xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45 
46 struct pt_regs_offset {
47 	const char *name;
48 	int offset;
49 };
50 
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55 
56 static const struct pt_regs_offset regoffset_table[] = {
57 	GPR_OFFSET_NAME(0),
58 	GPR_OFFSET_NAME(1),
59 	GPR_OFFSET_NAME(2),
60 	GPR_OFFSET_NAME(3),
61 	GPR_OFFSET_NAME(4),
62 	GPR_OFFSET_NAME(5),
63 	GPR_OFFSET_NAME(6),
64 	GPR_OFFSET_NAME(7),
65 	GPR_OFFSET_NAME(8),
66 	GPR_OFFSET_NAME(9),
67 	GPR_OFFSET_NAME(10),
68 	GPR_OFFSET_NAME(11),
69 	GPR_OFFSET_NAME(12),
70 	GPR_OFFSET_NAME(13),
71 	GPR_OFFSET_NAME(14),
72 	GPR_OFFSET_NAME(15),
73 	GPR_OFFSET_NAME(16),
74 	GPR_OFFSET_NAME(17),
75 	GPR_OFFSET_NAME(18),
76 	GPR_OFFSET_NAME(19),
77 	GPR_OFFSET_NAME(20),
78 	GPR_OFFSET_NAME(21),
79 	GPR_OFFSET_NAME(22),
80 	GPR_OFFSET_NAME(23),
81 	GPR_OFFSET_NAME(24),
82 	GPR_OFFSET_NAME(25),
83 	GPR_OFFSET_NAME(26),
84 	GPR_OFFSET_NAME(27),
85 	GPR_OFFSET_NAME(28),
86 	GPR_OFFSET_NAME(29),
87 	GPR_OFFSET_NAME(30),
88 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 	REG_OFFSET_NAME(sp),
90 	REG_OFFSET_NAME(pc),
91 	REG_OFFSET_NAME(pstate),
92 	REG_OFFSET_END,
93 };
94 
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:	the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104 	const struct pt_regs_offset *roff;
105 
106 	for (roff = regoffset_table; roff->name != NULL; roff++)
107 		if (!strcmp(roff->name, name))
108 			return roff->offset;
109 	return -EINVAL;
110 }
111 
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 	return ((addr & ~(THREAD_SIZE - 1))  ==
123 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 		on_irq_stack(addr, sizeof(unsigned long), NULL);
125 }
126 
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:	pt_regs which contains kernel stack pointer.
130  * @n:		stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139 
140 	addr += n;
141 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 		return *addr;
143 	else
144 		return 0;
145 }
146 
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151 
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157 	/*
158 	 * This would be better off in core code, but PTRACE_DETACH has
159 	 * grown its fair share of arch-specific worts and changing it
160 	 * is likely to cause regressions on obscure architectures.
161 	 */
162 	user_disable_single_step(child);
163 }
164 
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170 				struct perf_sample_data *data,
171 				struct pt_regs *regs)
172 {
173 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 	const char *desc = "Hardware breakpoint trap (ptrace)";
175 
176 #ifdef CONFIG_COMPAT
177 	if (is_compat_task()) {
178 		int si_errno = 0;
179 		int i;
180 
181 		for (i = 0; i < ARM_MAX_BRP; ++i) {
182 			if (current->thread.debug.hbp_break[i] == bp) {
183 				si_errno = (i << 1) + 1;
184 				break;
185 			}
186 		}
187 
188 		for (i = 0; i < ARM_MAX_WRP; ++i) {
189 			if (current->thread.debug.hbp_watch[i] == bp) {
190 				si_errno = -((i << 1) + 1);
191 				break;
192 			}
193 		}
194 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 						  desc);
196 		return;
197 	}
198 #endif
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201 
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 	int i;
209 	struct thread_struct *t = &tsk->thread;
210 
211 	for (i = 0; i < ARM_MAX_BRP; i++) {
212 		if (t->debug.hbp_break[i]) {
213 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 			t->debug.hbp_break[i] = NULL;
215 		}
216 	}
217 
218 	for (i = 0; i < ARM_MAX_WRP; i++) {
219 		if (t->debug.hbp_watch[i]) {
220 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 			t->debug.hbp_watch[i] = NULL;
222 		}
223 	}
224 }
225 
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230 
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 					       struct task_struct *tsk,
233 					       unsigned long idx)
234 {
235 	struct perf_event *bp = ERR_PTR(-EINVAL);
236 
237 	switch (note_type) {
238 	case NT_ARM_HW_BREAK:
239 		if (idx >= ARM_MAX_BRP)
240 			goto out;
241 		idx = array_index_nospec(idx, ARM_MAX_BRP);
242 		bp = tsk->thread.debug.hbp_break[idx];
243 		break;
244 	case NT_ARM_HW_WATCH:
245 		if (idx >= ARM_MAX_WRP)
246 			goto out;
247 		idx = array_index_nospec(idx, ARM_MAX_WRP);
248 		bp = tsk->thread.debug.hbp_watch[idx];
249 		break;
250 	}
251 
252 out:
253 	return bp;
254 }
255 
256 static int ptrace_hbp_set_event(unsigned int note_type,
257 				struct task_struct *tsk,
258 				unsigned long idx,
259 				struct perf_event *bp)
260 {
261 	int err = -EINVAL;
262 
263 	switch (note_type) {
264 	case NT_ARM_HW_BREAK:
265 		if (idx >= ARM_MAX_BRP)
266 			goto out;
267 		idx = array_index_nospec(idx, ARM_MAX_BRP);
268 		tsk->thread.debug.hbp_break[idx] = bp;
269 		err = 0;
270 		break;
271 	case NT_ARM_HW_WATCH:
272 		if (idx >= ARM_MAX_WRP)
273 			goto out;
274 		idx = array_index_nospec(idx, ARM_MAX_WRP);
275 		tsk->thread.debug.hbp_watch[idx] = bp;
276 		err = 0;
277 		break;
278 	}
279 
280 out:
281 	return err;
282 }
283 
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 					    struct task_struct *tsk,
286 					    unsigned long idx)
287 {
288 	struct perf_event *bp;
289 	struct perf_event_attr attr;
290 	int err, type;
291 
292 	switch (note_type) {
293 	case NT_ARM_HW_BREAK:
294 		type = HW_BREAKPOINT_X;
295 		break;
296 	case NT_ARM_HW_WATCH:
297 		type = HW_BREAKPOINT_RW;
298 		break;
299 	default:
300 		return ERR_PTR(-EINVAL);
301 	}
302 
303 	ptrace_breakpoint_init(&attr);
304 
305 	/*
306 	 * Initialise fields to sane defaults
307 	 * (i.e. values that will pass validation).
