xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision fefcd1c75bafa7c5d34e0a517de29f33688abf62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45 
46 struct pt_regs_offset {
47 	const char *name;
48 	int offset;
49 };
50 
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55 
56 static const struct pt_regs_offset regoffset_table[] = {
57 	GPR_OFFSET_NAME(0),
58 	GPR_OFFSET_NAME(1),
59 	GPR_OFFSET_NAME(2),
60 	GPR_OFFSET_NAME(3),
61 	GPR_OFFSET_NAME(4),
62 	GPR_OFFSET_NAME(5),
63 	GPR_OFFSET_NAME(6),
64 	GPR_OFFSET_NAME(7),
65 	GPR_OFFSET_NAME(8),
66 	GPR_OFFSET_NAME(9),
67 	GPR_OFFSET_NAME(10),
68 	GPR_OFFSET_NAME(11),
69 	GPR_OFFSET_NAME(12),
70 	GPR_OFFSET_NAME(13),
71 	GPR_OFFSET_NAME(14),
72 	GPR_OFFSET_NAME(15),
73 	GPR_OFFSET_NAME(16),
74 	GPR_OFFSET_NAME(17),
75 	GPR_OFFSET_NAME(18),
76 	GPR_OFFSET_NAME(19),
77 	GPR_OFFSET_NAME(20),
78 	GPR_OFFSET_NAME(21),
79 	GPR_OFFSET_NAME(22),
80 	GPR_OFFSET_NAME(23),
81 	GPR_OFFSET_NAME(24),
82 	GPR_OFFSET_NAME(25),
83 	GPR_OFFSET_NAME(26),
84 	GPR_OFFSET_NAME(27),
85 	GPR_OFFSET_NAME(28),
86 	GPR_OFFSET_NAME(29),
87 	GPR_OFFSET_NAME(30),
88 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 	REG_OFFSET_NAME(sp),
90 	REG_OFFSET_NAME(pc),
91 	REG_OFFSET_NAME(pstate),
92 	REG_OFFSET_END,
93 };
94 
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:	the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104 	const struct pt_regs_offset *roff;
105 
106 	for (roff = regoffset_table; roff->name != NULL; roff++)
107 		if (!strcmp(roff->name, name))
108 			return roff->offset;
109 	return -EINVAL;
110 }
111 
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 	return ((addr & ~(THREAD_SIZE - 1))  ==
123 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 		on_irq_stack(addr, sizeof(unsigned long));
125 }
126 
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:	pt_regs which contains kernel stack pointer.
130  * @n:		stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139 
140 	addr += n;
141 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 		return *addr;
143 	else
144 		return 0;
145 }
146 
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151 
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157 	/*
158 	 * This would be better off in core code, but PTRACE_DETACH has
159 	 * grown its fair share of arch-specific worts and changing it
160 	 * is likely to cause regressions on obscure architectures.
161 	 */
162 	user_disable_single_step(child);
163 }
164 
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170 				struct perf_sample_data *data,
171 				struct pt_regs *regs)
172 {
173 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 	const char *desc = "Hardware breakpoint trap (ptrace)";
175 
176 #ifdef CONFIG_COMPAT
177 	if (is_compat_task()) {
178 		int si_errno = 0;
179 		int i;
180 
181 		for (i = 0; i < ARM_MAX_BRP; ++i) {
182 			if (current->thread.debug.hbp_break[i] == bp) {
183 				si_errno = (i << 1) + 1;
184 				break;
185 			}
186 		}
187 
188 		for (i = 0; i < ARM_MAX_WRP; ++i) {
189 			if (current->thread.debug.hbp_watch[i] == bp) {
190 				si_errno = -((i << 1) + 1);
191 				break;
192 			}
193 		}
194 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 						  desc);
196 		return;
197 	}
198 #endif
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201 
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 	int i;
209 	struct thread_struct *t = &tsk->thread;
210 
211 	for (i = 0; i < ARM_MAX_BRP; i++) {
212 		if (t->debug.hbp_break[i]) {
213 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 			t->debug.hbp_break[i] = NULL;
215 		}
216 	}
217 
218 	for (i = 0; i < ARM_MAX_WRP; i++) {
219 		if (t->debug.hbp_watch[i]) {
220 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 			t->debug.hbp_watch[i] = NULL;
222 		}
223 	}
224 }
225 
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230 
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 					       struct task_struct *tsk,
233 					       unsigned long idx)
234 {
235 	struct perf_event *bp = ERR_PTR(-EINVAL);
236 
237 	switch (note_type) {
238 	case NT_ARM_HW_BREAK:
239 		if (idx >= ARM_MAX_BRP)
240 			goto out;
241 		idx = array_index_nospec(idx, ARM_MAX_BRP);
242 		bp = tsk->thread.debug.hbp_break[idx];
243 		break;
244 	case NT_ARM_HW_WATCH:
245 		if (idx >= ARM_MAX_WRP)
246 			goto out;
247 		idx = array_index_nospec(idx, ARM_MAX_WRP);
248 		bp = tsk->thread.debug.hbp_watch[idx];
249 		break;
250 	}
251 
252 out:
253 	return bp;
254 }
255 
256 static int ptrace_hbp_set_event(unsigned int note_type,
257 				struct task_struct *tsk,
258 				unsigned long idx,
259 				struct perf_event *bp)
260 {
261 	int err = -EINVAL;
262 
263 	switch (note_type) {
264 	case NT_ARM_HW_BREAK:
265 		if (idx >= ARM_MAX_BRP)
266 			goto out;
267 		idx = array_index_nospec(idx, ARM_MAX_BRP);
268 		tsk->thread.debug.hbp_break[idx] = bp;
269 		err = 0;
270 		break;
271 	case NT_ARM_HW_WATCH:
272 		if (idx >= ARM_MAX_WRP)
273 			goto out;
274 		idx = array_index_nospec(idx, ARM_MAX_WRP);
275 		tsk->thread.debug.hbp_watch[idx] = bp;
276 		err = 0;
277 		break;
278 	}
279 
280 out:
281 	return err;
282 }
283 
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 					    struct task_struct *tsk,
286 					    unsigned long idx)
287 {
288 	struct perf_event *bp;
289 	struct perf_event_attr attr;
290 	int err, type;
291 
292 	switch (note_type) {
293 	case NT_ARM_HW_BREAK:
294 		type = HW_BREAKPOINT_X;
295 		break;
296 	case NT_ARM_HW_WATCH:
297 		type = HW_BREAKPOINT_RW;
298 		break;
299 	default:
300 		return ERR_PTR(-EINVAL);
301 	}
302 
303 	ptrace_breakpoint_init(&attr);
304 
305 	/*
306 	 * Initialise fields to sane defaults
307 	 * (i.e. values that will pass validation).
