xref: /openbmc/linux/arch/arm64/kernel/sdei.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2017 Arm Ltd.
3 #define pr_fmt(fmt) "sdei: " fmt
4 
5 #include <linux/arm_sdei.h>
6 #include <linux/hardirq.h>
7 #include <linux/irqflags.h>
8 #include <linux/sched/task_stack.h>
9 #include <linux/uaccess.h>
10 
11 #include <asm/alternative.h>
12 #include <asm/kprobes.h>
13 #include <asm/mmu.h>
14 #include <asm/ptrace.h>
15 #include <asm/sections.h>
16 #include <asm/stacktrace.h>
17 #include <asm/sysreg.h>
18 #include <asm/vmap_stack.h>
19 
20 unsigned long sdei_exit_mode;
21 
22 /*
23  * VMAP'd stacks checking for stack overflow on exception using sp as a scratch
24  * register, meaning SDEI has to switch to its own stack. We need two stacks as
25  * a critical event may interrupt a normal event that has just taken a
26  * synchronous exception, and is using sp as scratch register. For a critical
27  * event interrupting a normal event, we can't reliably tell if we were on the
28  * sdei stack.
29  * For now, we allocate stacks when the driver is probed.
30  */
31 DECLARE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
32 DECLARE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
33 
34 #ifdef CONFIG_VMAP_STACK
35 DEFINE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
36 DEFINE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
37 #endif
38 
39 static void _free_sdei_stack(unsigned long * __percpu *ptr, int cpu)
40 {
41 	unsigned long *p;
42 
43 	p = per_cpu(*ptr, cpu);
44 	if (p) {
45 		per_cpu(*ptr, cpu) = NULL;
46 		vfree(p);
47 	}
48 }
49 
50 static void free_sdei_stacks(void)
51 {
52 	int cpu;
53 
54 	for_each_possible_cpu(cpu) {
55 		_free_sdei_stack(&sdei_stack_normal_ptr, cpu);
56 		_free_sdei_stack(&sdei_stack_critical_ptr, cpu);
57 	}
58 }
59 
60 static int _init_sdei_stack(unsigned long * __percpu *ptr, int cpu)
61 {
62 	unsigned long *p;
63 
64 	p = arch_alloc_vmap_stack(SDEI_STACK_SIZE, cpu_to_node(cpu));
65 	if (!p)
66 		return -ENOMEM;
67 	per_cpu(*ptr, cpu) = p;
68 
69 	return 0;
70 }
71 
72 static int init_sdei_stacks(void)
73 {
74 	int cpu;
75 	int err = 0;
76 
77 	for_each_possible_cpu(cpu) {
78 		err = _init_sdei_stack(&sdei_stack_normal_ptr, cpu);
79 		if (err)
80 			break;
81 		err = _init_sdei_stack(&sdei_stack_critical_ptr, cpu);
82 		if (err)
83 			break;
84 	}
85 
86 	if (err)
87 		free_sdei_stacks();
88 
89 	return err;
90 }
91 
92 static bool on_sdei_normal_stack(unsigned long sp, struct stack_info *info)
93 {
94 	unsigned long low = (unsigned long)raw_cpu_read(sdei_stack_normal_ptr);
95 	unsigned long high = low + SDEI_STACK_SIZE;
96 
97 	if (sp < low || sp >= high)
98 		return false;
99 
100 	if (info) {
101 		info->low = low;
102 		info->high = high;
103 		info->type = STACK_TYPE_SDEI_NORMAL;
104 	}
105 
106 	return true;
107 }
108 
109 static bool on_sdei_critical_stack(unsigned long sp, struct stack_info *info)
110 {
111 	unsigned long low = (unsigned long)raw_cpu_read(sdei_stack_critical_ptr);
112 	unsigned long high = low + SDEI_STACK_SIZE;
113 
114 	if (sp < low || sp >= high)
115 		return false;
116 
117 	if (info) {
118 		info->low = low;
119 		info->high = high;
120 		info->type = STACK_TYPE_SDEI_CRITICAL;
121 	}
122 
123 	return true;
124 }
125 
126 bool _on_sdei_stack(unsigned long sp, struct stack_info *info)
127 {
128 	if (!IS_ENABLED(CONFIG_VMAP_STACK))
129 		return false;
130 
131 	if (on_sdei_critical_stack(sp, info))
132 		return true;
133 
134 	if (on_sdei_normal_stack(sp, info))
135 		return true;
136 
137 	return false;
138 }
139 
140 unsigned long sdei_arch_get_entry_point(int conduit)
141 {
142 	/*
143 	 * SDEI works between adjacent exception levels. If we booted at EL1 we
144 	 * assume a hypervisor is marshalling events. If we booted at EL2 and
145 	 * dropped to EL1 because we don't support VHE, then we can't support
146 	 * SDEI.