308 	 */
309 	attr.bp_addr	= 0;
310 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
311 	attr.bp_type	= type;
312 	attr.disabled	= 1;
313 
314 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 	if (IS_ERR(bp))
316 		return bp;
317 
318 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 	if (err)
320 		return ERR_PTR(err);
321 
322 	return bp;
323 }
324 
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 				     struct arch_hw_breakpoint_ctrl ctrl,
327 				     struct perf_event_attr *attr)
328 {
329 	int err, len, type, offset, disabled = !ctrl.enabled;
330 
331 	attr->disabled = disabled;
332 	if (disabled)
333 		return 0;
334 
335 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 	if (err)
337 		return err;
338 
339 	switch (note_type) {
340 	case NT_ARM_HW_BREAK:
341 		if ((type & HW_BREAKPOINT_X) != type)
342 			return -EINVAL;
343 		break;
344 	case NT_ARM_HW_WATCH:
345 		if ((type & HW_BREAKPOINT_RW) != type)
346 			return -EINVAL;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	attr->bp_len	= len;
353 	attr->bp_type	= type;
354 	attr->bp_addr	+= offset;
355 
356 	return 0;
357 }
358 
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 	u8 num;
362 	u32 reg = 0;
363 
364 	switch (note_type) {
365 	case NT_ARM_HW_BREAK:
366 		num = hw_breakpoint_slots(TYPE_INST);
367 		break;
368 	case NT_ARM_HW_WATCH:
369 		num = hw_breakpoint_slots(TYPE_DATA);
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	reg |= debug_monitors_arch();
376 	reg <<= 8;
377 	reg |= num;
378 
379 	*info = reg;
380 	return 0;
381 }
382 
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 			       struct task_struct *tsk,
385 			       unsigned long idx,
386 			       u32 *ctrl)
387 {
388 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389 
390 	if (IS_ERR(bp))
391 		return PTR_ERR(bp);
392 
393 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u64 *addr)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*addr = bp ? counter_arch_bp(bp)->address : 0;
408 	return 0;
409 }
410 
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 							struct task_struct *tsk,
413 							unsigned long idx)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (!bp)
418 		bp = ptrace_hbp_create(note_type, tsk, idx);
419 
420 	return bp;
421 }
422 
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 			       struct task_struct *tsk,
425 			       unsigned long idx,
426 			       u32 uctrl)
427 {
428 	int err;
429 	struct perf_event *bp;
430 	struct perf_event_attr attr;
431 	struct arch_hw_breakpoint_ctrl ctrl;
432 
433 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 	if (IS_ERR(bp)) {
435 		err = PTR_ERR(bp);
436 		return err;
437 	}
438 
439 	attr = bp->attr;
440 	decode_ctrl_reg(uctrl, &ctrl);
441 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 	if (err)
443 		return err;
444 
445 	return modify_user_hw_breakpoint(bp, &attr);
446 }
447 
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 			       struct task_struct *tsk,
450 			       unsigned long idx,
451 			       u64 addr)
452 {
453 	int err;
454 	struct perf_event *bp;
455 	struct perf_event_attr attr;
456 
457 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 	if (IS_ERR(bp)) {
459 		err = PTR_ERR(bp);
460 		return err;
461 	}
462 
463 	attr = bp->attr;
464 	attr.bp_addr = addr;
465 	err = modify_user_hw_breakpoint(bp, &attr);
466 	return err;
467 }
468 
469 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
472 
473 static int hw_break_get(struct task_struct *target,
474 			const struct user_regset *regset,
475 			struct membuf to)
476 {
477 	unsigned int note_type = regset->core_note_type;
478 	int ret, idx = 0;
479 	u32 info, ctrl;
480 	u64 addr;
481 
482 	/* Resource info */
483 	ret = ptrace_hbp_get_resource_info(note_type, &info);
484 	if (ret)
485 		return ret;
486 
487 	membuf_write(&to, &info, sizeof(info));
488 	membuf_zero(&to, sizeof(u32));
489 	/* (address, ctrl) registers */
490 	while (to.left) {
491 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 		if (ret)
493 			return ret;
494 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 		if (ret)
496 			return ret;
497 		membuf_store(&to, addr);
498 		membuf_store(&to, ctrl);
499 		membuf_zero(&to, sizeof(u32));
500 		idx++;
501 	}
502 	return 0;
503 }
504 
505 static int hw_break_set(struct task_struct *target,
506 			const struct user_regset *regset,
507 			unsigned int pos, unsigned int count,
508 			const void *kbuf, const void __user *ubuf)
509 {
510 	unsigned int note_type = regset->core_note_type;
511 	int ret, idx = 0, offset, limit;
512 	u32 ctrl;
513 	u64 addr;
514 
515 	/* Resource info and pad */
516 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 	if (ret)
519 		return ret;
520 
521 	/* (address, ctrl) registers */
522 	limit = regset->n * regset->size;
523 	while (count && offset < limit) {
524 		if (count < PTRACE_HBP_ADDR_SZ)
525 			return -EINVAL;
526 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
527 					 offset, offset + PTRACE_HBP_ADDR_SZ);
528 		if (ret)
529 			return ret;
530 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
531 		if (ret)
532 			return ret;
533 		offset += PTRACE_HBP_ADDR_SZ;
534 
535 		if (!count)
536 			break;
537 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
538 					 offset, offset + PTRACE_HBP_CTRL_SZ);
539 		if (ret)
540 			return ret;
541 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
542 		if (ret)
543 			return ret;
544 		offset += PTRACE_HBP_CTRL_SZ;
545 
546 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
547 						offset,
548 						offset + PTRACE_HBP_PAD_SZ);
549 		if (ret)
550 			return ret;
551 		offset += PTRACE_HBP_PAD_SZ;
552 		idx++;
553 	}
554 
555 	return 0;
556 }
557 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
558 
559 static int gpr_get(struct task_struct *target,
560 		   const struct user_regset *regset,
561 		   struct membuf to)
562 {
563 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
564 	return membuf_write(&to, uregs, sizeof(*uregs));
565 }
566 
567 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
568 		   unsigned int pos, unsigned int count,
569 		   const void *kbuf, const void __user *ubuf)
570 {
571 	int ret;
572 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
573 
574 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
575 	if (ret)
576 		return ret;
577 
578 	if (!valid_user_regs(&newregs, target))
579 		return -EINVAL;
580 
581 	task_pt_regs(target)->user_regs = newregs;
582 	return 0;
583 }
584 
585 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
586 {
587 	if (!system_supports_fpsimd())
588 		return -ENODEV;
589 	return regset->n;
590 }
591 
592 /*
593  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
594  */
595 static int __fpr_get(struct task_struct *target,
596 		     const struct user_regset *regset,
597 		     struct membuf to)
598 {
599 	struct user_fpsimd_state *uregs;
600 
601 	sve_sync_to_fpsimd(target);
602 
603 	uregs = &target->thread.uw.fpsimd_state;
604 
605 	return membuf_write(&to, uregs, sizeof(*uregs));
606 }
607 
608 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
609 		   struct membuf to)
610 {
611 	if (!system_supports_fpsimd())
612 		return -EINVAL;
613 
614 	if (target == current)
615 		fpsimd_preserve_current_state();
616 
617 	return __fpr_get(target, regset, to);
618 }
619 
620 static int __fpr_set(struct task_struct *target,
621 		     const struct user_regset *regset,
622 		     unsigned int pos, unsigned int count,
623 		     const void *kbuf, const void __user *ubuf,
624 		     unsigned int start_pos)
625 {
626 	int ret;
627 	struct user_fpsimd_state newstate;
628 
629 	/*
630 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
631 	 * short copyin can't resurrect stale data.