308 	 */
309 	attr.bp_addr	= 0;
310 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
311 	attr.bp_type	= type;
312 	attr.disabled	= 1;
313 
314 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 	if (IS_ERR(bp))
316 		return bp;
317 
318 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 	if (err)
320 		return ERR_PTR(err);
321 
322 	return bp;
323 }
324 
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 				     struct arch_hw_breakpoint_ctrl ctrl,
327 				     struct perf_event_attr *attr)
328 {
329 	int err, len, type, offset, disabled = !ctrl.enabled;
330 
331 	attr->disabled = disabled;
332 	if (disabled)
333 		return 0;
334 
335 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 	if (err)
337 		return err;
338 
339 	switch (note_type) {
340 	case NT_ARM_HW_BREAK:
341 		if ((type & HW_BREAKPOINT_X) != type)
342 			return -EINVAL;
343 		break;
344 	case NT_ARM_HW_WATCH:
345 		if ((type & HW_BREAKPOINT_RW) != type)
346 			return -EINVAL;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	attr->bp_len	= len;
353 	attr->bp_type	= type;
354 	attr->bp_addr	+= offset;
355 
356 	return 0;
357 }
358 
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 	u8 num;
362 	u32 reg = 0;
363 
364 	switch (note_type) {
365 	case NT_ARM_HW_BREAK:
366 		num = hw_breakpoint_slots(TYPE_INST);
367 		break;
368 	case NT_ARM_HW_WATCH:
369 		num = hw_breakpoint_slots(TYPE_DATA);
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	reg |= debug_monitors_arch();
376 	reg <<= 8;
377 	reg |= num;
378 
379 	*info = reg;
380 	return 0;
381 }
382 
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 			       struct task_struct *tsk,
385 			       unsigned long idx,
386 			       u32 *ctrl)
387 {
388 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389 
390 	if (IS_ERR(bp))
391 		return PTR_ERR(bp);
392 
393 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u64 *addr)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*addr = bp ? counter_arch_bp(bp)->address : 0;
408 	return 0;
409 }
410 
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 							struct task_struct *tsk,
413 							unsigned long idx)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (!bp)
418 		bp = ptrace_hbp_create(note_type, tsk, idx);
419 
420 	return bp;
421 }
422 
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 			       struct task_struct *tsk,
425 			       unsigned long idx,
426 			       u32 uctrl)
427 {
428 	int err;
429 	struct perf_event *bp;
430 	struct perf_event_attr attr;
431 	struct arch_hw_breakpoint_ctrl ctrl;
432 
433 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 	if (IS_ERR(bp)) {
435 		err = PTR_ERR(bp);
436 		return err;
437 	}
438 
439 	attr = bp->attr;
440 	decode_ctrl_reg(uctrl, &ctrl);
441 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 	if (err)
443 		return err;
444 
445 	return modify_user_hw_breakpoint(bp, &attr);
446 }
447 
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 			       struct task_struct *tsk,
450 			       unsigned long idx,
451 			       u64 addr)
452 {
453 	int err;
454 	struct perf_event *bp;
455 	struct perf_event_attr attr;
456 
457 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 	if (IS_ERR(bp)) {
459 		err = PTR_ERR(bp);
460 		return err;
461 	}
462 
463 	attr = bp->attr;
464 	attr.bp_addr = addr;
465 	err = modify_user_hw_breakpoint(bp, &attr);
466 	return err;
467 }
468 
469 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
472 
473 static int hw_break_get(struct task_struct *target,
474 			const struct user_regset *regset,
475 			struct membuf to)
476 {
477 	unsigned int note_type = regset->core_note_type;
478 	int ret, idx = 0;
479 	u32 info, ctrl;
480 	u64 addr;
481 
482 	/* Resource info */
483 	ret = ptrace_hbp_get_resource_info(note_type, &info);
484 	if (ret)
485 		return ret;
486 
487 	membuf_write(&to, &info, sizeof(info));
488 	membuf_zero(&to, sizeof(u32));
489 	/* (address, ctrl) registers */
490 	while (to.left) {
491 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 		if (ret)
493 			return ret;
494 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 		if (ret)
496 			return ret;
497 		membuf_store(&to, addr);
498 		membuf_store(&to, ctrl);
499 		membuf_zero(&to, sizeof(u32));
500 		idx++;
501 	}
502 	return 0;
503 }
504 
505 static int hw_break_set(struct task_struct *target,
506 			const struct user_regset *regset,
507 			unsigned int pos, unsigned int count,
508 			const void *kbuf, const void __user *ubuf)
509 {
510 	unsigned int note_type = regset->core_note_type;
511 	int ret, idx = 0, offset, limit;
512 	u32 ctrl;
513 	u64 addr;
514 
515 	/* Resource info and pad */
516 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 
519 	/* (address, ctrl) registers */
520 	limit = regset->n * regset->size;
521 	while (count && offset < limit) {
522 		if (count < PTRACE_HBP_ADDR_SZ)
523 			return -EINVAL;
524 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525 					 offset, offset + PTRACE_HBP_ADDR_SZ);
526 		if (ret)
527 			return ret;
528 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529 		if (ret)
530 			return ret;
531 		offset += PTRACE_HBP_ADDR_SZ;
532 
533 		if (!count)
534 			break;
535 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536 					 offset, offset + PTRACE_HBP_CTRL_SZ);
537 		if (ret)
538 			return ret;
539 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540 		if (ret)
541 			return ret;
542 		offset += PTRACE_HBP_CTRL_SZ;
543 
544 		user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545 					  offset, offset + PTRACE_HBP_PAD_SZ);
546 		offset += PTRACE_HBP_PAD_SZ;
547 		idx++;
548 	}
549 
550 	return 0;
551 }
552 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
553 
554 static int gpr_get(struct task_struct *target,
555 		   const struct user_regset *regset,
556 		   struct membuf to)
557 {
558 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559 	return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561 
562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563 		   unsigned int pos, unsigned int count,
564 		   const void *kbuf, const void __user *ubuf)
565 {
566 	int ret;
567 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568 
569 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570 	if (ret)
571 		return ret;
572 
573 	if (!valid_user_regs(&newregs, target))
574 		return -EINVAL;
575 
576 	task_pt_regs(target)->user_regs = newregs;
577 	return 0;
578 }
579 
580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582 	if (!system_supports_fpsimd())
583 		return -ENODEV;
584 	return regset->n;
585 }
586 
587 /*
588  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589  */
590 static int __fpr_get(struct task_struct *target,
591 		     const struct user_regset *regset,
592 		     struct membuf to)
593 {
594 	struct user_fpsimd_state *uregs;
595 
596 	sve_sync_to_fpsimd(target);
597 
598 	uregs = &target->thread.uw.fpsimd_state;
599 
600 	return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602 
603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604 		   struct membuf to)
605 {
606 	if (!system_supports_fpsimd())
607 		return -EINVAL;
608 
609 	if (target == current)
610 		fpsimd_preserve_current_state();
611 
612 	return __fpr_get(target, regset, to);
613 }
614 
615 static int __fpr_set(struct task_struct *target,
616 		     const struct user_regset *regset,
617 		     unsigned int pos, unsigned int count,
618 		     const void *kbuf, const void __user *ubuf,
619 		     unsigned int start_pos)
620 {
621 	int ret;
622 	struct user_fpsimd_state newstate;
623 
624 	/*
625 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626 	 * short copyin can't resurrect stale data.
627 	 */
628 	sve_sync_to_fpsimd(target);
629 
630 	newstate = target->thread.uw.fpsimd_state;
631 
632 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633 				 start_pos, start_pos + sizeof(newstate));
634 	if (ret)
635 		return ret;
636 
637 	target->thread.uw.fpsimd_state = newstate;
638 
639 	return ret;
640 }
641 
642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643 		   unsigned int pos, unsigned int count,
644 		   const void *kbuf, const void __user *ubuf)
645 {
646 	int ret;
647 
648 	if (!system_supports_fpsimd())
649 		return -EINVAL;
