xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision e3d786a3)
1 /*
2  * Based on arch/arm/kernel/ptrace.c
3  *
4  * By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/audit.h>
23 #include <linux/compat.h>
24 #include <linux/kernel.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/mm.h>
28 #include <linux/nospec.h>
29 #include <linux/smp.h>
30 #include <linux/ptrace.h>
31 #include <linux/user.h>
32 #include <linux/seccomp.h>
33 #include <linux/security.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/string.h>
37 #include <linux/uaccess.h>
38 #include <linux/perf_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/regset.h>
41 #include <linux/tracehook.h>
42 #include <linux/elf.h>
43 
44 #include <asm/compat.h>
45 #include <asm/cpufeature.h>
46 #include <asm/debug-monitors.h>
47 #include <asm/fpsimd.h>
48 #include <asm/pgtable.h>
49 #include <asm/stacktrace.h>
50 #include <asm/syscall.h>
51 #include <asm/traps.h>
52 #include <asm/system_misc.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/syscalls.h>
56 
57 struct pt_regs_offset {
58 	const char *name;
59 	int offset;
60 };
61 
62 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
63 #define REG_OFFSET_END {.name = NULL, .offset = 0}
64 #define GPR_OFFSET_NAME(r) \
65 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
66 
67 static const struct pt_regs_offset regoffset_table[] = {
68 	GPR_OFFSET_NAME(0),
69 	GPR_OFFSET_NAME(1),
70 	GPR_OFFSET_NAME(2),
71 	GPR_OFFSET_NAME(3),
72 	GPR_OFFSET_NAME(4),
73 	GPR_OFFSET_NAME(5),
74 	GPR_OFFSET_NAME(6),
75 	GPR_OFFSET_NAME(7),
76 	GPR_OFFSET_NAME(8),
77 	GPR_OFFSET_NAME(9),
78 	GPR_OFFSET_NAME(10),
79 	GPR_OFFSET_NAME(11),
80 	GPR_OFFSET_NAME(12),
81 	GPR_OFFSET_NAME(13),
82 	GPR_OFFSET_NAME(14),
83 	GPR_OFFSET_NAME(15),
84 	GPR_OFFSET_NAME(16),
85 	GPR_OFFSET_NAME(17),
86 	GPR_OFFSET_NAME(18),
87 	GPR_OFFSET_NAME(19),
88 	GPR_OFFSET_NAME(20),
89 	GPR_OFFSET_NAME(21),
90 	GPR_OFFSET_NAME(22),
91 	GPR_OFFSET_NAME(23),
92 	GPR_OFFSET_NAME(24),
93 	GPR_OFFSET_NAME(25),
94 	GPR_OFFSET_NAME(26),
95 	GPR_OFFSET_NAME(27),
96 	GPR_OFFSET_NAME(28),
97 	GPR_OFFSET_NAME(29),
98 	GPR_OFFSET_NAME(30),
99 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
100 	REG_OFFSET_NAME(sp),
101 	REG_OFFSET_NAME(pc),
102 	REG_OFFSET_NAME(pstate),
103 	REG_OFFSET_END,
104 };
105 
106 /**
107  * regs_query_register_offset() - query register offset from its name
108  * @name:	the name of a register
109  *
110  * regs_query_register_offset() returns the offset of a register in struct
111  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
112  */
113 int regs_query_register_offset(const char *name)
114 {
115 	const struct pt_regs_offset *roff;
116 
117 	for (roff = regoffset_table; roff->name != NULL; roff++)
118 		if (!strcmp(roff->name, name))
119 			return roff->offset;
120 	return -EINVAL;
121 }
122 
123 /**
124  * regs_within_kernel_stack() - check the address in the stack
125  * @regs:      pt_regs which contains kernel stack pointer.
126  * @addr:      address which is checked.
127  *
128  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
129  * If @addr is within the kernel stack, it returns true. If not, returns false.
130  */
131 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
132 {
133 	return ((addr & ~(THREAD_SIZE - 1))  ==
134 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
135 		on_irq_stack(addr, NULL);
136 }
137 
138 /**
139  * regs_get_kernel_stack_nth() - get Nth entry of the stack
140  * @regs:	pt_regs which contains kernel stack pointer.
141  * @n:		stack entry number.
142  *
143  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
144  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
145  * this returns 0.
146  */
147 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
148 {
149 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
150 
151 	addr += n;
152 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
153 		return *addr;
154 	else
155 		return 0;
156 }
157 
158 /*
159  * TODO: does not yet catch signals sent when the child dies.
160  * in exit.c or in signal.c.
161  */
162 
163 /*
164  * Called by kernel/ptrace.c when detaching..
165  */
166 void ptrace_disable(struct task_struct *child)
167 {
168 	/*
169 	 * This would be better off in core code, but PTRACE_DETACH has
170 	 * grown its fair share of arch-specific worts and changing it
171 	 * is likely to cause regressions on obscure architectures.
172 	 */
173 	user_disable_single_step(child);
174 }
175 
176 #ifdef CONFIG_HAVE_HW_BREAKPOINT
177 /*
178  * Handle hitting a HW-breakpoint.