632 	 */
633 	sve_sync_to_fpsimd(target);
634 
635 	newstate = target->thread.uw.fpsimd_state;
636 
637 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
638 				 start_pos, start_pos + sizeof(newstate));
639 	if (ret)
640 		return ret;
641 
642 	target->thread.uw.fpsimd_state = newstate;
643 
644 	return ret;
645 }
646 
647 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
648 		   unsigned int pos, unsigned int count,
649 		   const void *kbuf, const void __user *ubuf)
650 {
651 	int ret;
652 
653 	if (!system_supports_fpsimd())
654 		return -EINVAL;
655 
656 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
657 	if (ret)
658 		return ret;
659 
660 	sve_sync_from_fpsimd_zeropad(target);
661 	fpsimd_flush_task_state(target);
662 
663 	return ret;
664 }
665 
666 static int tls_get(struct task_struct *target, const struct user_regset *regset,
667 		   struct membuf to)
668 {
669 	if (target == current)
670 		tls_preserve_current_state();
671 
672 	return membuf_store(&to, target->thread.uw.tp_value);
673 }
674 
675 static int tls_set(struct task_struct *target, const struct user_regset *regset,
676 		   unsigned int pos, unsigned int count,
677 		   const void *kbuf, const void __user *ubuf)
678 {
679 	int ret;
680 	unsigned long tls = target->thread.uw.tp_value;
681 
682 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
683 	if (ret)
684 		return ret;
685 
686 	target->thread.uw.tp_value = tls;
687 	return ret;
688 }
689 
690 static int system_call_get(struct task_struct *target,
691 			   const struct user_regset *regset,
692 			   struct membuf to)
693 {
694 	return membuf_store(&to, task_pt_regs(target)->syscallno);
695 }
696 
697 static int system_call_set(struct task_struct *target,
698 			   const struct user_regset *regset,
699 			   unsigned int pos, unsigned int count,
700 			   const void *kbuf, const void __user *ubuf)
701 {
702 	int syscallno = task_pt_regs(target)->syscallno;
703 	int ret;
704 
705 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
706 	if (ret)
707 		return ret;
708 
709 	task_pt_regs(target)->syscallno = syscallno;
710 	return ret;
711 }
712 
713 #ifdef CONFIG_ARM64_SVE
714 
715 static void sve_init_header_from_task(struct user_sve_header *header,
716 				      struct task_struct *target,
717 				      enum vec_type type)
718 {
719 	unsigned int vq;
720 	bool active;
721 	bool fpsimd_only;
722 	enum vec_type task_type;
723 
724 	memset(header, 0, sizeof(*header));
725 
726 	/* Check if the requested registers are active for the task */
727 	if (thread_sm_enabled(&target->thread))
728 		task_type = ARM64_VEC_SME;
729 	else
730 		task_type = ARM64_VEC_SVE;
731 	active = (task_type == type);
732 
733 	switch (type) {
734 	case ARM64_VEC_SVE:
735 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
736 			header->flags |= SVE_PT_VL_INHERIT;
737 		fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
738 		break;
739 	case ARM64_VEC_SME:
740 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
741 			header->flags |= SVE_PT_VL_INHERIT;
742 		fpsimd_only = false;
743 		break;
744 	default:
745 		WARN_ON_ONCE(1);
746 		return;
747 	}
748 
749 	if (active) {
750 		if (fpsimd_only) {
751 			header->flags |= SVE_PT_REGS_FPSIMD;
752 		} else {
753 			header->flags |= SVE_PT_REGS_SVE;
754 		}
755 	}
756 
757 	header->vl = task_get_vl(target, type);
758 	vq = sve_vq_from_vl(header->vl);
759 
760 	header->max_vl = vec_max_vl(type);
761 	header->size = SVE_PT_SIZE(vq, header->flags);
762 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
763 				      SVE_PT_REGS_SVE);
764 }
765 
766 static unsigned int sve_size_from_header(struct user_sve_header const *header)
767 {
768 	return ALIGN(header->size, SVE_VQ_BYTES);
769 }
770 
771 static int sve_get_common(struct task_struct *target,
772 			  const struct user_regset *regset,
773 			  struct membuf to,
774 			  enum vec_type type)
775 {
776 	struct user_sve_header header;
777 	unsigned int vq;
778 	unsigned long start, end;
779 
780 	/* Header */
781 	sve_init_header_from_task(&header, target, type);
782 	vq = sve_vq_from_vl(header.vl);
783 
784 	membuf_write(&to, &header, sizeof(header));
785 
786 	if (target == current)
787 		fpsimd_preserve_current_state();
788 
789 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
790 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
791 
792 	switch ((header.flags & SVE_PT_REGS_MASK)) {
793 	case SVE_PT_REGS_FPSIMD:
794 		return __fpr_get(target, regset, to);
795 
796 	case SVE_PT_REGS_SVE:
797 		start = SVE_PT_SVE_OFFSET;
798 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
799 		membuf_write(&to, target->thread.sve_state, end - start);
800 
801 		start = end;
802 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
803 		membuf_zero(&to, end - start);
804 
805 		/*
806 		 * Copy fpsr, and fpcr which must follow contiguously in
807 		 * struct fpsimd_state:
808 		 */
809 		start = end;
810 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
811 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
812 			     end - start);
813 
814 		start = end;
815 		end = sve_size_from_header(&header);
816 		return membuf_zero(&to, end - start);
817 
818 	default:
819 		return 0;
820 	}
821 }
822 
823 static int sve_get(struct task_struct *target,
824 		   const struct user_regset *regset,
825 		   struct membuf to)
826 {
827 	if (!system_supports_sve())
828 		return -EINVAL;
829 
830 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
831 }
832 
833 static int sve_set_common(struct task_struct *target,
834 			  const struct user_regset *regset,
835 			  unsigned int pos, unsigned int count,
836 			  const void *kbuf, const void __user *ubuf,
837 			  enum vec_type type)
838 {
839 	int ret;
840 	struct user_sve_header header;
841 	unsigned int vq;
842 	unsigned long start, end;
843 
844 	/* Header */
845 	if (count < sizeof(header))
846 		return -EINVAL;
847 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
848 				 0, sizeof(header));
849 	if (ret)
850 		goto out;
851 
852 	/*
853 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
854 	 * vec_set_vector_length(), which will also validate them for us:
855 	 */
856 	ret = vec_set_vector_length(target, type, header.vl,
857 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
858 	if (ret)
859 		goto out;
860 
861 	/* Actual VL set may be less than the user asked for: */
862 	vq = sve_vq_from_vl(task_get_vl(target, type));
863 
864 	/* Enter/exit streaming mode */
865 	if (system_supports_sme()) {
866 		u64 old_svcr = target->thread.svcr;
867 
868 		switch (type) {
869 		case ARM64_VEC_SVE:
870 			target->thread.svcr &= ~SVCR_SM_MASK;
871 			break;
872 		case ARM64_VEC_SME:
873 			target->thread.svcr |= SVCR_SM_MASK;
874 			break;
875 		default:
876 			WARN_ON_ONCE(1);
877 			return -EINVAL;
878 		}
879 
880 		/*
881 		 * If we switched then invalidate any existing SVE
882 		 * state and ensure there's storage.
883 		 */
884 		if (target->thread.svcr != old_svcr)
885 			sve_alloc(target);
886 	}
887 
888 	/* Registers: FPSIMD-only case */
889 
890 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
891 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
892 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
893 				SVE_PT_FPSIMD_OFFSET);
894 		clear_tsk_thread_flag(target, TIF_SVE);
895 		if (type == ARM64_VEC_SME)
896 			fpsimd_force_sync_to_sve(target);
897 		goto out;
898 	}
899 
900 	/*
901 	 * Otherwise: no registers or full SVE case.  For backwards
902 	 * compatibility reasons we treat empty flags as SVE registers.
903 	 */
904 
905 	/*
906 	 * If setting a different VL from the requested VL and there is
907 	 * register data, the data layout will be wrong: don't even
908 	 * try to set the registers in this case.
909 	 */
910 	if (count && vq != sve_vq_from_vl(header.vl)) {
911 		ret = -EIO;
912 		goto out;
913 	}
914 
915 	sve_alloc(target);
916 	if (!target->thread.sve_state) {
917 		ret = -ENOMEM;
918 		clear_tsk_thread_flag(target, TIF_SVE);
919 		goto out;
920 	}
921 
922 	/*
923 	 * Ensure target->thread.sve_state is up to date with target's
924 	 * FPSIMD regs, so that a short copyin leaves trailing
925 	 * registers unmodified.  Always enable SVE even if going into
926 	 * streaming mode.