650 
651 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652 	if (ret)
653 		return ret;
654 
655 	sve_sync_from_fpsimd_zeropad(target);
656 	fpsimd_flush_task_state(target);
657 
658 	return ret;
659 }
660 
661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662 		   struct membuf to)
663 {
664 	int ret;
665 
666 	if (target == current)
667 		tls_preserve_current_state();
668 
669 	ret = membuf_store(&to, target->thread.uw.tp_value);
670 	if (system_supports_tpidr2())
671 		ret = membuf_store(&to, target->thread.tpidr2_el0);
672 	else
673 		ret = membuf_zero(&to, sizeof(u64));
674 
675 	return ret;
676 }
677 
678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 		   unsigned int pos, unsigned int count,
680 		   const void *kbuf, const void __user *ubuf)
681 {
682 	int ret;
683 	unsigned long tls[2];
684 
685 	tls[0] = target->thread.uw.tp_value;
686 	if (system_supports_tpidr2())
687 		tls[1] = target->thread.tpidr2_el0;
688 
689 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690 	if (ret)
691 		return ret;
692 
693 	target->thread.uw.tp_value = tls[0];
694 	if (system_supports_tpidr2())
695 		target->thread.tpidr2_el0 = tls[1];
696 
697 	return ret;
698 }
699 
700 static int system_call_get(struct task_struct *target,
701 			   const struct user_regset *regset,
702 			   struct membuf to)
703 {
704 	return membuf_store(&to, task_pt_regs(target)->syscallno);
705 }
706 
707 static int system_call_set(struct task_struct *target,
708 			   const struct user_regset *regset,
709 			   unsigned int pos, unsigned int count,
710 			   const void *kbuf, const void __user *ubuf)
711 {
712 	int syscallno = task_pt_regs(target)->syscallno;
713 	int ret;
714 
715 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
716 	if (ret)
717 		return ret;
718 
719 	task_pt_regs(target)->syscallno = syscallno;
720 	return ret;
721 }
722 
723 #ifdef CONFIG_ARM64_SVE
724 
725 static void sve_init_header_from_task(struct user_sve_header *header,
726 				      struct task_struct *target,
727 				      enum vec_type type)
728 {
729 	unsigned int vq;
730 	bool active;
731 	enum vec_type task_type;
732 
733 	memset(header, 0, sizeof(*header));
734 
735 	/* Check if the requested registers are active for the task */
736 	if (thread_sm_enabled(&target->thread))
737 		task_type = ARM64_VEC_SME;
738 	else
739 		task_type = ARM64_VEC_SVE;
740 	active = (task_type == type);
741 
742 	switch (type) {
743 	case ARM64_VEC_SVE:
744 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
745 			header->flags |= SVE_PT_VL_INHERIT;
746 		break;
747 	case ARM64_VEC_SME:
748 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
749 			header->flags |= SVE_PT_VL_INHERIT;
750 		break;
751 	default:
752 		WARN_ON_ONCE(1);
753 		return;
754 	}
755 
756 	if (active) {
757 		if (target->thread.fp_type == FP_STATE_FPSIMD) {
758 			header->flags |= SVE_PT_REGS_FPSIMD;
759 		} else {
760 			header->flags |= SVE_PT_REGS_SVE;
761 		}
762 	}
763 
764 	header->vl = task_get_vl(target, type);
765 	vq = sve_vq_from_vl(header->vl);
766 
767 	header->max_vl = vec_max_vl(type);
768 	header->size = SVE_PT_SIZE(vq, header->flags);
769 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
770 				      SVE_PT_REGS_SVE);
771 }
772 
773 static unsigned int sve_size_from_header(struct user_sve_header const *header)
774 {
775 	return ALIGN(header->size, SVE_VQ_BYTES);
776 }
777 
778 static int sve_get_common(struct task_struct *target,
779 			  const struct user_regset *regset,
780 			  struct membuf to,
781 			  enum vec_type type)
782 {
783 	struct user_sve_header header;
784 	unsigned int vq;
785 	unsigned long start, end;
786 
787 	/* Header */
788 	sve_init_header_from_task(&header, target, type);
789 	vq = sve_vq_from_vl(header.vl);
790 
791 	membuf_write(&to, &header, sizeof(header));
792 
793 	if (target == current)
794 		fpsimd_preserve_current_state();
795 
796 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
797 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
798 
799 	switch ((header.flags & SVE_PT_REGS_MASK)) {
800 	case SVE_PT_REGS_FPSIMD:
801 		return __fpr_get(target, regset, to);
802 
803 	case SVE_PT_REGS_SVE:
804 		start = SVE_PT_SVE_OFFSET;
805 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
806 		membuf_write(&to, target->thread.sve_state, end - start);
807 
808 		start = end;
809 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
810 		membuf_zero(&to, end - start);
811 
812 		/*
813 		 * Copy fpsr, and fpcr which must follow contiguously in
814 		 * struct fpsimd_state:
815 		 */
816 		start = end;
817 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
818 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
819 			     end - start);
820 
821 		start = end;
822 		end = sve_size_from_header(&header);
823 		return membuf_zero(&to, end - start);
824 
825 	default:
826 		return 0;
827 	}
828 }
829 
830 static int sve_get(struct task_struct *target,
831 		   const struct user_regset *regset,
832 		   struct membuf to)
833 {
834 	if (!system_supports_sve())
835 		return -EINVAL;
836 
837 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
838 }
839 
840 static int sve_set_common(struct task_struct *target,
841 			  const struct user_regset *regset,
842 			  unsigned int pos, unsigned int count,
843 			  const void *kbuf, const void __user *ubuf,
844 			  enum vec_type type)
845 {
846 	int ret;
847 	struct user_sve_header header;
848 	unsigned int vq;
849 	unsigned long start, end;
850 
851 	/* Header */
852 	if (count < sizeof(header))
853 		return -EINVAL;
854 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
855 				 0, sizeof(header));
856 	if (ret)
857 		goto out;
858 
859 	/*
860 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
861 	 * vec_set_vector_length(), which will also validate them for us:
862 	 */
863 	ret = vec_set_vector_length(target, type, header.vl,
864 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
865 	if (ret)
866 		goto out;
867 
868 	/* Actual VL set may be less than the user asked for: */
869 	vq = sve_vq_from_vl(task_get_vl(target, type));
870 
871 	/* Enter/exit streaming mode */
872 	if (system_supports_sme()) {
873 		u64 old_svcr = target->thread.svcr;
874 
875 		switch (type) {
876 		case ARM64_VEC_SVE:
877 			target->thread.svcr &= ~SVCR_SM_MASK;
878 			break;
879 		case ARM64_VEC_SME:
880 			target->thread.svcr |= SVCR_SM_MASK;
881 
882 			/*
883 			 * Disable traps and ensure there is SME storage but
884 			 * preserve any currently set values in ZA/ZT.
885 			 */
886 			sme_alloc(target, false);
887 			set_tsk_thread_flag(target, TIF_SME);
888 			break;
889 		default:
890 			WARN_ON_ONCE(1);
891 			ret = -EINVAL;
892 			goto out;
893 		}
894 
895 		/*
896 		 * If we switched then invalidate any existing SVE
897 		 * state and ensure there's storage.
898 		 */
899 		if (target->thread.svcr != old_svcr)
900 			sve_alloc(target, true);
901 	}
902 
903 	/* Registers: FPSIMD-only case */
904 
905 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
906 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
907 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
908 				SVE_PT_FPSIMD_OFFSET);
909 		clear_tsk_thread_flag(target, TIF_SVE);
910 		target->thread.fp_type = FP_STATE_FPSIMD;
911 		goto out;
912 	}
913 
914 	/*
915 	 * Otherwise: no registers or full SVE case.  For backwards
916 	 * compatibility reasons we treat empty flags as SVE registers.
917 	 */
918 
919 	/*
920 	 * If setting a different VL from the requested VL and there is
921 	 * register data, the data layout will be wrong: don't even
922 	 * try to set the registers in this case.
923 	 */
924 	if (count && vq != sve_vq_from_vl(header.vl)) {
925 		ret = -EIO;
926 		goto out;
927 	}
928 
929 	sve_alloc(target, true);
930 	if (!target->thread.sve_state) {
931 		ret = -ENOMEM;
932 		clear_tsk_thread_flag(target, TIF_SVE);
933 		target->thread.fp_type = FP_STATE_FPSIMD;
934 		goto out;
935 	}
936 
937 	/*
938 	 * Ensure target->thread.sve_state is up to date with target's
939 	 * FPSIMD regs, so that a short copyin leaves trailing
940 	 * registers unmodified.  Only enable SVE if we are
941 	 * configuring normal SVE, a system with streaming SVE may not
942 	 * have normal SVE.