179  */
180 static void ptrace_hbptriggered(struct perf_event *bp,
181 				struct perf_sample_data *data,
182 				struct pt_regs *regs)
183 {
184 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
185 	const char *desc = "Hardware breakpoint trap (ptrace)";
186 
187 #ifdef CONFIG_COMPAT
188 	if (is_compat_task()) {
189 		int si_errno = 0;
190 		int i;
191 
192 		for (i = 0; i < ARM_MAX_BRP; ++i) {
193 			if (current->thread.debug.hbp_break[i] == bp) {
194 				si_errno = (i << 1) + 1;
195 				break;
196 			}
197 		}
198 
199 		for (i = 0; i < ARM_MAX_WRP; ++i) {
200 			if (current->thread.debug.hbp_watch[i] == bp) {
201 				si_errno = -((i << 1) + 1);
202 				break;
203 			}
204 		}
205 		arm64_force_sig_ptrace_errno_trap(si_errno,
206 						  (void __user *)bkpt->trigger,
207 						  desc);
208 	}
209 #endif
210 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT,
211 			      (void __user *)(bkpt->trigger),
212 			      desc);
213 }
214 
215 /*
216  * Unregister breakpoints from this task and reset the pointers in
217  * the thread_struct.
218  */
219 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
220 {
221 	int i;
222 	struct thread_struct *t = &tsk->thread;
223 
224 	for (i = 0; i < ARM_MAX_BRP; i++) {
225 		if (t->debug.hbp_break[i]) {
226 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
227 			t->debug.hbp_break[i] = NULL;
228 		}
229 	}
230 
231 	for (i = 0; i < ARM_MAX_WRP; i++) {
232 		if (t->debug.hbp_watch[i]) {
233 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
234 			t->debug.hbp_watch[i] = NULL;
235 		}
236 	}
237 }
238 
239 void ptrace_hw_copy_thread(struct task_struct *tsk)
240 {
241 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
242 }
243 
244 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
245 					       struct task_struct *tsk,
246 					       unsigned long idx)
247 {
248 	struct perf_event *bp = ERR_PTR(-EINVAL);
249 
250 	switch (note_type) {
251 	case NT_ARM_HW_BREAK:
252 		if (idx >= ARM_MAX_BRP)
253 			goto out;
254 		idx = array_index_nospec(idx, ARM_MAX_BRP);
255 		bp = tsk->thread.debug.hbp_break[idx];
256 		break;
257 	case NT_ARM_HW_WATCH:
258 		if (idx >= ARM_MAX_WRP)
259 			goto out;
260 		idx = array_index_nospec(idx, ARM_MAX_WRP);
261 		bp = tsk->thread.debug.hbp_watch[idx];
262 		break;
263 	}
264 
265 out:
266 	return bp;
267 }
268 
269 static int ptrace_hbp_set_event(unsigned int note_type,
270 				struct task_struct *tsk,
271 				unsigned long idx,
272 				struct perf_event *bp)
273 {
274 	int err = -EINVAL;
275 
276 	switch (note_type) {
277 	case NT_ARM_HW_BREAK:
278 		if (idx >= ARM_MAX_BRP)
279 			goto out;
280 		idx = array_index_nospec(idx, ARM_MAX_BRP);
281 		tsk->thread.debug.hbp_break[idx] = bp;
282 		err = 0;
283 		break;
284 	case NT_ARM_HW_WATCH:
285 		if (idx >= ARM_MAX_WRP)
286 			goto out;
287 		idx = array_index_nospec(idx, ARM_MAX_WRP);
288 		tsk->thread.debug.hbp_watch[idx] = bp;
289 		err = 0;
290 		break;
291 	}
292 
293 out:
294 	return err;
295 }
296 
297 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
298 					    struct task_struct *tsk,
299 					    unsigned long idx)
300 {
301 	struct perf_event *bp;
302 	struct perf_event_attr attr;
303 	int err, type;
304 
305 	switch (note_type) {
306 	case NT_ARM_HW_BREAK:
307 		type = HW_BREAKPOINT_X;
308 		break;
309 	case NT_ARM_HW_WATCH:
310 		type = HW_BREAKPOINT_RW;
311 		break;
312 	default:
313 		return ERR_PTR(-EINVAL);
314 	}
315 
316 	ptrace_breakpoint_init(&attr);
317 
318 	/*
319 	 * Initialise fields to sane defaults
320 	 * (i.e. values that will pass validation).
321 	 */
322 	attr.bp_addr	= 0;
323 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
324 	attr.bp_type	= type;
325 	attr.disabled	= 1;
326 
327 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
328 	if (IS_ERR(bp))
329 		return bp;
330 
331 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
332 	if (err)
333 		return ERR_PTR(err);
334 
335 	return bp;
336 }
337 
338 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
339 				     struct arch_hw_breakpoint_ctrl ctrl,
340 				     struct perf_event_attr *attr)
341 {
342 	int err, len, type, offset, disabled = !ctrl.enabled;
343 
344 	attr->disabled = disabled;
345 	if (disabled)
346 		return 0;
347 
348 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
349 	if (err)
350 		return err;
351 
352 	switch (note_type) {
353 	case NT_ARM_HW_BREAK:
354 		if ((type & HW_BREAKPOINT_X) != type)
355 			return -EINVAL;
356 		break;
357 	case NT_ARM_HW_WATCH:
358 		if ((type & HW_BREAKPOINT_RW) != type)
359 			return -EINVAL;
360 		break;
361 	default:
362 		return -EINVAL;
363 	}
364 
365 	attr->bp_len	= len;
366 	attr->bp_type	= type;
367 	attr->bp_addr	+= offset;
368 
369 	return 0;
370 }
371 
372 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
373 {
374 	u8 num;
375 	u32 reg = 0;
376 
377 	switch (note_type) {
378 	case NT_ARM_HW_BREAK:
379 		num = hw_breakpoint_slots(TYPE_INST);
380 		break;
381 	case NT_ARM_HW_WATCH:
382 		num = hw_breakpoint_slots(TYPE_DATA);
383 		break;
384 	default:
385 		return -EINVAL;
386 	}
387 
388 	reg |= debug_monitors_arch();
389 	reg <<= 8;
390 	reg |= num;
391 
392 	*info = reg;
393 	return 0;
394 }
395 
396 static int ptrace_hbp_get_ctrl(unsigned int note_type,
397 			       struct task_struct *tsk,
398 			       unsigned long idx,
399 			       u32 *ctrl)
400 {
401 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
402 
403 	if (IS_ERR(bp))
404 		return PTR_ERR(bp);
405 