927 	 */
928 	fpsimd_sync_to_sve(target);
929 	set_tsk_thread_flag(target, TIF_SVE);
930 
931 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
932 	start = SVE_PT_SVE_OFFSET;
933 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
934 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
935 				 target->thread.sve_state,
936 				 start, end);
937 	if (ret)
938 		goto out;
939 
940 	start = end;
941 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
942 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
943 					start, end);
944 	if (ret)
945 		goto out;
946 
947 	/*
948 	 * Copy fpsr, and fpcr which must follow contiguously in
949 	 * struct fpsimd_state:
950 	 */
951 	start = end;
952 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
953 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
954 				 &target->thread.uw.fpsimd_state.fpsr,
955 				 start, end);
956 
957 out:
958 	fpsimd_flush_task_state(target);
959 	return ret;
960 }
961 
962 static int sve_set(struct task_struct *target,
963 		   const struct user_regset *regset,
964 		   unsigned int pos, unsigned int count,
965 		   const void *kbuf, const void __user *ubuf)
966 {
967 	if (!system_supports_sve())
968 		return -EINVAL;
969 
970 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
971 			      ARM64_VEC_SVE);
972 }
973 
974 #endif /* CONFIG_ARM64_SVE */
975 
976 #ifdef CONFIG_ARM64_SME
977 
978 static int ssve_get(struct task_struct *target,
979 		   const struct user_regset *regset,
980 		   struct membuf to)
981 {
982 	if (!system_supports_sme())
983 		return -EINVAL;
984 
985 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
986 }
987 
988 static int ssve_set(struct task_struct *target,
989 		    const struct user_regset *regset,
990 		    unsigned int pos, unsigned int count,
991 		    const void *kbuf, const void __user *ubuf)
992 {
993 	if (!system_supports_sme())
994 		return -EINVAL;
995 
996 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
997 			      ARM64_VEC_SME);
998 }
999 
1000 static int za_get(struct task_struct *target,
1001 		  const struct user_regset *regset,
1002 		  struct membuf to)
1003 {
1004 	struct user_za_header header;
1005 	unsigned int vq;
1006 	unsigned long start, end;
1007 
1008 	if (!system_supports_sme())
1009 		return -EINVAL;
1010 
1011 	/* Header */
1012 	memset(&header, 0, sizeof(header));
1013 
1014 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1015 		header.flags |= ZA_PT_VL_INHERIT;
1016 
1017 	header.vl = task_get_sme_vl(target);
1018 	vq = sve_vq_from_vl(header.vl);
1019 	header.max_vl = sme_max_vl();
1020 	header.max_size = ZA_PT_SIZE(vq);
1021 
1022 	/* If ZA is not active there is only the header */
1023 	if (thread_za_enabled(&target->thread))
1024 		header.size = ZA_PT_SIZE(vq);
1025 	else
1026 		header.size = ZA_PT_ZA_OFFSET;
1027 
1028 	membuf_write(&to, &header, sizeof(header));
1029 
1030 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1031 	end = ZA_PT_ZA_OFFSET;
1032 
1033 	if (target == current)
1034 		fpsimd_preserve_current_state();
1035 
1036 	/* Any register data to include? */
1037 	if (thread_za_enabled(&target->thread)) {
1038 		start = end;
1039 		end = ZA_PT_SIZE(vq);
1040 		membuf_write(&to, target->thread.za_state, end - start);
1041 	}
1042 
1043 	/* Zero any trailing padding */
1044 	start = end;
1045 	end = ALIGN(header.size, SVE_VQ_BYTES);
1046 	return membuf_zero(&to, end - start);
1047 }
1048 
1049 static int za_set(struct task_struct *target,
1050 		  const struct user_regset *regset,
1051 		  unsigned int pos, unsigned int count,
1052 		  const void *kbuf, const void __user *ubuf)
1053 {
1054 	int ret;
1055 	struct user_za_header header;
1056 	unsigned int vq;
1057 	unsigned long start, end;
1058 
1059 	if (!system_supports_sme())
1060 		return -EINVAL;
1061 
1062 	/* Header */
1063 	if (count < sizeof(header))
1064 		return -EINVAL;
1065 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1066 				 0, sizeof(header));
1067 	if (ret)
1068 		goto out;
1069 
1070 	/*
1071 	 * All current ZA_PT_* flags are consumed by
1072 	 * vec_set_vector_length(), which will also validate them for
1073 	 * us:
1074 	 */
1075 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1076 		((unsigned long)header.flags) << 16);
1077 	if (ret)
1078 		goto out;
1079 
1080 	/* Actual VL set may be less than the user asked for: */
1081 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1082 
1083 	/* Ensure there is some SVE storage for streaming mode */
1084 	if (!target->thread.sve_state) {
1085 		sve_alloc(target);
1086 		if (!target->thread.sve_state) {
1087 			clear_thread_flag(TIF_SME);
1088 			ret = -ENOMEM;
1089 			goto out;
1090 		}
1091 	}
1092 
1093 	/* Allocate/reinit ZA storage */
1094 	sme_alloc(target);
1095 	if (!target->thread.za_state) {
1096 		ret = -ENOMEM;
1097 		clear_tsk_thread_flag(target, TIF_SME);
1098 		goto out;
1099 	}
1100 
1101 	/* If there is no data then disable ZA */
1102 	if (!count) {
1103 		target->thread.svcr &= ~SVCR_ZA_MASK;
1104 		goto out;
1105 	}
1106 
1107 	/*
1108 	 * If setting a different VL from the requested VL and there is
1109 	 * register data, the data layout will be wrong: don't even
1110 	 * try to set the registers in this case.
1111 	 */
1112 	if (vq != sve_vq_from_vl(header.vl)) {
1113 		ret = -EIO;
1114 		goto out;
1115 	}
1116 
1117 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1118 	start = ZA_PT_ZA_OFFSET;
1119 	end = ZA_PT_SIZE(vq);
1120 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1121 				 target->thread.za_state,
1122 				 start, end);
1123 	if (ret)
1124 		goto out;
1125 
1126 	/* Mark ZA as active and let userspace use it */
1127 	set_tsk_thread_flag(target, TIF_SME);
1128 	target->thread.svcr |= SVCR_ZA_MASK;
1129 
1130 out:
1131 	fpsimd_flush_task_state(target);
1132 	return ret;
1133 }
1134 
1135 #endif /* CONFIG_ARM64_SME */
1136 
1137 #ifdef CONFIG_ARM64_PTR_AUTH
1138 static int pac_mask_get(struct task_struct *target,
1139 			const struct user_regset *regset,
1140 			struct membuf to)
1141 {
1142 	/*
1143 	 * The PAC bits can differ across data and instruction pointers
1144 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1145 	 * we expose separate masks.