943 	 */
944 	fpsimd_sync_to_sve(target);
945 	if (type == ARM64_VEC_SVE)
946 		set_tsk_thread_flag(target, TIF_SVE);
947 	target->thread.fp_type = FP_STATE_SVE;
948 
949 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
950 	start = SVE_PT_SVE_OFFSET;
951 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
952 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
953 				 target->thread.sve_state,
954 				 start, end);
955 	if (ret)
956 		goto out;
957 
958 	start = end;
959 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
960 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
961 
962 	/*
963 	 * Copy fpsr, and fpcr which must follow contiguously in
964 	 * struct fpsimd_state:
965 	 */
966 	start = end;
967 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
968 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
969 				 &target->thread.uw.fpsimd_state.fpsr,
970 				 start, end);
971 
972 out:
973 	fpsimd_flush_task_state(target);
974 	return ret;
975 }
976 
977 static int sve_set(struct task_struct *target,
978 		   const struct user_regset *regset,
979 		   unsigned int pos, unsigned int count,
980 		   const void *kbuf, const void __user *ubuf)
981 {
982 	if (!system_supports_sve())
983 		return -EINVAL;
984 
985 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
986 			      ARM64_VEC_SVE);
987 }
988 
989 #endif /* CONFIG_ARM64_SVE */
990 
991 #ifdef CONFIG_ARM64_SME
992 
993 static int ssve_get(struct task_struct *target,
994 		   const struct user_regset *regset,
995 		   struct membuf to)
996 {
997 	if (!system_supports_sme())
998 		return -EINVAL;
999 
1000 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
1001 }
1002 
1003 static int ssve_set(struct task_struct *target,
1004 		    const struct user_regset *regset,
1005 		    unsigned int pos, unsigned int count,
1006 		    const void *kbuf, const void __user *ubuf)
1007 {
1008 	if (!system_supports_sme())
1009 		return -EINVAL;
1010 
1011 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1012 			      ARM64_VEC_SME);
1013 }
1014 
1015 static int za_get(struct task_struct *target,
1016 		  const struct user_regset *regset,
1017 		  struct membuf to)
1018 {
1019 	struct user_za_header header;
1020 	unsigned int vq;
1021 	unsigned long start, end;
1022 
1023 	if (!system_supports_sme())
1024 		return -EINVAL;
1025 
1026 	/* Header */
1027 	memset(&header, 0, sizeof(header));
1028 
1029 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1030 		header.flags |= ZA_PT_VL_INHERIT;
1031 
1032 	header.vl = task_get_sme_vl(target);
1033 	vq = sve_vq_from_vl(header.vl);
1034 	header.max_vl = sme_max_vl();
1035 	header.max_size = ZA_PT_SIZE(vq);
1036 
1037 	/* If ZA is not active there is only the header */
1038 	if (thread_za_enabled(&target->thread))
1039 		header.size = ZA_PT_SIZE(vq);
1040 	else
1041 		header.size = ZA_PT_ZA_OFFSET;
1042 
1043 	membuf_write(&to, &header, sizeof(header));
1044 
1045 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1046 	end = ZA_PT_ZA_OFFSET;
1047 
1048 	if (target == current)
1049 		fpsimd_preserve_current_state();
1050 
1051 	/* Any register data to include? */
1052 	if (thread_za_enabled(&target->thread)) {
1053 		start = end;
1054 		end = ZA_PT_SIZE(vq);
1055 		membuf_write(&to, target->thread.sme_state, end - start);
1056 	}
1057 
1058 	/* Zero any trailing padding */
1059 	start = end;
1060 	end = ALIGN(header.size, SVE_VQ_BYTES);
1061 	return membuf_zero(&to, end - start);
1062 }
1063 
1064 static int za_set(struct task_struct *target,
1065 		  const struct user_regset *regset,
1066 		  unsigned int pos, unsigned int count,
1067 		  const void *kbuf, const void __user *ubuf)
1068 {
1069 	int ret;
1070 	struct user_za_header header;
1071 	unsigned int vq;
1072 	unsigned long start, end;
1073 
1074 	if (!system_supports_sme())
1075 		return -EINVAL;
1076 
1077 	/* Header */
1078 	if (count < sizeof(header))
1079 		return -EINVAL;
1080 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1081 				 0, sizeof(header));
1082 	if (ret)
1083 		goto out;
1084 
1085 	/*
1086 	 * All current ZA_PT_* flags are consumed by
1087 	 * vec_set_vector_length(), which will also validate them for
1088 	 * us:
1089 	 */
1090 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1091 		((unsigned long)header.flags) << 16);
1092 	if (ret)
1093 		goto out;
1094 
1095 	/* Actual VL set may be less than the user asked for: */
1096 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1097 
1098 	/* Ensure there is some SVE storage for streaming mode */
1099 	if (!target->thread.sve_state) {
1100 		sve_alloc(target, false);
1101 		if (!target->thread.sve_state) {
1102 			ret = -ENOMEM;
1103 			goto out;
1104 		}
1105 	}
1106 
1107 	/*
1108 	 * Only flush the storage if PSTATE.ZA was not already set,
1109 	 * otherwise preserve any existing data.
1110 	 */
1111 	sme_alloc(target, !thread_za_enabled(&target->thread));
1112 	if (!target->thread.sme_state)
1113 		return -ENOMEM;
1114 
1115 	/* If there is no data then disable ZA */
1116 	if (!count) {
1117 		target->thread.svcr &= ~SVCR_ZA_MASK;
1118 		goto out;
1119 	}
1120 
1121 	/*
1122 	 * If setting a different VL from the requested VL and there is
1123 	 * register data, the data layout will be wrong: don't even
1124 	 * try to set the registers in this case.
1125 	 */
1126 	if (vq != sve_vq_from_vl(header.vl)) {
1127 		ret = -EIO;
1128 		goto out;
1129 	}
1130 
1131 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1132 	start = ZA_PT_ZA_OFFSET;
1133 	end = ZA_PT_SIZE(vq);
1134 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1135 				 target->thread.sme_state,
1136 				 start, end);
1137 	if (ret)
1138 		goto out;
1139 
1140 	/* Mark ZA as active and let userspace use it */
1141 	set_tsk_thread_flag(target, TIF_SME);
1142 	target->thread.svcr |= SVCR_ZA_MASK;
1143 
1144 out:
1145 	fpsimd_flush_task_state(target);
1146 	return ret;
1147 }
1148 
1149 static int zt_get(struct task_struct *target,
1150 		  const struct user_regset *regset,
1151 		  struct membuf to)
1152 {
1153 	if (!system_supports_sme2())
1154 		return -EINVAL;
1155 
1156 	/*
1157 	 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1158 	 * enabled so report the current register value as zero.
1159 	 */
1160 	if (thread_za_enabled(&target->thread))
1161 		membuf_write(&to, thread_zt_state(&target->thread),
1162 			     ZT_SIG_REG_BYTES);
1163 	else
1164 		membuf_zero(&to, ZT_SIG_REG_BYTES);
1165 
1166 	return 0;
1167 }
1168 
1169 static int zt_set(struct task_struct *target,
1170 		  const struct user_regset *regset,
1171 		  unsigned int pos, unsigned int count,
1172 		  const void *kbuf, const void __user *ubuf)
1173 {
1174 	int ret;
1175 
1176 	if (!system_supports_sme2())
1177 		return -EINVAL;
1178 
1179 	/* Ensure SVE storage in case this is first use of SME */
1180 	sve_alloc(target, false);
1181 	if (!target->thread.sve_state)
1182 		return -ENOMEM;
1183 
1184 	if (!thread_za_enabled(&target->thread)) {
1185 		sme_alloc(target, true);
1186 		if (!target->thread.sme_state)
1187 			return -ENOMEM;
1188 	}
1189 
1190 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1191 				 thread_zt_state(&target->thread),
1192 				 0, ZT_SIG_REG_BYTES);
1193 	if (ret == 0) {
1194 		target->thread.svcr |= SVCR_ZA_MASK;
1195 		set_tsk_thread_flag(target, TIF_SME);
1196 	}
1197 
1198 	fpsimd_flush_task_state(target);
1199 
1200 	return ret;
1201 }
1202 
1203 #endif /* CONFIG_ARM64_SME */
1204 
1205 #ifdef CONFIG_ARM64_PTR_AUTH
1206 static int pac_mask_get(struct task_struct *target,
1207 			const struct user_regset *regset,
1208 			struct membuf to)
1209 {
1210 	/*
1211 	 * The PAC bits can differ across data and instruction pointers
1212 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1213 	 * we expose separate masks.