406 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
407 	return 0;
408 }
409 
410 static int ptrace_hbp_get_addr(unsigned int note_type,
411 			       struct task_struct *tsk,
412 			       unsigned long idx,
413 			       u64 *addr)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (IS_ERR(bp))
418 		return PTR_ERR(bp);
419 
420 	*addr = bp ? counter_arch_bp(bp)->address : 0;
421 	return 0;
422 }
423 
424 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
425 							struct task_struct *tsk,
426 							unsigned long idx)
427 {
428 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
429 
430 	if (!bp)
431 		bp = ptrace_hbp_create(note_type, tsk, idx);
432 
433 	return bp;
434 }
435 
436 static int ptrace_hbp_set_ctrl(unsigned int note_type,
437 			       struct task_struct *tsk,
438 			       unsigned long idx,
439 			       u32 uctrl)
440 {
441 	int err;
442 	struct perf_event *bp;
443 	struct perf_event_attr attr;
444 	struct arch_hw_breakpoint_ctrl ctrl;
445 
446 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
447 	if (IS_ERR(bp)) {
448 		err = PTR_ERR(bp);
449 		return err;
450 	}
451 
452 	attr = bp->attr;
453 	decode_ctrl_reg(uctrl, &ctrl);
454 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
455 	if (err)
456 		return err;
457 
458 	return modify_user_hw_breakpoint(bp, &attr);
459 }
460 
461 static int ptrace_hbp_set_addr(unsigned int note_type,
462 			       struct task_struct *tsk,
463 			       unsigned long idx,
464 			       u64 addr)
465 {
466 	int err;
467 	struct perf_event *bp;
468 	struct perf_event_attr attr;
469 
470 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
471 	if (IS_ERR(bp)) {
472 		err = PTR_ERR(bp);
473 		return err;
474 	}
475 
476 	attr = bp->attr;
477 	attr.bp_addr = addr;
478 	err = modify_user_hw_breakpoint(bp, &attr);
479 	return err;
480 }
481 
482 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
483 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
484 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
485 
486 static int hw_break_get(struct task_struct *target,
487 			const struct user_regset *regset,
488 			unsigned int pos, unsigned int count,
489 			void *kbuf, void __user *ubuf)
490 {
491 	unsigned int note_type = regset->core_note_type;
492 	int ret, idx = 0, offset, limit;
493 	u32 info, ctrl;
494 	u64 addr;
495 
496 	/* Resource info */
497 	ret = ptrace_hbp_get_resource_info(note_type, &info);
498 	if (ret)
499 		return ret;
500 
501 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &info, 0,
502 				  sizeof(info));
503 	if (ret)
504 		return ret;
505 
506 	/* Pad */
507 	offset = offsetof(struct user_hwdebug_state, pad);
508 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, offset,
509 				       offset + PTRACE_HBP_PAD_SZ);
510 	if (ret)
511 		return ret;
512 
513 	/* (address, ctrl) registers */
514 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
515 	limit = regset->n * regset->size;
516 	while (count && offset < limit) {
517 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
518 		if (ret)
519 			return ret;
520 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &addr,
521 					  offset, offset + PTRACE_HBP_ADDR_SZ);
522 		if (ret)
523 			return ret;
524 		offset += PTRACE_HBP_ADDR_SZ;
525 
526 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
527 		if (ret)
528 			return ret;
529 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &ctrl,
530 					  offset, offset + PTRACE_HBP_CTRL_SZ);
531 		if (ret)
532 			return ret;
533 		offset += PTRACE_HBP_CTRL_SZ;
534 
535 		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
536 					       offset,
537 					       offset + PTRACE_HBP_PAD_SZ);
538 		if (ret)
539 			return ret;
540 		offset += PTRACE_HBP_PAD_SZ;
541 		idx++;
542 	}
543 
544 	return 0;
545 }
546 
547 static int hw_break_set(struct task_struct *target,
548 			const struct user_regset *regset,
549 			unsigned int pos, unsigned int count,
550 			const void *kbuf, const void __user *ubuf)
551 {
552 	unsigned int note_type = regset->core_note_type;
553 	int ret, idx = 0, offset, limit;
554 	u32 ctrl;
555 	u64 addr;
556 
557 	/* Resource info and pad */
558 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
559 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
560 	if (ret)
561 		return ret;
562 
563 	/* (address, ctrl) registers */
564 	limit = regset->n * regset->size;
565 	while (count && offset < limit) {
566 		if (count < PTRACE_HBP_ADDR_SZ)
567 			return -EINVAL;
568 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
569 					 offset, offset + PTRACE_HBP_ADDR_SZ);
570 		if (ret)
571 			return ret;
572 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
573 		if (ret)
574 			return ret;
575 		offset += PTRACE_HBP_ADDR_SZ;
576 
577 		if (!count)
578 			break;
579 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
580 					 offset, offset + PTRACE_HBP_CTRL_SZ);
581 		if (ret)
582 			return ret;
583 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
584 		if (ret)
585 			return ret;
586 		offset += PTRACE_HBP_CTRL_SZ;
587 
588 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
589 						offset,
590 						offset + PTRACE_HBP_PAD_SZ);
591 		if (ret)
592 			return ret;
593 		offset += PTRACE_HBP_PAD_SZ;
594 		idx++;
595 	}
596 
597 	return 0;
598 }
599 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
600 
601 static int gpr_get(struct task_struct *target,
602 		   const struct user_regset *regset,
603 		   unsigned int pos, unsigned int count,
604 		   void *kbuf, void __user *ubuf)
