xref: /openbmc/linux/arch/arm64/kernel/sdei.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2017 Arm Ltd.
3 #define pr_fmt(fmt) "sdei: " fmt
4 
5 #include <linux/arm-smccc.h>
6 #include <linux/arm_sdei.h>
7 #include <linux/hardirq.h>
8 #include <linux/irqflags.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/uaccess.h>
11 
12 #include <asm/alternative.h>
13 #include <asm/kprobes.h>
14 #include <asm/mmu.h>
15 #include <asm/ptrace.h>
16 #include <asm/sections.h>
17 #include <asm/stacktrace.h>
18 #include <asm/sysreg.h>
19 #include <asm/vmap_stack.h>
20 
21 unsigned long sdei_exit_mode;
22 
23 /*
24  * VMAP'd stacks checking for stack overflow on exception using sp as a scratch
25  * register, meaning SDEI has to switch to its own stack. We need two stacks as
26  * a critical event may interrupt a normal event that has just taken a
27  * synchronous exception, and is using sp as scratch register. For a critical
28  * event interrupting a normal event, we can't reliably tell if we were on the
29  * sdei stack.
30  * For now, we allocate stacks when the driver is probed.
31  */
32 DECLARE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
33 DECLARE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
34 
35 #ifdef CONFIG_VMAP_STACK
36 DEFINE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
37 DEFINE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
38 #endif
39 
40 static void _free_sdei_stack(unsigned long * __percpu *ptr, int cpu)
41 {
42 	unsigned long *p;
43 
44 	p = per_cpu(*ptr, cpu);
45 	if (p) {
46 		per_cpu(*ptr, cpu) = NULL;
47 		vfree(p);
48 	}
49 }
50 
51 static void free_sdei_stacks(void)
52 {
53 	int cpu;
54 
55 	for_each_possible_cpu(cpu) {
56 		_free_sdei_stack(&sdei_stack_normal_ptr, cpu);
57 		_free_sdei_stack(&sdei_stack_critical_ptr, cpu);
58 	}
59 }
60 
61 static int _init_sdei_stack(unsigned long * __percpu *ptr, int cpu)
62 {
63 	unsigned long *p;
64 
65 	p = arch_alloc_vmap_stack(SDEI_STACK_SIZE, cpu_to_node(cpu));
66 	if (!p)
67 		return -ENOMEM;
68 	per_cpu(*ptr, cpu) = p;
69 
70 	return 0;
71 }
72 
73 static int init_sdei_stacks(void)
74 {
75 	int cpu;
76 	int err = 0;
77 
78 	for_each_possible_cpu(cpu) {
79 		err = _init_sdei_stack(&sdei_stack_normal_ptr, cpu);
80 		if (err)
81 			break;
82 		err = _init_sdei_stack(&sdei_stack_critical_ptr, cpu);
83 		if (err)
84 			break;
85 	}
86 
87 	if (err)
88 		free_sdei_stacks();
89 
90 	return err;
91 }
92 
93 static bool on_sdei_normal_stack(unsigned long sp, struct stack_info *info)
94 {
95 	unsigned long low = (unsigned long)raw_cpu_read(sdei_stack_normal_ptr);
96 	unsigned long high = low + SDEI_STACK_SIZE;
97 
98 	if (!low)
99 		return false;
100 
101 	if (sp < low || sp >= high)
102 		return false;
103 
104 	if (info) {
105 		info->low = low;
106 		info->high = high;
107 		info->type = STACK_TYPE_SDEI_NORMAL;
108 	}
109 
110 	return true;
111 }
112 
113 static bool on_sdei_critical_stack(unsigned long sp, struct stack_info *info)
114 {
115 	unsigned long low = (unsigned long)raw_cpu_read(sdei_stack_critical_ptr);
116 	unsigned long high = low + SDEI_STACK_SIZE;
117 
118 	if (!low)
119 		return false;
120 
121 	if (sp < low || sp >= high)
122 		return false;
123 
124 	if (info) {
125 		info->low = low;
126 		info->high = high;
127 		info->type = STACK_TYPE_SDEI_CRITICAL;
128 	}
129 
130 	return true;
131 }
132 
133 bool _on_sdei_stack(unsigned long sp, struct stack_info *info)
134 {
135 	if (!IS_ENABLED(CONFIG_VMAP_STACK))
136 		return false;
137 
138 	if (on_sdei_critical_stack(sp, info))
139 		return true;
140 
141 	if (on_sdei_normal_stack(sp, info))
142 		return true;
143 
144 	return false;
145 }
146 
147 unsigned long sdei_arch_get_entry_point(int conduit)
148 {
149 	/*
150 	 * SDEI works between adjacent exception levels. If we booted at EL1 we
151 	 * assume a hypervisor is marshalling events. If we booted at EL2 and
152 	 * dropped to EL1 because we don't support VHE, then we can't support
153 	 * SDEI.