1214 	 */
1215 	unsigned long mask = ptrauth_user_pac_mask();
1216 	struct user_pac_mask uregs = {
1217 		.data_mask = mask,
1218 		.insn_mask = mask,
1219 	};
1220 
1221 	if (!system_supports_address_auth())
1222 		return -EINVAL;
1223 
1224 	return membuf_write(&to, &uregs, sizeof(uregs));
1225 }
1226 
1227 static int pac_enabled_keys_get(struct task_struct *target,
1228 				const struct user_regset *regset,
1229 				struct membuf to)
1230 {
1231 	long enabled_keys = ptrauth_get_enabled_keys(target);
1232 
1233 	if (IS_ERR_VALUE(enabled_keys))
1234 		return enabled_keys;
1235 
1236 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1237 }
1238 
1239 static int pac_enabled_keys_set(struct task_struct *target,
1240 				const struct user_regset *regset,
1241 				unsigned int pos, unsigned int count,
1242 				const void *kbuf, const void __user *ubuf)
1243 {
1244 	int ret;
1245 	long enabled_keys = ptrauth_get_enabled_keys(target);
1246 
1247 	if (IS_ERR_VALUE(enabled_keys))
1248 		return enabled_keys;
1249 
1250 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1251 				 sizeof(long));
1252 	if (ret)
1253 		return ret;
1254 
1255 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1256 					enabled_keys);
1257 }
1258 
1259 #ifdef CONFIG_CHECKPOINT_RESTORE
1260 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1261 {
1262 	return (__uint128_t)key->hi << 64 | key->lo;
1263 }
1264 
1265 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1266 {
1267 	struct ptrauth_key key = {
1268 		.lo = (unsigned long)ukey,
1269 		.hi = (unsigned long)(ukey >> 64),
1270 	};
1271 
1272 	return key;
1273 }
1274 
1275 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1276 				     const struct ptrauth_keys_user *keys)
1277 {
1278 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1279 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1280 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1281 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1282 }
1283 
1284 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1285 				       const struct user_pac_address_keys *ukeys)
1286 {
1287 	keys->apia = pac_key_from_user(ukeys->apiakey);
1288 	keys->apib = pac_key_from_user(ukeys->apibkey);
1289 	keys->apda = pac_key_from_user(ukeys->apdakey);
1290 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1291 }
1292 
1293 static int pac_address_keys_get(struct task_struct *target,
1294 				const struct user_regset *regset,
1295 				struct membuf to)
1296 {
1297 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1298 	struct user_pac_address_keys user_keys;
1299 
1300 	if (!system_supports_address_auth())
1301 		return -EINVAL;
1302 
1303 	pac_address_keys_to_user(&user_keys, keys);
1304 
1305 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1306 }
1307 
1308 static int pac_address_keys_set(struct task_struct *target,
1309 				const struct user_regset *regset,
1310 				unsigned int pos, unsigned int count,
1311 				const void *kbuf, const void __user *ubuf)
1312 {
1313 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1314 	struct user_pac_address_keys user_keys;
1315 	int ret;
1316 
1317 	if (!system_supports_address_auth())
1318 		return -EINVAL;
1319 
1320 	pac_address_keys_to_user(&user_keys, keys);
1321 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1322 				 &user_keys, 0, -1);
1323 	if (ret)
1324 		return ret;
1325 	pac_address_keys_from_user(keys, &user_keys);
1326 
1327 	return 0;
1328 }
1329 
1330 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1331 				     const struct ptrauth_keys_user *keys)
1332 {
1333 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1334 }
1335 
1336 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1337 				       const struct user_pac_generic_keys *ukeys)
1338 {
1339 	keys->apga = pac_key_from_user(ukeys->apgakey);
1340 }
1341 
1342 static int pac_generic_keys_get(struct task_struct *target,
1343 				const struct user_regset *regset,
1344 				struct membuf to)
1345 {
1346 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1347 	struct user_pac_generic_keys user_keys;
1348 
1349 	if (!system_supports_generic_auth())
1350 		return -EINVAL;
1351 
1352 	pac_generic_keys_to_user(&user_keys, keys);
1353 
1354 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1355 }
1356 
1357 static int pac_generic_keys_set(struct task_struct *target,
1358 				const struct user_regset *regset,
1359 				unsigned int pos, unsigned int count,
1360 				const void *kbuf, const void __user *ubuf)
1361 {
1362 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1363 	struct user_pac_generic_keys user_keys;
1364 	int ret;
1365 
1366 	if (!system_supports_generic_auth())
1367 		return -EINVAL;
1368 
1369 	pac_generic_keys_to_user(&user_keys, keys);
1370 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1371 				 &user_keys, 0, -1);
1372 	if (ret)
1373 		return ret;
1374 	pac_generic_keys_from_user(keys, &user_keys);
1375 
1376 	return 0;
1377 }
1378 #endif /* CONFIG_CHECKPOINT_RESTORE */
1379 #endif /* CONFIG_ARM64_PTR_AUTH */
1380 
1381 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1382 static int tagged_addr_ctrl_get(struct task_struct *target,
1383 				const struct user_regset *regset,
1384 				struct membuf to)
1385 {
1386 	long ctrl = get_tagged_addr_ctrl(target);
1387 
1388 	if (IS_ERR_VALUE(ctrl))
1389 		return ctrl;
1390 
1391 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1392 }
1393 
1394 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1395 				user_regset *regset, unsigned int pos,
1396 				unsigned int count, const void *kbuf, const
1397 				void __user *ubuf)
1398 {
1399 	int ret;
1400 	long ctrl;
1401 
1402 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1403 	if (ret)
1404 		return ret;
1405 
1406 	return set_tagged_addr_ctrl(target, ctrl);
1407 }
1408 #endif
1409 
1410 enum aarch64_regset {
1411 	REGSET_GPR,
1412 	REGSET_FPR,
1413 	REGSET_TLS,
1414 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1415 	REGSET_HW_BREAK,
1416 	REGSET_HW_WATCH,
1417 #endif
1418 	REGSET_SYSTEM_CALL,
1419 #ifdef CONFIG_ARM64_SVE
1420 	REGSET_SVE,
1421 #endif
1422 #ifdef CONFIG_ARM64_SME
1423 	REGSET_SSVE,
1424 	REGSET_ZA,
1425 	REGSET_ZT,
1426 #endif
1427 #ifdef CONFIG_ARM64_PTR_AUTH
1428 	REGSET_PAC_MASK,
1429 	REGSET_PAC_ENABLED_KEYS,
1430 #ifdef CONFIG_CHECKPOINT_RESTORE
1431 	REGSET_PACA_KEYS,
1432 	REGSET_PACG_KEYS,
1433 #endif
1434 #endif
1435 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1436 	REGSET_TAGGED_ADDR_CTRL,
1437 #endif
1438 };
1439 
1440 static const struct user_regset aarch64_regsets[] = {
1441 	[REGSET_GPR] = {
1442 		.core_note_type = NT_PRSTATUS,
1443 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1444 		.size = sizeof(u64),
1445 		.align = sizeof(u64),
1446 		.regset_get = gpr_get,
1447 		.set = gpr_set
1448 	},
1449 	[REGSET_FPR] = {
1450 		.core_note_type = NT_PRFPREG,
1451 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1452 		/*
1453 		 * We pretend we have 32-bit registers because the fpsr and
1454 		 * fpcr are 32-bits wide.
1455 		 */
1456 		.size = sizeof(u32),
1457 		.align = sizeof(u32),
1458 		.active = fpr_active,
1459 		.regset_get = fpr_get,
1460 		.set = fpr_set
1461 	},
1462 	[REGSET_TLS] = {
1463 		.core_note_type = NT_ARM_TLS,
1464 		.n = 2,
1465 		.size = sizeof(void *),
1466 		.align = sizeof(void *),
1467 		.regset_get = tls_get,
1468 		.set = tls_set,
1469 	},
1470 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1471 	[REGSET_HW_BREAK] = {
1472 		.core_note_type = NT_ARM_HW_BREAK,
1473 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1474 		.size = sizeof(u32),
1475 		.align = sizeof(u32),
1476 		.regset_get = hw_break_get,
1477 		.set = hw_break_set,
1478 	},
1479 	[REGSET_HW_WATCH] = {
1480 		.core_note_type = NT_ARM_HW_WATCH,
1481 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1482 		.size = sizeof(u32),
1483 		.align = sizeof(u32),
1484 		.regset_get = hw_break_get,
1485 		.set = hw_break_set,
1486 	},
1487 #endif
1488 	[REGSET_SYSTEM_CALL] = {
1489 		.core_note_type = NT_ARM_SYSTEM_CALL,
1490 		.n = 1,
1491 		.size = sizeof(int),
1492 		.align = sizeof(int),
1493 		.regset_get = system_call_get,
1494 		.set = system_call_set,
1495 	},
1496 #ifdef CONFIG_ARM64_SVE
1497 	[REGSET_SVE] = { /* Scalable Vector Extension */
1498 		.core_note_type = NT_ARM_SVE,
1499 		.n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1500 					      SVE_PT_REGS_SVE),
1501 				  SVE_VQ_BYTES),
1502 		.size = SVE_VQ_BYTES,
1503 		.align = SVE_VQ_BYTES,
1504 		.regset_get = sve_get,
1505 		.set = sve_set,
1506 	},
1507 #endif
1508 #ifdef CONFIG_ARM64_SME
1509 	[REGSET_SSVE] = { /* Streaming mode SVE */
1510 		.core_note_type = NT_ARM_SSVE,
1511 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1512 				  SVE_VQ_BYTES),
1513 		.size = SVE_VQ_BYTES,
1514 		.align = SVE_VQ_BYTES,
1515 		.regset_get = ssve_get,
1516 		.set = ssve_set,
1517 	},
1518 	[REGSET_ZA] = { /* SME ZA */
1519 		.core_note_type = NT_ARM_ZA,
1520 		/*
1521 		 * ZA is a single register but it's variably sized and
1522 		 * the ptrace core requires that the size of any data
1523 		 * be an exact multiple of the configured register
1524 		 * size so report as though we had SVE_VQ_BYTES
1525 		 * registers. These values aren't exposed to
1526 		 * userspace.