605 {
606 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
607 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0, -1);
608 }
609 
610 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
611 		   unsigned int pos, unsigned int count,
612 		   const void *kbuf, const void __user *ubuf)
613 {
614 	int ret;
615 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
616 
617 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
618 	if (ret)
619 		return ret;
620 
621 	if (!valid_user_regs(&newregs, target))
622 		return -EINVAL;
623 
624 	task_pt_regs(target)->user_regs = newregs;
625 	return 0;
626 }
627 
628 /*
629  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
630  */
631 static int __fpr_get(struct task_struct *target,
632 		     const struct user_regset *regset,
633 		     unsigned int pos, unsigned int count,
634 		     void *kbuf, void __user *ubuf, unsigned int start_pos)
635 {
636 	struct user_fpsimd_state *uregs;
637 
638 	sve_sync_to_fpsimd(target);
639 
640 	uregs = &target->thread.uw.fpsimd_state;
641 
642 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
643 				   start_pos, start_pos + sizeof(*uregs));
644 }
645 
646 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
647 		   unsigned int pos, unsigned int count,
648 		   void *kbuf, void __user *ubuf)
649 {
650 	if (target == current)
651 		fpsimd_preserve_current_state();
652 
653 	return __fpr_get(target, regset, pos, count, kbuf, ubuf, 0);
654 }
655 
656 static int __fpr_set(struct task_struct *target,
657 		     const struct user_regset *regset,
658 		     unsigned int pos, unsigned int count,
659 		     const void *kbuf, const void __user *ubuf,
660 		     unsigned int start_pos)
661 {
662 	int ret;
663 	struct user_fpsimd_state newstate;
664 
665 	/*
666 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
667 	 * short copyin can't resurrect stale data.
668 	 */
669 	sve_sync_to_fpsimd(target);
670 
671 	newstate = target->thread.uw.fpsimd_state;
672 
673 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
674 				 start_pos, start_pos + sizeof(newstate));
675 	if (ret)
676 		return ret;
677 
678 	target->thread.uw.fpsimd_state = newstate;
679 
680 	return ret;
681 }
682 
683 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
684 		   unsigned int pos, unsigned int count,
685 		   const void *kbuf, const void __user *ubuf)
686 {
687 	int ret;
688 
689 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
690 	if (ret)
691 		return ret;
692 
693 	sve_sync_from_fpsimd_zeropad(target);
694 	fpsimd_flush_task_state(target);
695 
696 	return ret;
697 }
698 
699 static int tls_get(struct task_struct *target, const struct user_regset *regset,
700 		   unsigned int pos, unsigned int count,
701 		   void *kbuf, void __user *ubuf)
702 {
703 	unsigned long *tls = &target->thread.uw.tp_value;
704 
705 	if (target == current)
706 		tls_preserve_current_state();
707 
708 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, tls, 0, -1);
709 }
710 
711 static int tls_set(struct task_struct *target, const struct user_regset *regset,
712 		   unsigned int pos, unsigned int count,
713 		   const void *kbuf, const void __user *ubuf)
714 {
715 	int ret;
716 	unsigned long tls = target->thread.uw.tp_value;
717 
718 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
719 	if (ret)
720 		return ret;
721 
722 	target->thread.uw.tp_value = tls;
723 	return ret;
724 }
725 
726 static int system_call_get(struct task_struct *target,
727 			   const struct user_regset *regset,
728 			   unsigned int pos, unsigned int count,
729 			   void *kbuf, void __user *ubuf)
730 {
731 	int syscallno = task_pt_regs(target)->syscallno;
732 
733 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
734 				   &syscallno, 0, -1);
735 }
736 
737 static int system_call_set(struct task_struct *target,
738 			   const struct user_regset *regset,
739 			   unsigned int pos, unsigned int count,
740 			   const void *kbuf, const void __user *ubuf)
741 {
742 	int syscallno = task_pt_regs(target)->syscallno;
743 	int ret;
744 
745 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
746 	if (ret)
747 		return ret;
748 
749 	task_pt_regs(target)->syscallno = syscallno;
750 	return ret;
751 }
752 
753 #ifdef CONFIG_ARM64_SVE
754 
755 static void sve_init_header_from_task(struct user_sve_header *header,
756 				      struct task_struct *target)
757 {
758 	unsigned int vq;
759 
760 	memset(header, 0, sizeof(*header));
761 
762 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
763 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
764 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
765 		header->flags |= SVE_PT_VL_INHERIT;
766 
767 	header->vl = target->thread.sve_vl;
768 	vq = sve_vq_from_vl(header->vl);
769 
770 	header->max_vl = sve_max_vl;
771 	header->size = SVE_PT_SIZE(vq, header->flags);
772 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
773 				      SVE_PT_REGS_SVE);
774 }
775 
776 static unsigned int sve_size_from_header(struct user_sve_header const *header)
777 {
778 	return ALIGN(header->size, SVE_VQ_BYTES);
779 }
780 
781 static unsigned int sve_get_size(struct task_struct *target,
782 				 const struct user_regset *regset)
783 {
784 	struct user_sve_header header;
785 
786 	if (!system_supports_sve())
787 		return 0;
788 
789 	sve_init_header_from_task(&header, target);
790 	return sve_size_from_header(&header);
791 }
792 
793 static int sve_get(struct task_struct *target,
794 		   const struct user_regset *regset,