1146 	 */
1147 	unsigned long mask = ptrauth_user_pac_mask();
1148 	struct user_pac_mask uregs = {
1149 		.data_mask = mask,
1150 		.insn_mask = mask,
1151 	};
1152 
1153 	if (!system_supports_address_auth())
1154 		return -EINVAL;
1155 
1156 	return membuf_write(&to, &uregs, sizeof(uregs));
1157 }
1158 
1159 static int pac_enabled_keys_get(struct task_struct *target,
1160 				const struct user_regset *regset,
1161 				struct membuf to)
1162 {
1163 	long enabled_keys = ptrauth_get_enabled_keys(target);
1164 
1165 	if (IS_ERR_VALUE(enabled_keys))
1166 		return enabled_keys;
1167 
1168 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1169 }
1170 
1171 static int pac_enabled_keys_set(struct task_struct *target,
1172 				const struct user_regset *regset,
1173 				unsigned int pos, unsigned int count,
1174 				const void *kbuf, const void __user *ubuf)
1175 {
1176 	int ret;
1177 	long enabled_keys = ptrauth_get_enabled_keys(target);
1178 
1179 	if (IS_ERR_VALUE(enabled_keys))
1180 		return enabled_keys;
1181 
1182 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1183 				 sizeof(long));
1184 	if (ret)
1185 		return ret;
1186 
1187 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1188 					enabled_keys);
1189 }
1190 
1191 #ifdef CONFIG_CHECKPOINT_RESTORE
1192 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1193 {
1194 	return (__uint128_t)key->hi << 64 | key->lo;
1195 }
1196 
1197 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1198 {
1199 	struct ptrauth_key key = {
1200 		.lo = (unsigned long)ukey,
1201 		.hi = (unsigned long)(ukey >> 64),
1202 	};
1203 
1204 	return key;
1205 }
1206 
1207 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1208 				     const struct ptrauth_keys_user *keys)
1209 {
1210 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1211 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1212 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1213 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1214 }
1215 
1216 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1217 				       const struct user_pac_address_keys *ukeys)
1218 {
1219 	keys->apia = pac_key_from_user(ukeys->apiakey);
1220 	keys->apib = pac_key_from_user(ukeys->apibkey);
1221 	keys->apda = pac_key_from_user(ukeys->apdakey);
1222 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1223 }
1224 
1225 static int pac_address_keys_get(struct task_struct *target,
1226 				const struct user_regset *regset,
1227 				struct membuf to)
1228 {
1229 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1230 	struct user_pac_address_keys user_keys;
1231 
1232 	if (!system_supports_address_auth())
1233 		return -EINVAL;
1234 
1235 	pac_address_keys_to_user(&user_keys, keys);
1236 
1237 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1238 }
1239 
1240 static int pac_address_keys_set(struct task_struct *target,
1241 				const struct user_regset *regset,
1242 				unsigned int pos, unsigned int count,
1243 				const void *kbuf, const void __user *ubuf)
1244 {
1245 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1246 	struct user_pac_address_keys user_keys;
1247 	int ret;
1248 
1249 	if (!system_supports_address_auth())
1250 		return -EINVAL;
1251 
1252 	pac_address_keys_to_user(&user_keys, keys);
1253 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1254 				 &user_keys, 0, -1);
1255 	if (ret)
1256 		return ret;
1257 	pac_address_keys_from_user(keys, &user_keys);
1258 
1259 	return 0;
1260 }
1261 
1262 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1263 				     const struct ptrauth_keys_user *keys)
1264 {
1265 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1266 }
1267 
1268 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1269 				       const struct user_pac_generic_keys *ukeys)
1270 {
1271 	keys->apga = pac_key_from_user(ukeys->apgakey);
1272 }
1273 
1274 static int pac_generic_keys_get(struct task_struct *target,
1275 				const struct user_regset *regset,
1276 				struct membuf to)
1277 {
1278 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1279 	struct user_pac_generic_keys user_keys;
1280 
1281 	if (!system_supports_generic_auth())
1282 		return -EINVAL;
1283 
1284 	pac_generic_keys_to_user(&user_keys, keys);
1285 
1286 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1287 }
1288 
1289 static int pac_generic_keys_set(struct task_struct *target,
1290 				const struct user_regset *regset,
1291 				unsigned int pos, unsigned int count,
1292 				const void *kbuf, const void __user *ubuf)
1293 {
1294 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1295 	struct user_pac_generic_keys user_keys;
1296 	int ret;
1297 
1298 	if (!system_supports_generic_auth())
1299 		return -EINVAL;
1300 
1301 	pac_generic_keys_to_user(&user_keys, keys);
1302 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1303 				 &user_keys, 0, -1);
1304 	if (ret)
1305 		return ret;
1306 	pac_generic_keys_from_user(keys, &user_keys);
1307 
1308 	return 0;
1309 }
1310 #endif /* CONFIG_CHECKPOINT_RESTORE */
1311 #endif /* CONFIG_ARM64_PTR_AUTH */
1312 
1313 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1314 static int tagged_addr_ctrl_get(struct task_struct *target,
1315 				const struct user_regset *regset,
1316 				struct membuf to)
1317 {
1318 	long ctrl = get_tagged_addr_ctrl(target);
1319 
1320 	if (IS_ERR_VALUE(ctrl))
1321 		return ctrl;
1322 
1323 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1324 }
1325 
1326 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1327 				user_regset *regset, unsigned int pos,
1328 				unsigned int count, const void *kbuf, const
1329 				void __user *ubuf)
1330 {
1331 	int ret;
1332 	long ctrl;
1333 
1334 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1335 	if (ret)
1336 		return ret;
1337 
1338 	return set_tagged_addr_ctrl(target, ctrl);
1339 }
1340 #endif
1341 
1342 enum aarch64_regset {
1343 	REGSET_GPR,
1344 	REGSET_FPR,
1345 	REGSET_TLS,
1346 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1347 	REGSET_HW_BREAK,
1348 	REGSET_HW_WATCH,
1349 #endif
1350 	REGSET_SYSTEM_CALL,
1351 #ifdef CONFIG_ARM64_SVE
1352 	REGSET_SVE,
1353 #endif
1354 #ifdef CONFIG_ARM64_SVE
1355 	REGSET_SSVE,
1356 	REGSET_ZA,
1357 #endif
1358 #ifdef CONFIG_ARM64_PTR_AUTH
1359 	REGSET_PAC_MASK,
1360 	REGSET_PAC_ENABLED_KEYS,
1361 #ifdef CONFIG_CHECKPOINT_RESTORE
1362 	REGSET_PACA_KEYS,
1363 	REGSET_PACG_KEYS,
1364 #endif
1365 #endif
1366 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1367 	REGSET_TAGGED_ADDR_CTRL,
1368 #endif
1369 };
1370 
1371 static const struct user_regset aarch64_regsets[] = {
1372 	[REGSET_GPR] = {
1373 		.core_note_type = NT_PRSTATUS,
1374 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1375 		.size = sizeof(u64),
1376 		.align = sizeof(u64),
1377 		.regset_get = gpr_get,
1378 		.set = gpr_set
1379 	},
1380 	[REGSET_FPR] = {
1381 		.core_note_type = NT_PRFPREG,
1382 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1383 		/*
1384 		 * We pretend we have 32-bit registers because the fpsr and
1385 		 * fpcr are 32-bits wide.
1386 		 */
1387 		.size = sizeof(u32),
1388 		.align = sizeof(u32),
1389 		.active = fpr_active,
1390 		.regset_get = fpr_get,
1391 		.set = fpr_set
1392 	},
1393 	[REGSET_TLS] = {
1394 		.core_note_type = NT_ARM_TLS,
1395 		.n = 1,
1396 		.size = sizeof(void *),
1397 		.align = sizeof(void *),
1398 		.regset_get = tls_get,
1399 		.set = tls_set,
1400 	},
1401 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1402 	[REGSET_HW_BREAK] = {
1403 		.core_note_type = NT_ARM_HW_BREAK,
1404 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1405 		.size = sizeof(u32),
1406 		.align = sizeof(u32),
1407 		.regset_get = hw_break_get,
1408 		.set = hw_break_set,
1409 	},
1410 	[REGSET_HW_WATCH] = {
1411 		.core_note_type = NT_ARM_HW_WATCH,
1412 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1413 		.size = sizeof(u32),
1414 		.align = sizeof(u32),
1415 		.regset_get = hw_break_get,
1416 		.set = hw_break_set,
1417 	},
1418 #endif
1419 	[REGSET_SYSTEM_CALL] = {
1420 		.core_note_type = NT_ARM_SYSTEM_CALL,
1421 		.n = 1,
1422 		.size = sizeof(int),
1423 		.align = sizeof(int),
1424 		.regset_get = system_call_get,
1425 		.set = system_call_set,
1426 	},
1427 #ifdef CONFIG_ARM64_SVE
1428 	[REGSET_SVE] = { /* Scalable Vector Extension */
1429 		.core_note_type = NT_ARM_SVE,
1430 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1431 				  SVE_VQ_BYTES),
1432 		.size = SVE_VQ_BYTES,
1433 		.align = SVE_VQ_BYTES,
1434 		.regset_get = sve_get,
1435 		.set = sve_set,
1436 	},
1437 #endif
1438 #ifdef CONFIG_ARM64_SME
1439 	[REGSET_SSVE] = { /* Streaming mode SVE */
1440 		.core_note_type = NT_ARM_SSVE,
1441 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1442 				  SVE_VQ_BYTES),
1443 		.size = SVE_VQ_BYTES,
1444 		.align = SVE_VQ_BYTES,
1445 		.regset_get = ssve_get,
1446 		.set = ssve_set,
1447 	},
1448 	[REGSET_ZA] = { /* SME ZA */
1449 		.core_note_type = NT_ARM_ZA,
1450 		/*
1451 		 * ZA is a single register but it's variably sized and
1452 		 * the ptrace core requires that the size of any data
1453 		 * be an exact multiple of the configured register
1454 		 * size so report as though we had SVE_VQ_BYTES
1455 		 * registers. These values aren't exposed to
1456 		 * userspace.