1527 		 */
1528 		.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1529 		.size = SVE_VQ_BYTES,
1530 		.align = SVE_VQ_BYTES,
1531 		.regset_get = za_get,
1532 		.set = za_set,
1533 	},
1534 	[REGSET_ZT] = { /* SME ZT */
1535 		.core_note_type = NT_ARM_ZT,
1536 		.n = 1,
1537 		.size = ZT_SIG_REG_BYTES,
1538 		.align = sizeof(u64),
1539 		.regset_get = zt_get,
1540 		.set = zt_set,
1541 	},
1542 #endif
1543 #ifdef CONFIG_ARM64_PTR_AUTH
1544 	[REGSET_PAC_MASK] = {
1545 		.core_note_type = NT_ARM_PAC_MASK,
1546 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1547 		.size = sizeof(u64),
1548 		.align = sizeof(u64),
1549 		.regset_get = pac_mask_get,
1550 		/* this cannot be set dynamically */
1551 	},
1552 	[REGSET_PAC_ENABLED_KEYS] = {
1553 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1554 		.n = 1,
1555 		.size = sizeof(long),
1556 		.align = sizeof(long),
1557 		.regset_get = pac_enabled_keys_get,
1558 		.set = pac_enabled_keys_set,
1559 	},
1560 #ifdef CONFIG_CHECKPOINT_RESTORE
1561 	[REGSET_PACA_KEYS] = {
1562 		.core_note_type = NT_ARM_PACA_KEYS,
1563 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1564 		.size = sizeof(__uint128_t),
1565 		.align = sizeof(__uint128_t),
1566 		.regset_get = pac_address_keys_get,
1567 		.set = pac_address_keys_set,
1568 	},
1569 	[REGSET_PACG_KEYS] = {
1570 		.core_note_type = NT_ARM_PACG_KEYS,
1571 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1572 		.size = sizeof(__uint128_t),
1573 		.align = sizeof(__uint128_t),
1574 		.regset_get = pac_generic_keys_get,
1575 		.set = pac_generic_keys_set,
1576 	},
1577 #endif
1578 #endif
1579 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1580 	[REGSET_TAGGED_ADDR_CTRL] = {
1581 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1582 		.n = 1,
1583 		.size = sizeof(long),
1584 		.align = sizeof(long),
1585 		.regset_get = tagged_addr_ctrl_get,
1586 		.set = tagged_addr_ctrl_set,
1587 	},
1588 #endif
1589 };
1590 
1591 static const struct user_regset_view user_aarch64_view = {
1592 	.name = "aarch64", .e_machine = EM_AARCH64,
1593 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1594 };
1595 
1596 #ifdef CONFIG_COMPAT
1597 enum compat_regset {
1598 	REGSET_COMPAT_GPR,
1599 	REGSET_COMPAT_VFP,
1600 };
1601 
1602 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1603 {
1604 	struct pt_regs *regs = task_pt_regs(task);
1605 
1606 	switch (idx) {
1607 	case 15:
1608 		return regs->pc;
1609 	case 16:
1610 		return pstate_to_compat_psr(regs->pstate);
1611 	case 17:
1612 		return regs->orig_x0;
1613 	default:
1614 		return regs->regs[idx];
1615 	}
1616 }
1617 
1618 static int compat_gpr_get(struct task_struct *target,
1619 			  const struct user_regset *regset,
1620 			  struct membuf to)
1621 {
1622 	int i = 0;
1623 
1624 	while (to.left)
1625 		membuf_store(&to, compat_get_user_reg(target, i++));
1626 	return 0;
1627 }
1628 
1629 static int compat_gpr_set(struct task_struct *target,
1630 			  const struct user_regset *regset,
1631 			  unsigned int pos, unsigned int count,
1632 			  const void *kbuf, const void __user *ubuf)
1633 {
1634 	struct pt_regs newregs;
1635 	int ret = 0;
1636 	unsigned int i, start, num_regs;
1637 
1638 	/* Calculate the number of AArch32 registers contained in count */
1639 	num_regs = count / regset->size;
1640 
1641 	/* Convert pos into an register number */
1642 	start = pos / regset->size;
1643 
1644 	if (start + num_regs > regset->n)
1645 		return -EIO;
1646 
1647 	newregs = *task_pt_regs(target);
1648 
1649 	for (i = 0; i < num_regs; ++i) {
1650 		unsigned int idx = start + i;
1651 		compat_ulong_t reg;
1652 
1653 		if (kbuf) {
1654 			memcpy(&reg, kbuf, sizeof(reg));
1655 			kbuf += sizeof(reg);
1656 		} else {
1657 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1658 			if (ret) {
1659 				ret = -EFAULT;
1660 				break;
1661 			}
1662 
1663 			ubuf += sizeof(reg);
1664 		}
1665 
1666 		switch (idx) {
1667 		case 15:
1668 			newregs.pc = reg;
1669 			break;
1670 		case 16:
1671 			reg = compat_psr_to_pstate(reg);
1672 			newregs.pstate = reg;
1673 			break;
1674 		case 17:
1675 			newregs.orig_x0 = reg;
1676 			break;
1677 		default:
1678 			newregs.regs[idx] = reg;
1679 		}
1680 
1681 	}
1682 
1683 	if (valid_user_regs(&newregs.user_regs, target))
1684 		*task_pt_regs(target) = newregs;
1685 	else
1686 		ret = -EINVAL;
1687 
1688 	return ret;
1689 }
1690 
1691 static int compat_vfp_get(struct task_struct *target,
1692 			  const struct user_regset *regset,
1693 			  struct membuf to)
1694 {
1695 	struct user_fpsimd_state *uregs;
1696 	compat_ulong_t fpscr;
1697 
1698 	if (!system_supports_fpsimd())
1699 		return -EINVAL;
1700 
1701 	uregs = &target->thread.uw.fpsimd_state;
1702 
1703 	if (target == current)
1704 		fpsimd_preserve_current_state();
1705 
1706 	/*
1707 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1708 	 * nicely together for us. We just need to create the fpscr separately.