795 		   unsigned int pos, unsigned int count,
796 		   void *kbuf, void __user *ubuf)
797 {
798 	int ret;
799 	struct user_sve_header header;
800 	unsigned int vq;
801 	unsigned long start, end;
802 
803 	if (!system_supports_sve())
804 		return -EINVAL;
805 
806 	/* Header */
807 	sve_init_header_from_task(&header, target);
808 	vq = sve_vq_from_vl(header.vl);
809 
810 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &header,
811 				  0, sizeof(header));
812 	if (ret)
813 		return ret;
814 
815 	if (target == current)
816 		fpsimd_preserve_current_state();
817 
818 	/* Registers: FPSIMD-only case */
819 
820 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
821 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
822 		return __fpr_get(target, regset, pos, count, kbuf, ubuf,
823 				 SVE_PT_FPSIMD_OFFSET);
824 
825 	/* Otherwise: full SVE case */
826 
827 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
828 	start = SVE_PT_SVE_OFFSET;
829 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
830 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
831 				  target->thread.sve_state,
832 				  start, end);
833 	if (ret)
834 		return ret;
835 
836 	start = end;
837 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
838 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
839 				       start, end);
840 	if (ret)
841 		return ret;
842 
843 	/*
844 	 * Copy fpsr, and fpcr which must follow contiguously in
845 	 * struct fpsimd_state:
846 	 */
847 	start = end;
848 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
849 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
850 				  &target->thread.uw.fpsimd_state.fpsr,
851 				  start, end);
852 	if (ret)
853 		return ret;
854 
855 	start = end;
856 	end = sve_size_from_header(&header);
857 	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
858 					start, end);
859 }
860 
861 static int sve_set(struct task_struct *target,
862 		   const struct user_regset *regset,
863 		   unsigned int pos, unsigned int count,
864 		   const void *kbuf, const void __user *ubuf)
865 {
866 	int ret;
867 	struct user_sve_header header;
868 	unsigned int vq;
869 	unsigned long start, end;
870 
871 	if (!system_supports_sve())
872 		return -EINVAL;
873 
874 	/* Header */
875 	if (count < sizeof(header))
876 		return -EINVAL;
877 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
878 				 0, sizeof(header));
879 	if (ret)
880 		goto out;
881 
882 	/*
883 	 * Apart from PT_SVE_REGS_MASK, all PT_SVE_* flags are consumed by
884 	 * sve_set_vector_length(), which will also validate them for us:
885 	 */
886 	ret = sve_set_vector_length(target, header.vl,
887 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
888 	if (ret)
889 		goto out;
890 
891 	/* Actual VL set may be less than the user asked for: */
892 	vq = sve_vq_from_vl(target->thread.sve_vl);
893 
894 	/* Registers: FPSIMD-only case */
895 
896 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
897 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
898 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
899 				SVE_PT_FPSIMD_OFFSET);
900 		clear_tsk_thread_flag(target, TIF_SVE);
901 		goto out;
902 	}
903 
904 	/* Otherwise: full SVE case */
905 
906 	/*
907 	 * If setting a different VL from the requested VL and there is
908 	 * register data, the data layout will be wrong: don't even
909 	 * try to set the registers in this case.
910 	 */
911 	if (count && vq != sve_vq_from_vl(header.vl)) {
912 		ret = -EIO;
913 		goto out;
914 	}
915 
916 	sve_alloc(target);
917 
918 	/*
919 	 * Ensure target->thread.sve_state is up to date with target's
920 	 * FPSIMD regs, so that a short copyin leaves trailing registers
921 	 * unmodified.
922 	 */
923 	fpsimd_sync_to_sve(target);
924 	set_tsk_thread_flag(target, TIF_SVE);
925 
926 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
927 	start = SVE_PT_SVE_OFFSET;
928 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
929 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
930 				 target->thread.sve_state,
931 				 start, end);
932 	if (ret)
933 		goto out;
934 
935 	start = end;
936 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
937 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
938 					start, end);
939 	if (ret)
940 		goto out;
941 
942 	/*
943 	 * Copy fpsr, and fpcr which must follow contiguously in
944 	 * struct fpsimd_state:
945 	 */
946 	start = end;
947 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
948 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
949 				 &target->thread.uw.fpsimd_state.fpsr,
950 				 start, end);
951 
952 out:
953 	fpsimd_flush_task_state(target);
954 	return ret;
955 }
956 
957 #endif /* CONFIG_ARM64_SVE */
958 
959 enum aarch64_regset {
960 	REGSET_GPR,
961 	REGSET_FPR,
962 	REGSET_TLS,
963 #ifdef CONFIG_HAVE_HW_BREAKPOINT
964 	REGSET_HW_BREAK,
965 	REGSET_HW_WATCH,
966 #endif
967 	REGSET_SYSTEM_CALL,
968 #ifdef CONFIG_ARM64_SVE
969 	REGSET_SVE,
970 #endif
971 };
972 
973 static const struct user_regset aarch64_regsets[] = {
974 	[REGSET_GPR] = {
975 		.core_note_type = NT_PRSTATUS,
976 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
977 		.size = sizeof(u64),
978 		.align = sizeof(u64),
979 		.get = gpr_get,
980 		.set = gpr_set
981 	},
982 	[REGSET_FPR] = {
983 		.core_note_type = NT_PRFPREG,
984 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
985 		/*
986 		 * We pretend we have 32-bit registers because the fpsr and
987 		 * fpcr are 32-bits wide.