147 	 */
148 	if (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
149 		pr_err("Not supported on this hardware/boot configuration\n");
150 		return 0;
151 	}
152 
153 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
154 		if (init_sdei_stacks())
155 			return 0;
156 	}
157 
158 	sdei_exit_mode = (conduit == CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC;
159 
160 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
161 	if (arm64_kernel_unmapped_at_el0()) {
162 		unsigned long offset;
163 
164 		offset = (unsigned long)__sdei_asm_entry_trampoline -
165 			 (unsigned long)__entry_tramp_text_start;
166 		return TRAMP_VALIAS + offset;
167 	} else
168 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
169 		return (unsigned long)__sdei_asm_handler;
170 
171 }
172 
173 /*
174  * __sdei_handler() returns one of:
175  *  SDEI_EV_HANDLED -  success, return to the interrupted context.
176  *  SDEI_EV_FAILED  -  failure, return this error code to firmare.
177  *  virtual-address -  success, return to this address.
178  */
179 static __kprobes unsigned long _sdei_handler(struct pt_regs *regs,
180 					     struct sdei_registered_event *arg)
181 {
182 	u32 mode;
183 	int i, err = 0;
184 	int clobbered_registers = 4;
185 	u64 elr = read_sysreg(elr_el1);
186 	u32 kernel_mode = read_sysreg(CurrentEL) | 1;	/* +SPSel */
187 	unsigned long vbar = read_sysreg(vbar_el1);
188 
189 	if (arm64_kernel_unmapped_at_el0())
190 		clobbered_registers++;
191 
192 	/* Retrieve the missing registers values */
193 	for (i = 0; i < clobbered_registers; i++) {
194 		/* from within the handler, this call always succeeds */
195 		sdei_api_event_context(i, &regs->regs[i]);
196 	}
197 
198 	/*
199 	 * We didn't take an exception to get here, set PAN. UAO will be cleared
200 	 * by sdei_event_handler()s set_fs(USER_DS) call.
201 	 */
202 	__uaccess_enable_hw_pan();
203 
204 	err = sdei_event_handler(regs, arg);
205 	if (err)
206 		return SDEI_EV_FAILED;
207 
208 	if (elr != read_sysreg(elr_el1)) {
209 		/*
210 		 * We took a synchronous exception from the SDEI handler.
211 		 * This could deadlock, and if you interrupt KVM it will
212 		 * hyp-panic instead.
213 		 */
214 		pr_warn("unsafe: exception during handler\n");
215 	}
216 
217 	mode = regs->pstate & (PSR_MODE32_BIT | PSR_MODE_MASK);
218 
219 	/*
220 	 * If we interrupted the kernel with interrupts masked, we always go
221 	 * back to wherever we came from.
222 	 */
223 	if (mode == kernel_mode && !interrupts_enabled(regs))
224 		return SDEI_EV_HANDLED;
225 
226 	/*
227 	 * Otherwise, we pretend this was an IRQ. This lets user space tasks
228 	 * receive signals before we return to them, and KVM to invoke it's
229 	 * world switch to do the same.
230 	 *
231 	 * See DDI0487B.a Table D1-7 'Vector offsets from vector table base
232 	 * address'.
233 	 */
234 	if (mode == kernel_mode)
235 		return vbar + 0x280;
236 	else if (mode & PSR_MODE32_BIT)
237 		return vbar + 0x680;
238 
239 	return vbar + 0x480;
240 }
241 
242 
243 asmlinkage __kprobes notrace unsigned long
244 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
245 {
246 	unsigned long ret;
247 	bool do_nmi_exit = false;
248 
249 	/*
250 	 * nmi_enter() deals with printk() re-entrance and use of RCU when
251 	 * RCU believed this CPU was idle. Because critical events can
252 	 * interrupt normal events, we may already be in_nmi().
253 	 */
254 	if (!in_nmi()) {
255 		nmi_enter();
256 		do_nmi_exit = true;
257 	}
258 
259 	ret = _sdei_handler(regs, arg);
260 
261 	if (do_nmi_exit)
262 		nmi_exit();
263 
264 	return ret;
265 }
266