1709 	 */
1710 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1711 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1712 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1713 	return membuf_store(&to, fpscr);
1714 }
1715 
1716 static int compat_vfp_set(struct task_struct *target,
1717 			  const struct user_regset *regset,
1718 			  unsigned int pos, unsigned int count,
1719 			  const void *kbuf, const void __user *ubuf)
1720 {
1721 	struct user_fpsimd_state *uregs;
1722 	compat_ulong_t fpscr;
1723 	int ret, vregs_end_pos;
1724 
1725 	if (!system_supports_fpsimd())
1726 		return -EINVAL;
1727 
1728 	uregs = &target->thread.uw.fpsimd_state;
1729 
1730 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1731 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1732 				 vregs_end_pos);
1733 
1734 	if (count && !ret) {
1735 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1736 					 vregs_end_pos, VFP_STATE_SIZE);
1737 		if (!ret) {
1738 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1739 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1740 		}
1741 	}
1742 
1743 	fpsimd_flush_task_state(target);
1744 	return ret;
1745 }
1746 
1747 static int compat_tls_get(struct task_struct *target,
1748 			  const struct user_regset *regset,
1749 			  struct membuf to)
1750 {
1751 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1752 }
1753 
1754 static int compat_tls_set(struct task_struct *target,
1755 			  const struct user_regset *regset, unsigned int pos,
1756 			  unsigned int count, const void *kbuf,
1757 			  const void __user *ubuf)
1758 {
1759 	int ret;
1760 	compat_ulong_t tls = target->thread.uw.tp_value;
1761 
1762 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1763 	if (ret)
1764 		return ret;
1765 
1766 	target->thread.uw.tp_value = tls;
1767 	return ret;
1768 }
1769 
1770 static const struct user_regset aarch32_regsets[] = {
1771 	[REGSET_COMPAT_GPR] = {
1772 		.core_note_type = NT_PRSTATUS,
1773 		.n = COMPAT_ELF_NGREG,
1774 		.size = sizeof(compat_elf_greg_t),
1775 		.align = sizeof(compat_elf_greg_t),
1776 		.regset_get = compat_gpr_get,
1777 		.set = compat_gpr_set
1778 	},
1779 	[REGSET_COMPAT_VFP] = {
1780 		.core_note_type = NT_ARM_VFP,
1781 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1782 		.size = sizeof(compat_ulong_t),
1783 		.align = sizeof(compat_ulong_t),
1784 		.active = fpr_active,
1785 		.regset_get = compat_vfp_get,
1786 		.set = compat_vfp_set
1787 	},
1788 };
1789 
1790 static const struct user_regset_view user_aarch32_view = {
1791 	.name = "aarch32", .e_machine = EM_ARM,
1792 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1793 };
1794 
1795 static const struct user_regset aarch32_ptrace_regsets[] = {
1796 	[REGSET_GPR] = {
1797 		.core_note_type = NT_PRSTATUS,
1798 		.n = COMPAT_ELF_NGREG,
1799 		.size = sizeof(compat_elf_greg_t),
1800 		.align = sizeof(compat_elf_greg_t),
1801 		.regset_get = compat_gpr_get,
1802 		.set = compat_gpr_set
1803 	},
1804 	[REGSET_FPR] = {
1805 		.core_note_type = NT_ARM_VFP,
1806 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1807 		.size = sizeof(compat_ulong_t),
1808 		.align = sizeof(compat_ulong_t),
1809 		.regset_get = compat_vfp_get,
1810 		.set = compat_vfp_set
1811 	},
1812 	[REGSET_TLS] = {
1813 		.core_note_type = NT_ARM_TLS,
1814 		.n = 1,
1815 		.size = sizeof(compat_ulong_t),
1816 		.align = sizeof(compat_ulong_t),
1817 		.regset_get = compat_tls_get,
1818 		.set = compat_tls_set,
1819 	},
1820 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1821 	[REGSET_HW_BREAK] = {
1822 		.core_note_type = NT_ARM_HW_BREAK,
1823 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1824 		.size = sizeof(u32),
1825 		.align = sizeof(u32),
1826 		.regset_get = hw_break_get,
1827 		.set = hw_break_set,
1828 	},
1829 	[REGSET_HW_WATCH] = {
1830 		.core_note_type = NT_ARM_HW_WATCH,
1831 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1832 		.size = sizeof(u32),
1833 		.align = sizeof(u32),
1834 		.regset_get = hw_break_get,
1835 		.set = hw_break_set,
1836 	},
1837 #endif
1838 	[REGSET_SYSTEM_CALL] = {
1839 		.core_note_type = NT_ARM_SYSTEM_CALL,
1840 		.n = 1,
1841 		.size = sizeof(int),
1842 		.align = sizeof(int),
1843 		.regset_get = system_call_get,
1844 		.set = system_call_set,
1845 	},
1846 };
1847 
1848 static const struct user_regset_view user_aarch32_ptrace_view = {
1849 	.name = "aarch32", .e_machine = EM_ARM,
1850 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1851 };
1852 
1853 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1854 				   compat_ulong_t __user *ret)
1855 {
1856 	compat_ulong_t tmp;
1857 
1858 	if (off & 3)
1859 		return -EIO;
1860 
1861 	if (off == COMPAT_PT_TEXT_ADDR)
1862 		tmp = tsk->mm->start_code;
1863 	else if (off == COMPAT_PT_DATA_ADDR)
1864 		tmp = tsk->mm->start_data;
1865 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1866 		tmp = tsk->mm->end_code;
1867 	else if (off < sizeof(compat_elf_gregset_t))
1868 		tmp = compat_get_user_reg(tsk, off >> 2);
1869 	else if (off >= COMPAT_USER_SZ)
1870 		return -EIO;
1871 	else
1872 		tmp = 0;
1873 
1874 	return put_user(tmp, ret);
1875 }
1876 
1877 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1878 				    compat_ulong_t val)
1879 {
1880 	struct pt_regs newregs = *task_pt_regs(tsk);
1881 	unsigned int idx = off / 4;
1882 
1883 	if (off & 3 || off >= COMPAT_USER_SZ)
1884 		return -EIO;
1885 
1886 	if (off >= sizeof(compat_elf_gregset_t))
1887 		return 0;
1888 
1889 	switch (idx) {
1890 	case 15:
1891 		newregs.pc = val;
1892 		break;
1893 	case 16:
1894 		newregs.pstate = compat_psr_to_pstate(val);
1895 		break;
1896 	case 17:
1897 		newregs.orig_x0 = val;
1898 		break;
1899 	default:
1900 		newregs.regs[idx] = val;
1901 	}
1902 
1903 	if (!valid_user_regs(&newregs.user_regs, tsk))
1904 		return -EINVAL;
1905 
1906 	*task_pt_regs(tsk) = newregs;
1907 	return 0;
1908 }
1909 
1910 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1911 
1912 /*
1913  * Convert a virtual register number into an index for a thread_info
1914  * breakpoint array. Breakpoints are identified using positive numbers
1915  * whilst watchpoints are negative. The registers are laid out as pairs
1916  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1917  * Register 0 is reserved for describing resource information.
1918  */
1919 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1920 {
1921 	return (abs(num) - 1) >> 1;
1922 }
1923 
1924 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1925 {
1926 	u8 num_brps, num_wrps, debug_arch, wp_len;
1927 	u32 reg = 0;
1928 
1929 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1930 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1931 
1932 	debug_arch	= debug_monitors_arch();
1933 	wp_len		= 8;
1934 	reg		|= debug_arch;
1935 	reg		<<= 8;
1936 	reg		|= wp_len;
1937 	reg		<<= 8;
1938 	reg		|= num_wrps;
1939 	reg		<<= 8;
1940 	reg		|= num_brps;
1941 
1942 	*kdata = reg;
1943 	return 0;
1944 }
1945 
1946 static int compat_ptrace_hbp_get(unsigned int note_type,
1947 				 struct task_struct *tsk,
1948 				 compat_long_t num,
1949 				 u32 *kdata)
1950 {
1951 	u64 addr = 0;
1952 	u32 ctrl = 0;
1953 
1954 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1955 
1956 	if (num & 1) {
1957 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1958 		*kdata = (u32)addr;
1959 	} else {
1960 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1961 		*kdata = ctrl;
1962 	}
1963 
1964 	return err;
1965 }
1966 
1967 static int compat_ptrace_hbp_set(unsigned int note_type,
1968 				 struct task_struct *tsk,
1969 				 compat_long_t num,
1970 				 u32 *kdata)
1971 {
1972 	u64 addr;
1973 	u32 ctrl;
1974 
1975 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1976 
1977 	if (num & 1) {
1978 		addr = *kdata;
1979 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1980 	} else {
1981 		ctrl = *kdata;
1982 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1983 	}
1984 
1985 	return err;
1986 }
1987 
1988 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1989 				    compat_ulong_t __user *data)
1990 {
1991 	int ret;
1992 	u32 kdata;
1993 
1994 	/* Watchpoint */
1995 	if (num < 0) {
1996 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1997 	/* Resource info */
1998 	} else if (num == 0) {
1999 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
2000 	/* Breakpoint */
2001 	} else {
2002 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2003 	}
2004 
2005 	if (!ret)
2006 		ret = put_user(kdata, data);
2007 
2008 	return ret;
2009 }
2010 
2011 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2012 				    compat_ulong_t __user *data)
2013 {
2014 	int ret;
2015 	u32 kdata = 0;
2016 
2017 	if (num == 0)
2018 		return 0;
2019 
2020 	ret = get_user(kdata, data);
2021 	if (ret)
2022 		return ret;
2023 
2024 	if (num < 0)
2025 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2026 	else