988 		 */
989 		.size = sizeof(u32),
990 		.align = sizeof(u32),
991 		.get = fpr_get,
992 		.set = fpr_set
993 	},
994 	[REGSET_TLS] = {
995 		.core_note_type = NT_ARM_TLS,
996 		.n = 1,
997 		.size = sizeof(void *),
998 		.align = sizeof(void *),
999 		.get = tls_get,
1000 		.set = tls_set,
1001 	},
1002 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1003 	[REGSET_HW_BREAK] = {
1004 		.core_note_type = NT_ARM_HW_BREAK,
1005 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1006 		.size = sizeof(u32),
1007 		.align = sizeof(u32),
1008 		.get = hw_break_get,
1009 		.set = hw_break_set,
1010 	},
1011 	[REGSET_HW_WATCH] = {
1012 		.core_note_type = NT_ARM_HW_WATCH,
1013 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1014 		.size = sizeof(u32),
1015 		.align = sizeof(u32),
1016 		.get = hw_break_get,
1017 		.set = hw_break_set,
1018 	},
1019 #endif
1020 	[REGSET_SYSTEM_CALL] = {
1021 		.core_note_type = NT_ARM_SYSTEM_CALL,
1022 		.n = 1,
1023 		.size = sizeof(int),
1024 		.align = sizeof(int),
1025 		.get = system_call_get,
1026 		.set = system_call_set,
1027 	},
1028 #ifdef CONFIG_ARM64_SVE
1029 	[REGSET_SVE] = { /* Scalable Vector Extension */
1030 		.core_note_type = NT_ARM_SVE,
1031 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1032 				  SVE_VQ_BYTES),
1033 		.size = SVE_VQ_BYTES,
1034 		.align = SVE_VQ_BYTES,
1035 		.get = sve_get,
1036 		.set = sve_set,
1037 		.get_size = sve_get_size,
1038 	},
1039 #endif
1040 };
1041 
1042 static const struct user_regset_view user_aarch64_view = {
1043 	.name = "aarch64", .e_machine = EM_AARCH64,
1044 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1045 };
1046 
1047 #ifdef CONFIG_COMPAT
1048 enum compat_regset {
1049 	REGSET_COMPAT_GPR,
1050 	REGSET_COMPAT_VFP,
1051 };
1052 
1053 static int compat_gpr_get(struct task_struct *target,
1054 			  const struct user_regset *regset,
1055 			  unsigned int pos, unsigned int count,
1056 			  void *kbuf, void __user *ubuf)
1057 {
1058 	int ret = 0;
1059 	unsigned int i, start, num_regs;
1060 
1061 	/* Calculate the number of AArch32 registers contained in count */
1062 	num_regs = count / regset->size;
1063 
1064 	/* Convert pos into an register number */
1065 	start = pos / regset->size;
1066 
1067 	if (start + num_regs > regset->n)
1068 		return -EIO;
1069 
1070 	for (i = 0; i < num_regs; ++i) {
1071 		unsigned int idx = start + i;
1072 		compat_ulong_t reg;
1073 
1074 		switch (idx) {
1075 		case 15:
1076 			reg = task_pt_regs(target)->pc;
1077 			break;
1078 		case 16:
1079 			reg = task_pt_regs(target)->pstate;
1080 			reg = pstate_to_compat_psr(reg);
1081 			break;
1082 		case 17:
1083 			reg = task_pt_regs(target)->orig_x0;
1084 			break;
1085 		default:
1086 			reg = task_pt_regs(target)->regs[idx];
1087 		}
1088 
1089 		if (kbuf) {
1090 			memcpy(kbuf, &reg, sizeof(reg));
1091 			kbuf += sizeof(reg);
1092 		} else {
1093 			ret = copy_to_user(ubuf, &reg, sizeof(reg));
1094 			if (ret) {
1095 				ret = -EFAULT;
1096 				break;
1097 			}
1098 
1099 			ubuf += sizeof(reg);
1100 		}
1101 	}
1102 
1103 	return ret;
1104 }
1105 
1106 static int compat_gpr_set(struct task_struct *target,
1107 			  const struct user_regset *regset,
1108 			  unsigned int pos, unsigned int count,
1109 			  const void *kbuf, const void __user *ubuf)
1110 {
1111 	struct pt_regs newregs;
1112 	int ret = 0;
1113 	unsigned int i, start, num_regs;
1114 
1115 	/* Calculate the number of AArch32 registers contained in count */
1116 	num_regs = count / regset->size;
1117 
1118 	/* Convert pos into an register number */
1119 	start = pos / regset->size;
1120 
1121 	if (start + num_regs > regset->n)
1122 		return -EIO;
1123 
1124 	newregs = *task_pt_regs(target);
1125 
1126 	for (i = 0; i < num_regs; ++i) {
1127 		unsigned int idx = start + i;
1128 		compat_ulong_t reg;
1129 
1130 		if (kbuf) {
1131 			memcpy(&reg, kbuf, sizeof(reg));
1132 			kbuf += sizeof(reg);
1133 		} else {
1134 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1135 			if (ret) {
1136 				ret = -EFAULT;
1137 				break;
1138 			}
1139 
1140 			ubuf += sizeof(reg);
1141 		}
1142 
1143 		switch (idx) {
1144 		case 15:
1145 			newregs.pc = reg;
1146 			break;
1147 		case 16:
1148 			reg = compat_psr_to_pstate(reg);
1149 			newregs.pstate = reg;
1150 			break;
1151 		case 17:
1152 			newregs.orig_x0 = reg;
1153 			break;
1154 		default:
1155 			newregs.regs[idx] = reg;
1156 		}
1157 
1158 	}
1159 
1160 	if (valid_user_regs(&newregs.user_regs, target))
1161 		*task_pt_regs(target) = newregs;
1162 	else
1163 		ret = -EINVAL;
1164 
1165 	return ret;
1166 }
1167 
1168 static int compat_vfp_get(struct task_struct *target,
1169 			  const struct user_regset *regset,
1170 			  unsigned int pos, unsigned int count,
1171 			  void *kbuf, void __user *ubuf)
1172 {
1173 	struct user_fpsimd_state *uregs;
1174 	compat_ulong_t fpscr;
1175 	int ret, vregs_end_pos;
1176 
1177 	uregs = &target->thread.uw.fpsimd_state;
1178 
1179 	if (target == current)
1180 		fpsimd_preserve_current_state();
1181 
1182 	/*
1183 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1184 	 * nicely together for us. We just need to create the fpscr separately.