1457 		 */
1458 		.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1459 		.size = SVE_VQ_BYTES,
1460 		.align = SVE_VQ_BYTES,
1461 		.regset_get = za_get,
1462 		.set = za_set,
1463 	},
1464 #endif
1465 #ifdef CONFIG_ARM64_PTR_AUTH
1466 	[REGSET_PAC_MASK] = {
1467 		.core_note_type = NT_ARM_PAC_MASK,
1468 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1469 		.size = sizeof(u64),
1470 		.align = sizeof(u64),
1471 		.regset_get = pac_mask_get,
1472 		/* this cannot be set dynamically */
1473 	},
1474 	[REGSET_PAC_ENABLED_KEYS] = {
1475 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1476 		.n = 1,
1477 		.size = sizeof(long),
1478 		.align = sizeof(long),
1479 		.regset_get = pac_enabled_keys_get,
1480 		.set = pac_enabled_keys_set,
1481 	},
1482 #ifdef CONFIG_CHECKPOINT_RESTORE
1483 	[REGSET_PACA_KEYS] = {
1484 		.core_note_type = NT_ARM_PACA_KEYS,
1485 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1486 		.size = sizeof(__uint128_t),
1487 		.align = sizeof(__uint128_t),
1488 		.regset_get = pac_address_keys_get,
1489 		.set = pac_address_keys_set,
1490 	},
1491 	[REGSET_PACG_KEYS] = {
1492 		.core_note_type = NT_ARM_PACG_KEYS,
1493 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1494 		.size = sizeof(__uint128_t),
1495 		.align = sizeof(__uint128_t),
1496 		.regset_get = pac_generic_keys_get,
1497 		.set = pac_generic_keys_set,
1498 	},
1499 #endif
1500 #endif
1501 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1502 	[REGSET_TAGGED_ADDR_CTRL] = {
1503 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1504 		.n = 1,
1505 		.size = sizeof(long),
1506 		.align = sizeof(long),
1507 		.regset_get = tagged_addr_ctrl_get,
1508 		.set = tagged_addr_ctrl_set,
1509 	},
1510 #endif
1511 };
1512 
1513 static const struct user_regset_view user_aarch64_view = {
1514 	.name = "aarch64", .e_machine = EM_AARCH64,
1515 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1516 };
1517 
1518 #ifdef CONFIG_COMPAT
1519 enum compat_regset {
1520 	REGSET_COMPAT_GPR,
1521 	REGSET_COMPAT_VFP,
1522 };
1523 
1524 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1525 {
1526 	struct pt_regs *regs = task_pt_regs(task);
1527 
1528 	switch (idx) {
1529 	case 15:
1530 		return regs->pc;
1531 	case 16:
1532 		return pstate_to_compat_psr(regs->pstate);
1533 	case 17:
1534 		return regs->orig_x0;
1535 	default:
1536 		return regs->regs[idx];
1537 	}
1538 }
1539 
1540 static int compat_gpr_get(struct task_struct *target,
1541 			  const struct user_regset *regset,
1542 			  struct membuf to)
1543 {
1544 	int i = 0;
1545 
1546 	while (to.left)
1547 		membuf_store(&to, compat_get_user_reg(target, i++));
1548 	return 0;
1549 }
1550 
1551 static int compat_gpr_set(struct task_struct *target,
1552 			  const struct user_regset *regset,
1553 			  unsigned int pos, unsigned int count,
1554 			  const void *kbuf, const void __user *ubuf)
1555 {
1556 	struct pt_regs newregs;
1557 	int ret = 0;
1558 	unsigned int i, start, num_regs;
1559 
1560 	/* Calculate the number of AArch32 registers contained in count */
1561 	num_regs = count / regset->size;
1562 
1563 	/* Convert pos into an register number */
1564 	start = pos / regset->size;
1565 
1566 	if (start + num_regs > regset->n)
1567 		return -EIO;
1568 
1569 	newregs = *task_pt_regs(target);
1570 
1571 	for (i = 0; i < num_regs; ++i) {
1572 		unsigned int idx = start + i;
1573 		compat_ulong_t reg;
1574 
1575 		if (kbuf) {
1576 			memcpy(&reg, kbuf, sizeof(reg));
1577 			kbuf += sizeof(reg);
1578 		} else {
1579 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1580 			if (ret) {
1581 				ret = -EFAULT;
1582 				break;
1583 			}
1584 
1585 			ubuf += sizeof(reg);
1586 		}
1587 
1588 		switch (idx) {
1589 		case 15:
1590 			newregs.pc = reg;
1591 			break;
1592 		case 16:
1593 			reg = compat_psr_to_pstate(reg);
1594 			newregs.pstate = reg;
1595 			break;
1596 		case 17:
1597 			newregs.orig_x0 = reg;
1598 			break;
1599 		default:
1600 			newregs.regs[idx] = reg;
1601 		}
1602 
1603 	}
1604 
1605 	if (valid_user_regs(&newregs.user_regs, target))
1606 		*task_pt_regs(target) = newregs;
1607 	else
1608 		ret = -EINVAL;
1609 
1610 	return ret;
1611 }
1612 
1613 static int compat_vfp_get(struct task_struct *target,
1614 			  const struct user_regset *regset,
1615 			  struct membuf to)
1616 {
1617 	struct user_fpsimd_state *uregs;
1618 	compat_ulong_t fpscr;
1619 
1620 	if (!system_supports_fpsimd())
1621 		return -EINVAL;
1622 
1623 	uregs = &target->thread.uw.fpsimd_state;
1624 
1625 	if (target == current)
1626 		fpsimd_preserve_current_state();
1627 
1628 	/*
1629 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1630 	 * nicely together for us. We just need to create the fpscr separately.