2027 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2028 
2029 	return ret;
2030 }
2031 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
2032 
2033 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2034 			compat_ulong_t caddr, compat_ulong_t cdata)
2035 {
2036 	unsigned long addr = caddr;
2037 	unsigned long data = cdata;
2038 	void __user *datap = compat_ptr(data);
2039 	int ret;
2040 
2041 	switch (request) {
2042 		case PTRACE_PEEKUSR:
2043 			ret = compat_ptrace_read_user(child, addr, datap);
2044 			break;
2045 
2046 		case PTRACE_POKEUSR:
2047 			ret = compat_ptrace_write_user(child, addr, data);
2048 			break;
2049 
2050 		case COMPAT_PTRACE_GETREGS:
2051 			ret = copy_regset_to_user(child,
2052 						  &user_aarch32_view,
2053 						  REGSET_COMPAT_GPR,
2054 						  0, sizeof(compat_elf_gregset_t),
2055 						  datap);
2056 			break;
2057 
2058 		case COMPAT_PTRACE_SETREGS:
2059 			ret = copy_regset_from_user(child,
2060 						    &user_aarch32_view,
2061 						    REGSET_COMPAT_GPR,
2062 						    0, sizeof(compat_elf_gregset_t),
2063 						    datap);
2064 			break;
2065 
2066 		case COMPAT_PTRACE_GET_THREAD_AREA:
2067 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2068 				       (compat_ulong_t __user *)datap);
2069 			break;
2070 
2071 		case COMPAT_PTRACE_SET_SYSCALL:
2072 			task_pt_regs(child)->syscallno = data;
2073 			ret = 0;
2074 			break;
2075 
2076 		case COMPAT_PTRACE_GETVFPREGS:
2077 			ret = copy_regset_to_user(child,
2078 						  &user_aarch32_view,
2079 						  REGSET_COMPAT_VFP,
2080 						  0, VFP_STATE_SIZE,
2081 						  datap);
2082 			break;
2083 
2084 		case COMPAT_PTRACE_SETVFPREGS:
2085 			ret = copy_regset_from_user(child,
2086 						    &user_aarch32_view,
2087 						    REGSET_COMPAT_VFP,
2088 						    0, VFP_STATE_SIZE,
2089 						    datap);
2090 			break;
2091 
2092 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2093 		case COMPAT_PTRACE_GETHBPREGS:
2094 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2095 			break;
2096 
2097 		case COMPAT_PTRACE_SETHBPREGS:
2098 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2099 			break;
2100 #endif
2101 
2102 		default:
2103 			ret = compat_ptrace_request(child, request, addr,
2104 						    data);
2105 			break;
2106 	}
2107 
2108 	return ret;
2109 }
2110 #endif /* CONFIG_COMPAT */
2111 
2112 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2113 {
2114 #ifdef CONFIG_COMPAT
2115 	/*
2116 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2117 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2118 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2119 	 * access to the TLS register.
2120 	 */
2121 	if (is_compat_task())
2122 		return &user_aarch32_view;
2123 	else if (is_compat_thread(task_thread_info(task)))
2124 		return &user_aarch32_ptrace_view;
2125 #endif
2126 	return &user_aarch64_view;
2127 }
2128 
2129 long arch_ptrace(struct task_struct *child, long request,
2130 		 unsigned long addr, unsigned long data)
2131 {
2132 	switch (request) {
2133 	case PTRACE_PEEKMTETAGS:
2134 	case PTRACE_POKEMTETAGS:
2135 		return mte_ptrace_copy_tags(child, request, addr, data);
2136 	}
2137 
2138 	return ptrace_request(child, request, addr, data);
2139 }
2140 
2141 enum ptrace_syscall_dir {
2142 	PTRACE_SYSCALL_ENTER = 0,
2143 	PTRACE_SYSCALL_EXIT,
2144 };
2145 
2146 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2147 {
2148 	int regno;
2149 	unsigned long saved_reg;
2150 
2151 	/*
2152 	 * We have some ABI weirdness here in the way that we handle syscall
2153 	 * exit stops because we indicate whether or not the stop has been
2154 	 * signalled from syscall entry or syscall exit by clobbering a general
2155 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2156 	 * and restoring its old value after the stop. This means that:
2157 	 *
2158 	 * - Any writes by the tracer to this register during the stop are
2159 	 *   ignored/discarded.
2160 	 *
2161 	 * - The actual value of the register is not available during the stop,
2162 	 *   so the tracer cannot save it and restore it later.
2163 	 *
2164 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2165 	 *   (the latter do not nobble any registers).
2166 	 */
2167 	regno = (is_compat_task() ? 12 : 7);
2168 	saved_reg = regs->regs[regno];
2169 	regs->regs[regno] = dir;
2170 
2171 	if (dir == PTRACE_SYSCALL_ENTER) {
2172 		if (ptrace_report_syscall_entry(regs))
2173 			forget_syscall(regs);
2174 		regs->regs[regno] = saved_reg;
2175 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2176 		ptrace_report_syscall_exit(regs, 0);
2177 		regs->regs[regno] = saved_reg;
2178 	} else {
2179 		regs->regs[regno] = saved_reg;
2180 
2181 		/*
2182 		 * Signal a pseudo-step exception since we are stepping but
2183 		 * tracer modifications to the registers may have rewound the
2184 		 * state machine.
2185 		 */
2186 		ptrace_report_syscall_exit(regs, 1);
2187 	}
2188 }
2189 
2190 int syscall_trace_enter(struct pt_regs *regs)
2191 {
2192 	unsigned long flags = read_thread_flags();
2193 
2194 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2195 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
2196 		if (flags & _TIF_SYSCALL_EMU)
2197 			return NO_SYSCALL;
2198 	}
2199 
2200 	/* Do the secure computing after ptrace; failures should be fast. */
2201 	if (secure_computing() == -1)
2202 		return NO_SYSCALL;
2203 
2204 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2205 		trace_sys_enter(regs, regs->syscallno);
2206 
2207 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2208 			    regs->regs[2], regs->regs[3]);
2209 
2210 	return regs->syscallno;
2211 }
2212 
2213 void syscall_trace_exit(struct pt_regs *regs)
2214 {
2215 	unsigned long flags = read_thread_flags();
2216 
2217 	audit_syscall_exit(regs);
2218 
2219 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2220 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2221 
2222 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2223 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
2224 
2225 	rseq_syscall(regs);
2226 }
2227 
2228 /*
2229  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2230  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2231  * not described in ARM DDI 0487D.a.
2232  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2233  * be allocated an EL0 meaning in future.
2234  * Userspace cannot use these until they have an architectural meaning.
2235  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2236  * We also reserve IL for the kernel; SS is handled dynamically.
2237  */
2238 #define SPSR_EL1_AARCH64_RES0_BITS \
2239 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2240 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2241 #define SPSR_EL1_AARCH32_RES0_BITS \
2242 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2243 
2244 static int valid_compat_regs(struct user_pt_regs *regs)
2245 {
2246 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2247 
2248 	if (!system_supports_mixed_endian_el0()) {
2249 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2250 			regs->pstate |= PSR_AA32_E_BIT;
2251 		else
2252 			regs->pstate &= ~PSR_AA32_E_BIT;
2253 	}
2254 
2255 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2256 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2257 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2258 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2259 		return 1;
2260 	}
2261 
2262 	/*
2263 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2264 	 * arch/arm.
2265 	 */
2266 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2267 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2268 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2269 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2270 			PSR_AA32_T_BIT;
2271 	regs->pstate |= PSR_MODE32_BIT;
2272 
2273 	return 0;
2274 }
2275 
2276 static int valid_native_regs(struct user_pt_regs *regs)
2277 {
2278 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2279 
2280 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2281 	    (regs->pstate & PSR_D_BIT) == 0 &&
2282 	    (regs->pstate & PSR_A_BIT) == 0 &&
2283 	    (regs->pstate & PSR_I_BIT) == 0 &&
2284 	    (regs->pstate & PSR_F_BIT) == 0) {
2285 		return 1;
2286 	}
2287 
2288 	/* Force PSR to a valid 64-bit EL0t */
2289 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2290 
2291 	return 0;
2292 }
2293 
2294 /*
2295  * Are the current registers suitable for user mode? (used to maintain
2296  * security in signal handlers)
2297  */
2298 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2299 {
2300 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2301 	user_regs_reset_single_step(regs, task);
2302 
2303 	if (is_compat_thread(task_thread_info(task)))
2304 		return valid_compat_regs(regs);
2305 	else
2306 		return valid_native_regs(regs);
2307 }
2308