1185 	 */
1186 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1187 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
1188 				  0, vregs_end_pos);
1189 
1190 	if (count && !ret) {
1191 		fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1192 			(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1193 
1194 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpscr,
1195 					  vregs_end_pos, VFP_STATE_SIZE);
1196 	}
1197 
1198 	return ret;
1199 }
1200 
1201 static int compat_vfp_set(struct task_struct *target,
1202 			  const struct user_regset *regset,
1203 			  unsigned int pos, unsigned int count,
1204 			  const void *kbuf, const void __user *ubuf)
1205 {
1206 	struct user_fpsimd_state *uregs;
1207 	compat_ulong_t fpscr;
1208 	int ret, vregs_end_pos;
1209 
1210 	uregs = &target->thread.uw.fpsimd_state;
1211 
1212 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1213 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1214 				 vregs_end_pos);
1215 
1216 	if (count && !ret) {
1217 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1218 					 vregs_end_pos, VFP_STATE_SIZE);
1219 		if (!ret) {
1220 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1221 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1222 		}
1223 	}
1224 
1225 	fpsimd_flush_task_state(target);
1226 	return ret;
1227 }
1228 
1229 static int compat_tls_get(struct task_struct *target,
1230 			  const struct user_regset *regset, unsigned int pos,
1231 			  unsigned int count, void *kbuf, void __user *ubuf)
1232 {
1233 	compat_ulong_t tls = (compat_ulong_t)target->thread.uw.tp_value;
1234 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1235 }
1236 
1237 static int compat_tls_set(struct task_struct *target,
1238 			  const struct user_regset *regset, unsigned int pos,
1239 			  unsigned int count, const void *kbuf,
1240 			  const void __user *ubuf)
1241 {
1242 	int ret;
1243 	compat_ulong_t tls = target->thread.uw.tp_value;
1244 
1245 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1246 	if (ret)
1247 		return ret;
1248 
1249 	target->thread.uw.tp_value = tls;
1250 	return ret;
1251 }
1252 
1253 static const struct user_regset aarch32_regsets[] = {
1254 	[REGSET_COMPAT_GPR] = {
1255 		.core_note_type = NT_PRSTATUS,
1256 		.n = COMPAT_ELF_NGREG,
1257 		.size = sizeof(compat_elf_greg_t),
1258 		.align = sizeof(compat_elf_greg_t),
1259 		.get = compat_gpr_get,
1260 		.set = compat_gpr_set
1261 	},
1262 	[REGSET_COMPAT_VFP] = {
1263 		.core_note_type = NT_ARM_VFP,
1264 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1265 		.size = sizeof(compat_ulong_t),
1266 		.align = sizeof(compat_ulong_t),
1267 		.get = compat_vfp_get,
1268 		.set = compat_vfp_set
1269 	},
1270 };
1271 
1272 static const struct user_regset_view user_aarch32_view = {
1273 	.name = "aarch32", .e_machine = EM_ARM,
1274 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1275 };
1276 
1277 static const struct user_regset aarch32_ptrace_regsets[] = {
1278 	[REGSET_GPR] = {
1279 		.core_note_type = NT_PRSTATUS,
1280 		.n = COMPAT_ELF_NGREG,
1281 		.size = sizeof(compat_elf_greg_t),
1282 		.align = sizeof(compat_elf_greg_t),
1283 		.get = compat_gpr_get,
1284 		.set = compat_gpr_set
1285 	},
1286 	[REGSET_FPR] = {
1287 		.core_note_type = NT_ARM_VFP,
1288 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1289 		.size = sizeof(compat_ulong_t),
1290 		.align = sizeof(compat_ulong_t),
1291 		.get = compat_vfp_get,
1292 		.set = compat_vfp_set
1293 	},
1294 	[REGSET_TLS] = {
1295 		.core_note_type = NT_ARM_TLS,
1296 		.n = 1,
1297 		.size = sizeof(compat_ulong_t),
1298 		.align = sizeof(compat_ulong_t),
1299 		.get = compat_tls_get,
1300 		.set = compat_tls_set,
1301 	},
1302 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1303 	[REGSET_HW_BREAK] = {
1304 		.core_note_type = NT_ARM_HW_BREAK,
1305 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1306 		.size = sizeof(u32),
1307 		.align = sizeof(u32),
1308 		.get = hw_break_get,
1309 		.set = hw_break_set,
1310 	},
1311 	[REGSET_HW_WATCH] = {
1312 		.core_note_type = NT_ARM_HW_WATCH,
1313 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1314 		.size = sizeof(u32),
1315 		.align = sizeof(u32),
1316 		.get = hw_break_get,
1317 		.set = hw_break_set,
1318 	},
1319 #endif
1320 	[REGSET_SYSTEM_CALL] = {
1321 		.core_note_type = NT_ARM_SYSTEM_CALL,
1322 		.n = 1,
1323 		.size = sizeof(int),
1324 		.align = sizeof(int),
1325 		.get = system_call_get,
1326 		.set = system_call_set,
1327 	},
1328 };
1329 
1330 static const struct user_regset_view user_aarch32_ptrace_view = {
1331 	.name = "aarch32", .e_machine = EM_ARM,
1332 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1333 };
1334 
1335 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1336 				   compat_ulong_t __user *ret)
1337 {
1338 	compat_ulong_t tmp;
1339 
1340 	if (off & 3)
1341 		return -EIO;
1342 
1343 	if (off == COMPAT_PT_TEXT_ADDR)
1344 		tmp = tsk->mm->start_code;