1631 	 */
1632 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1633 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1634 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1635 	return membuf_store(&to, fpscr);
1636 }
1637 
1638 static int compat_vfp_set(struct task_struct *target,
1639 			  const struct user_regset *regset,
1640 			  unsigned int pos, unsigned int count,
1641 			  const void *kbuf, const void __user *ubuf)
1642 {
1643 	struct user_fpsimd_state *uregs;
1644 	compat_ulong_t fpscr;
1645 	int ret, vregs_end_pos;
1646 
1647 	if (!system_supports_fpsimd())
1648 		return -EINVAL;
1649 
1650 	uregs = &target->thread.uw.fpsimd_state;
1651 
1652 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1653 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1654 				 vregs_end_pos);
1655 
1656 	if (count && !ret) {
1657 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1658 					 vregs_end_pos, VFP_STATE_SIZE);
1659 		if (!ret) {
1660 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1661 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1662 		}
1663 	}
1664 
1665 	fpsimd_flush_task_state(target);
1666 	return ret;
1667 }
1668 
1669 static int compat_tls_get(struct task_struct *target,
1670 			  const struct user_regset *regset,
1671 			  struct membuf to)
1672 {
1673 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1674 }
1675 
1676 static int compat_tls_set(struct task_struct *target,
1677 			  const struct user_regset *regset, unsigned int pos,
1678 			  unsigned int count, const void *kbuf,
1679 			  const void __user *ubuf)
1680 {
1681 	int ret;
1682 	compat_ulong_t tls = target->thread.uw.tp_value;
1683 
1684 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1685 	if (ret)
1686 		return ret;
1687 
1688 	target->thread.uw.tp_value = tls;
1689 	return ret;
1690 }
1691 
1692 static const struct user_regset aarch32_regsets[] = {
1693 	[REGSET_COMPAT_GPR] = {
1694 		.core_note_type = NT_PRSTATUS,
1695 		.n = COMPAT_ELF_NGREG,
1696 		.size = sizeof(compat_elf_greg_t),
1697 		.align = sizeof(compat_elf_greg_t),
1698 		.regset_get = compat_gpr_get,
1699 		.set = compat_gpr_set
1700 	},
1701 	[REGSET_COMPAT_VFP] = {
1702 		.core_note_type = NT_ARM_VFP,
1703 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1704 		.size = sizeof(compat_ulong_t),
1705 		.align = sizeof(compat_ulong_t),
1706 		.active = fpr_active,
1707 		.regset_get = compat_vfp_get,
1708 		.set = compat_vfp_set
1709 	},
1710 };
1711 
1712 static const struct user_regset_view user_aarch32_view = {
1713 	.name = "aarch32", .e_machine = EM_ARM,
1714 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1715 };
1716 
1717 static const struct user_regset aarch32_ptrace_regsets[] = {
1718 	[REGSET_GPR] = {
1719 		.core_note_type = NT_PRSTATUS,
1720 		.n = COMPAT_ELF_NGREG,
1721 		.size = sizeof(compat_elf_greg_t),
1722 		.align = sizeof(compat_elf_greg_t),
1723 		.regset_get = compat_gpr_get,
1724 		.set = compat_gpr_set
1725 	},
1726 	[REGSET_FPR] = {
1727 		.core_note_type = NT_ARM_VFP,
1728 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1729 		.size = sizeof(compat_ulong_t),
1730 		.align = sizeof(compat_ulong_t),
1731 		.regset_get = compat_vfp_get,
1732 		.set = compat_vfp_set
1733 	},
1734 	[REGSET_TLS] = {
1735 		.core_note_type = NT_ARM_TLS,
1736 		.n = 1,
1737 		.size = sizeof(compat_ulong_t),
1738 		.align = sizeof(compat_ulong_t),
1739 		.regset_get = compat_tls_get,
1740 		.set = compat_tls_set,
1741 	},
1742 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1743 	[REGSET_HW_BREAK] = {
1744 		.core_note_type = NT_ARM_HW_BREAK,
1745 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1746 		.size = sizeof(u32),
1747 		.align = sizeof(u32),
1748 		.regset_get = hw_break_get,
1749 		.set = hw_break_set,
1750 	},
1751 	[REGSET_HW_WATCH] = {
1752 		.core_note_type = NT_ARM_HW_WATCH,
1753 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1754 		.size = sizeof(u32),
1755 		.align = sizeof(u32),
1756 		.regset_get = hw_break_get,
1757 		.set = hw_break_set,
1758 	},
1759 #endif
1760 	[REGSET_SYSTEM_CALL] = {
1761 		.core_note_type = NT_ARM_SYSTEM_CALL,
1762 		.n = 1,
1763 		.size = sizeof(int),
1764 		.align = sizeof(int),
1765 		.regset_get = system_call_get,
1766 		.set = system_call_set,
1767 	},
1768 };
1769 
1770 static const struct user_regset_view user_aarch32_ptrace_view = {
1771 	.name = "aarch32", .e_machine = EM_ARM,
1772 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1773 };
1774 
1775 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1776 				   compat_ulong_t __user *ret)
1777 {
1778 	compat_ulong_t tmp;
1779 
1780 	if (off & 3)
1781 		return -EIO;
1782 
1783 	if (off == COMPAT_PT_TEXT_ADDR)
1784 		tmp = tsk->mm->start_code;
1785 	else if (off == COMPAT_PT_DATA_ADDR)
1786 		tmp = tsk->mm->start_data;
1787 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1788 		tmp = tsk->mm->end_code;
1789 	else if (off < sizeof(compat_elf_gregset_t))
1790 		tmp = compat_get_user_reg(tsk, off >> 2);
1791 	else if (off >= COMPAT_USER_SZ)
1792 		return -EIO;
1793 	else
1794 		tmp = 0;
1795 
1796 	return put_user(tmp, ret);
1797 }
1798 
1799 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1800 				    compat_ulong_t val)
1801 {
1802 	struct pt_regs newregs = *task_pt_regs(tsk);
1803 	unsigned int idx = off / 4;
1804 
1805 	if (off & 3 || off >= COMPAT_USER_SZ)
1806 		return -EIO;
1807 
1808 	if (off >= sizeof(compat_elf_gregset_t))
1809 		return 0;
1810 
1811 	switch (idx) {
1812 	case 15:
1813 		newregs.pc = val;
1814 		break;
1815 	case 16:
1816 		newregs.pstate = compat_psr_to_pstate(val);
1817 		break;
1818 	case 17:
1819 		newregs.orig_x0 = val;
1820 		break;
1821 	default:
1822 		newregs.regs[idx] = val;
1823 	}
1824 
1825 	if (!valid_user_regs(&newregs.user_regs, tsk))
1826 		return -EINVAL;
1827 
1828 	*task_pt_regs(tsk) = newregs;
1829 	return 0;
1830 }
1831 
1832 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1833 
1834 /*
1835  * Convert a virtual register number into an index for a thread_info
1836  * breakpoint array. Breakpoints are identified using positive numbers
1837  * whilst watchpoints are negative. The registers are laid out as pairs
1838  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1839  * Register 0 is reserved for describing resource information.
1840  */
1841 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1842 {
1843 	return (abs(num) - 1) >> 1;
1844 }
1845 
1846 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1847 {
1848 	u8 num_brps, num_wrps, debug_arch, wp_len;
1849 	u32 reg = 0;
1850 
1851 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1852 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1853 
1854 	debug_arch	= debug_monitors_arch();
1855 	wp_len		= 8;
1856 	reg		|= debug_arch;
1857 	reg		<<= 8;
1858 	reg		|= wp_len;
1859 	reg		<<= 8;
1860 	reg		|= num_wrps;
1861 	reg		<<= 8;
1862 	reg		|= num_brps;
1863 
1864 	*kdata = reg;
1865 	return 0;
1866 }
1867 
1868 static int compat_ptrace_hbp_get(unsigned int note_type,
1869 				 struct task_struct *tsk,
1870 				 compat_long_t num,
1871 				 u32 *kdata)
1872 {
1873 	u64 addr = 0;
1874 	u32 ctrl = 0;
1875 
1876 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1877 
1878 	if (num & 1) {
1879 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1880 		*kdata = (u32)addr;
1881 	} else {
1882 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1883 		*kdata = ctrl;
1884 	}
1885 
1886 	return err;
1887 }
1888 
1889 static int compat_ptrace_hbp_set(unsigned int note_type,
1890 				 struct task_struct *tsk,
1891 				 compat_long_t num,
1892 				 u32 *kdata)
1893 {
1894 	u64 addr;
1895 	u32 ctrl;
1896 
1897 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1898 
1899 	if (num & 1) {
1900 		addr = *kdata;
1901 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1902 	} else {
1903 		ctrl = *kdata;
1904 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1905 	}
1906 
1907 	return err;
1908 }
1909 
1910 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1911 				    compat_ulong_t __user *data)
1912 {
1913 	int ret;
1914 	u32 kdata;
1915 
1916 	/* Watchpoint */
1917 	if (num < 0) {
1918 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1919 	/* Resource info */
1920 	} else if (num == 0) {
1921 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1922 	/* Breakpoint */
1923 	} else {
1924 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1925 	}
1926 
1927 	if (!ret)
1928 		ret = put_user(kdata, data);
1929 
1930 	return ret;
1931 }
1932 
1933 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1934 				    compat_ulong_t __user *data)
1935 {
1936 	int ret;
1937 	u32 kdata = 0;
1938 
1939 	if (num == 0)
1940 		return 0;
1941 
1942 	ret = get_user(kdata, data);
1943 	if (ret)
1944 		return ret;
1945 
1946 	if (num < 0)
1947 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1948 	else
1949 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1950 
1951 	return ret;
1952 }
1953 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1954 
1955 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1956 			compat_ulong_t caddr, compat_ulong_t cdata)
1957 {
1958 	unsigned long addr = caddr;
1959 	unsigned long data = cdata;
1960 	void __user *datap = compat_ptr(data);
1961 	int ret;
1962 
1963 	switch (request) {
1964 		case PTRACE_PEEKUSR:
1965 			ret = compat_ptrace_read_user(child, addr, datap);
1966 			break;
1967 
1968 		case PTRACE_POKEUSR:
1969 			ret = compat_ptrace_write_user(child, addr, data);
1970 			break;
1971 
1972 		case COMPAT_PTRACE_GETREGS:
1973 			ret = copy_regset_to_user(child,
1974 						  &user_aarch32_view,
1975 						  REGSET_COMPAT_GPR,
1976 						  0, sizeof(compat_elf_gregset_t),
1977 						  datap);
1978 			break;
1979 
1980 		case COMPAT_PTRACE_SETREGS:
1981 			ret = copy_regset_from_user(child,
1982 						    &user_aarch32_view,
1983 						    REGSET_COMPAT_GPR,
1984 						    0, sizeof(compat_elf_gregset_t),
1985 						    datap);
1986 			break;
1987 
1988 		case COMPAT_PTRACE_GET_THREAD_AREA:
1989 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1990 				       (compat_ulong_t __user *)datap);
1991 			break;
1992 
1993 		case COMPAT_PTRACE_SET_SYSCALL:
1994 			task_pt_regs(child)->syscallno = data;
1995 			ret = 0;
1996 			break;
1997 
1998 		case COMPAT_PTRACE_GETVFPREGS:
1999 			ret = copy_regset_to_user(child,
2000 						  &user_aarch32_view,
2001 						  REGSET_COMPAT_VFP,
2002 						  0, VFP_STATE_SIZE,
2003 						  datap);
2004 			break;
2005 
2006 		case COMPAT_PTRACE_SETVFPREGS:
2007 			ret = copy_regset_from_user(child,
2008 						    &user_aarch32_view,
2009 						    REGSET_COMPAT_VFP,
2010 						    0, VFP_STATE_SIZE,
2011 						    datap);
2012 			break;
2013 
2014 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2015 		case COMPAT_PTRACE_GETHBPREGS:
2016 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2017 			break;
2018 
2019 		case COMPAT_PTRACE_SETHBPREGS:
2020 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2021 			break;
2022 #endif
2023 
2024 		default:
2025 			ret = compat_ptrace_request(child, request, addr,
2026 						    data);
2027 			break;
2028 	}
2029 
2030 	return ret;
2031 }
2032 #endif /* CONFIG_COMPAT */
2033 
2034 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2035 {
2036 #ifdef CONFIG_COMPAT
2037 	/*
2038 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2039 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2040 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2041 	 * access to the TLS register.
