We didn't take an exception to get here, set PAN. UAO will be cleared
170 	 * by sdei_event_handler()s set_fs(USER_DS) call.
171 	 */
172 	__uaccess_enable_hw_pan();
173 
174 	err = sdei_event_handler(regs, arg);
175 	if (err)
176 		return SDEI_EV_FAILED;
177 
178 	if (elr != read_sysreg(elr_el1)) {
179 		/*
180 		 * We took a synchronous exception from the SDEI handler.
181 		 * This could deadlock, and if you interrupt KVM it will
182 		 * hyp-panic instead.
183 		 */
184 		pr_warn("unsafe: exception during handler\n");
185 	}
186 
187 	mode = regs->pstate & (PSR_MODE32_BIT | PSR_MODE_MASK);
188 
189 	/*
190 	 * If we interrupted the kernel with interrupts masked, we always go
191 	 * back to wherever we came from.
192 	 */
193 	if (mode == kernel_mode && !interrupts_enabled(regs))
194 		return SDEI_EV_HANDLED;
195 
196 	/*
197 	 * Otherwise, we pretend this was an IRQ. This lets user space tasks
198 	 * receive signals before we return to them, and KVM to invoke it's
199 	 * world switch to do the same.
200 	 *
201 	 * See DDI0487B.a Table D1-7 'Vector offsets from vector table base
202 	 * address'.
203 	 */
204 	if (mode == kernel_mode)
205 		return vbar + 0x280;
206 	else if (mode & PSR_MODE32_BIT)
207 		return vbar + 0x680;
208 
209 	return vbar + 0x480;
210 }
211 
212 
213 asmlinkage __kprobes notrace unsigned long
214 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
215 {
216 	unsigned long ret;
217 	bool do_nmi_exit = false;
218 
219 	/*
220 	 * nmi_enter() deals with printk() re-entrance and use of RCU when
221 	 * RCU believed this CPU was idle. Because critical events can
222 	 * interrupt normal events, we may already be in_nmi().
223 	 */
224 	if (!in_nmi()) {
225 		nmi_enter();
226 		do_nmi_exit = true;
227 	}
228 
229 	ret = _sdei_handler(regs, arg);
230 
231 	if (do_nmi_exit)
232 		nmi_exit();
233 
234 	return ret;
235 }
236