154 	 */
155 	if (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
156 		pr_err("Not supported on this hardware/boot configuration\n");
157 		return 0;
158 	}
159 
160 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
161 		if (init_sdei_stacks())
162 			return 0;
163 	}
164 
165 	sdei_exit_mode = (conduit == SMCCC_CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC;
166 
167 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
168 	if (arm64_kernel_unmapped_at_el0()) {
169 		unsigned long offset;
170 
171 		offset = (unsigned long)__sdei_asm_entry_trampoline -
172 			 (unsigned long)__entry_tramp_text_start;
173 		return TRAMP_VALIAS + offset;
174 	} else
175 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
176 		return (unsigned long)__sdei_asm_handler;
177 
178 }
179 
180 /*
181  * __sdei_handler() returns one of:
182  *  SDEI_EV_HANDLED -  success, return to the interrupted context.
183  *  SDEI_EV_FAILED  -  failure, return this error code to firmare.
184  *  virtual-address -  success, return to this address.
185  */
186 static __kprobes unsigned long _sdei_handler(struct pt_regs *regs,
187 					     struct sdei_registered_event *arg)
188 {
189 	u32 mode;
190 	int i, err = 0;
191 	int clobbered_registers = 4;
192 	u64 elr = read_sysreg(elr_el1);
193 	u32 kernel_mode = read_sysreg(CurrentEL) | 1;	/* +SPSel */
194 	unsigned long vbar = read_sysreg(vbar_el1);
195 
196 	if (arm64_kernel_unmapped_at_el0())
197 		clobbered_registers++;
198 
199 	/* Retrieve the missing registers values */
200 	for (i = 0; i < clobbered_registers; i++) {
201 		/* from within the handler, this call always succeeds */
202 		sdei_api_event_context(i, &regs->regs[i]);
203 	}
204 
205 	/*
206 	 * We didn't take an exception to get here, set PAN. UAO will be cleared
207 	 * by sdei_event_handler()s set_fs(USER_DS) call.
208 	 */
209 	__uaccess_enable_hw_pan();
210 
211 	err = sdei_event_handler(regs, arg);
212 	if (err)
213 		return SDEI_EV_FAILED;
214 
215 	if (elr != read_sysreg(elr_el1)) {
216 		/*
217 		 * We took a synchronous exception from the SDEI handler.
218 		 * This could deadlock, and if you interrupt KVM it will
219 		 * hyp-panic instead.
220 		 */
221 		pr_warn("unsafe: exception during handler\n");
222 	}
223 
224 	mode = regs->pstate & (PSR_MODE32_BIT | PSR_MODE_MASK);
225 
226 	/*
227 	 * If we interrupted the kernel with interrupts masked, we always go
228 	 * back to wherever we came from.
229 	 */
230 	if (mode == kernel_mode && !interrupts_enabled(regs))
231 		return SDEI_EV_HANDLED;
232 
233 	/*
234 	 * Otherwise, we pretend this was an IRQ. This lets user space tasks
235 	 * receive signals before we return to them, and KVM to invoke it's
236 	 * world switch to do the same.
237 	 *
238 	 * See DDI0487B.a Table D1-7 'Vector offsets from vector table base
239 	 * address'.
240 	 */
241 	if (mode == kernel_mode)
242 		return vbar + 0x280;
243 	else if (mode & PSR_MODE32_BIT)
244 		return vbar + 0x680;
245 
246 	return vbar + 0x480;
247 }
248 
249 
250 asmlinkage __kprobes notrace unsigned long
251 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
252 {
253 	unsigned long ret;
254 	bool do_nmi_exit = false;
255 
256 	/*
257 	 * nmi_enter() deals with printk() re-entrance and use of RCU when
258 	 * RCU believed this CPU was idle. Because critical events can
259 	 * interrupt normal events, we may already be in_nmi().
260 	 */
261 	if (!in_nmi()) {
262 		nmi_enter();
263 		do_nmi_exit = true;
264 	}
265 
266 	ret = _sdei_handler(regs, arg);
267 
268 	if (do_nmi_exit)
269 		nmi_exit();
270 
271 	return ret;
272 }
273