2042 	 */
2043 	if (is_compat_task())
2044 		return &user_aarch32_view;
2045 	else if (is_compat_thread(task_thread_info(task)))
2046 		return &user_aarch32_ptrace_view;
2047 #endif
2048 	return &user_aarch64_view;
2049 }
2050 
2051 long arch_ptrace(struct task_struct *child, long request,
2052 		 unsigned long addr, unsigned long data)
2053 {
2054 	switch (request) {
2055 	case PTRACE_PEEKMTETAGS:
2056 	case PTRACE_POKEMTETAGS:
2057 		return mte_ptrace_copy_tags(child, request, addr, data);
2058 	}
2059 
2060 	return ptrace_request(child, request, addr, data);
2061 }
2062 
2063 enum ptrace_syscall_dir {
2064 	PTRACE_SYSCALL_ENTER = 0,
2065 	PTRACE_SYSCALL_EXIT,
2066 };
2067 
2068 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2069 {
2070 	int regno;
2071 	unsigned long saved_reg;
2072 
2073 	/*
2074 	 * We have some ABI weirdness here in the way that we handle syscall
2075 	 * exit stops because we indicate whether or not the stop has been
2076 	 * signalled from syscall entry or syscall exit by clobbering a general
2077 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2078 	 * and restoring its old value after the stop. This means that:
2079 	 *
2080 	 * - Any writes by the tracer to this register during the stop are
2081 	 *   ignored/discarded.
2082 	 *
2083 	 * - The actual value of the register is not available during the stop,
2084 	 *   so the tracer cannot save it and restore it later.
2085 	 *
2086 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2087 	 *   (the latter do not nobble any registers).
2088 	 */
2089 	regno = (is_compat_task() ? 12 : 7);
2090 	saved_reg = regs->regs[regno];
2091 	regs->regs[regno] = dir;
2092 
2093 	if (dir == PTRACE_SYSCALL_ENTER) {
2094 		if (ptrace_report_syscall_entry(regs))
2095 			forget_syscall(regs);
2096 		regs->regs[regno] = saved_reg;
2097 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2098 		ptrace_report_syscall_exit(regs, 0);
2099 		regs->regs[regno] = saved_reg;
2100 	} else {
2101 		regs->regs[regno] = saved_reg;
2102 
2103 		/*
2104 		 * Signal a pseudo-step exception since we are stepping but
2105 		 * tracer modifications to the registers may have rewound the
2106 		 * state machine.
2107 		 */
2108 		ptrace_report_syscall_exit(regs, 1);
2109 	}
2110 }
2111 
2112 int syscall_trace_enter(struct pt_regs *regs)
2113 {
2114 	unsigned long flags = read_thread_flags();
2115 
2116 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2117 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
2118 		if (flags & _TIF_SYSCALL_EMU)
2119 			return NO_SYSCALL;
2120 	}
2121 
2122 	/* Do the secure computing after ptrace; failures should be fast. */
2123 	if (secure_computing() == -1)
2124 		return NO_SYSCALL;
2125 
2126 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2127 		trace_sys_enter(regs, regs->syscallno);
2128 
2129 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2130 			    regs->regs[2], regs->regs[3]);
2131 
2132 	return regs->syscallno;
2133 }
2134 
2135 void syscall_trace_exit(struct pt_regs *regs)
2136 {
2137 	unsigned long flags = read_thread_flags();
2138 
2139 	audit_syscall_exit(regs);
2140 
2141 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2142 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2143 
2144 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2145 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
2146 
2147 	rseq_syscall(regs);
2148 }
2149 
2150 /*
2151  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2152  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2153  * not described in ARM DDI 0487D.a.
2154  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2155  * be allocated an EL0 meaning in future.
2156  * Userspace cannot use these until they have an architectural meaning.
2157  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2158  * We also reserve IL for the kernel; SS is handled dynamically.
2159  */
2160 #define SPSR_EL1_AARCH64_RES0_BITS \
2161 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2162 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2163 #define SPSR_EL1_AARCH32_RES0_BITS \
2164 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2165 
2166 static int valid_compat_regs(struct user_pt_regs *regs)
2167 {
2168 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2169 
2170 	if (!system_supports_mixed_endian_el0()) {
2171 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2172 			regs->pstate |= PSR_AA32_E_BIT;
2173 		else
2174 			regs->pstate &= ~PSR_AA32_E_BIT;
2175 	}
2176 
2177 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2178 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2179 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2180 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2181 		return 1;
2182 	}
2183 
2184 	/*
2185 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2186 	 * arch/arm.
2187 	 */
2188 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2189 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2190 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2191 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2192 			PSR_AA32_T_BIT;
2193 	regs->pstate |= PSR_MODE32_BIT;
2194 
2195 	return 0;
2196 }
2197 
2198 static int valid_native_regs(struct user_pt_regs *regs)
2199 {
2200 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2201 
2202 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2203 	    (regs->pstate & PSR_D_BIT) == 0 &&
2204 	    (regs->pstate & PSR_A_BIT) == 0 &&
2205 	    (regs->pstate & PSR_I_BIT) == 0 &&
2206 	    (regs->pstate & PSR_F_BIT) == 0) {
2207 		return 1;
2208 	}
2209 
2210 	/* Force PSR to a valid 64-bit EL0t */
2211 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2212 
2213 	return 0;
2214 }
2215 
2216 /*
2217  * Are the current registers suitable for user mode? (used to maintain
2218  * security in signal handlers)
2219  */
2220 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2221 {
2222 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2223 	user_regs_reset_single_step(regs, task);
2224 
2225 	if (is_compat_thread(task_thread_info(task)))
2226 		return valid_compat_regs(regs);
2227 	else
2228 		return valid_native_regs(regs);
2229 }
2230