1345 	else if (off == COMPAT_PT_DATA_ADDR)
1346 		tmp = tsk->mm->start_data;
1347 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1348 		tmp = tsk->mm->end_code;
1349 	else if (off < sizeof(compat_elf_gregset_t))
1350 		return copy_regset_to_user(tsk, &user_aarch32_view,
1351 					   REGSET_COMPAT_GPR, off,
1352 					   sizeof(compat_ulong_t), ret);
1353 	else if (off >= COMPAT_USER_SZ)
1354 		return -EIO;
1355 	else
1356 		tmp = 0;
1357 
1358 	return put_user(tmp, ret);
1359 }
1360 
1361 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1362 				    compat_ulong_t val)
1363 {
1364 	int ret;
1365 	mm_segment_t old_fs = get_fs();
1366 
1367 	if (off & 3 || off >= COMPAT_USER_SZ)
1368 		return -EIO;
1369 
1370 	if (off >= sizeof(compat_elf_gregset_t))
1371 		return 0;
1372 
1373 	set_fs(KERNEL_DS);
1374 	ret = copy_regset_from_user(tsk, &user_aarch32_view,
1375 				    REGSET_COMPAT_GPR, off,
1376 				    sizeof(compat_ulong_t),
1377 				    &val);
1378 	set_fs(old_fs);
1379 
1380 	return ret;
1381 }
1382 
1383 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1384 
1385 /*
1386  * Convert a virtual register number into an index for a thread_info
1387  * breakpoint array. Breakpoints are identified using positive numbers
1388  * whilst watchpoints are negative. The registers are laid out as pairs
1389  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1390  * Register 0 is reserved for describing resource information.
1391  */
1392 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1393 {
1394 	return (abs(num) - 1) >> 1;
1395 }
1396 
1397 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1398 {
1399 	u8 num_brps, num_wrps, debug_arch, wp_len;
1400 	u32 reg = 0;
1401 
1402 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1403 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1404 
1405 	debug_arch	= debug_monitors_arch();
1406 	wp_len		= 8;
1407 	reg		|= debug_arch;
1408 	reg		<<= 8;
1409 	reg		|= wp_len;
1410 	reg		<<= 8;
1411 	reg		|= num_wrps;
1412 	reg		<<= 8;
1413 	reg		|= num_brps;
1414 
1415 	*kdata = reg;
1416 	return 0;
1417 }
1418 
1419 static int compat_ptrace_hbp_get(unsigned int note_type,
1420 				 struct task_struct *tsk,
1421 				 compat_long_t num,
1422 				 u32 *kdata)
1423 {
1424 	u64 addr = 0;
1425 	u32 ctrl = 0;
1426 
1427 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1428 
1429 	if (num & 1) {
1430 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1431 		*kdata = (u32)addr;
1432 	} else {
1433 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1434 		*kdata = ctrl;
1435 	}
1436 
1437 	return err;
1438 }
1439 
1440 static int compat_ptrace_hbp_set(unsigned int note_type,
1441 				 struct task_struct *tsk,
1442 				 compat_long_t num,
1443 				 u32 *kdata)
1444 {
1445 	u64 addr;
1446 	u32 ctrl;
1447 
1448 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1449 
1450 	if (num & 1) {
1451 		addr = *kdata;
1452 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1453 	} else {
1454 		ctrl = *kdata;
1455 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1456 	}
1457 
1458 	return err;
1459 }
1460 
1461 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1462 				    compat_ulong_t __user *data)
1463 {
1464 	int ret;
1465 	u32 kdata;
1466 
1467 	/* Watchpoint */
1468 	if (num < 0) {
1469 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1470 	/* Resource info */
1471 	} else if (num == 0) {
1472 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1473 	/* Breakpoint */
1474 	} else {
1475 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1476 	}
1477 
1478 	if (!ret)
1479 		ret = put_user(kdata, data);
1480 
1481 	return ret;
1482 }
1483 
1484 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1485 				    compat_ulong_t __user *data)
1486 {
1487 	int ret;
1488 	u32 kdata = 0;
1489 
1490 	if (num == 0)
1491 		return 0;
1492 
1493 	ret = get_user(kdata, data);
1494 	if (ret)
1495 		return ret;
1496 
1497 	if (num < 0)
1498 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1499 	else
1500 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1501 
1502 	return ret;
1503 }
1504 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1505 
1506 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1507 			compat_ulong_t caddr, compat_ulong_t cdata)
1508 {
1509 	unsigned long addr = caddr;
1510 	unsigned long data = cdata;
1511 	void __user *datap = compat_ptr(data);
1512 	int ret;
1513 
1514 	switch (request) {
1515 		case PTRACE_PEEKUSR:
1516 			ret = compat_ptrace_read_user(child, addr, datap);
1517 			break;
1518 
1519 		case PTRACE_POKEUSR:
1520 			ret = compat_ptrace_write_user(child, addr, data);
1521 			break;
1522 
1523 		case COMPAT_PTRACE_GETREGS:
1524 			ret = copy_regset_to_user(child,
1525 						  &user_aarch32_view,
1526 						  REGSET_COMPAT_GPR,
1527 						  0, sizeof(compat_elf_gregset_t),
1528 						  datap);
1529 			break;
1530 
1531 		case COMPAT_PTRACE_SETREGS:
1532 			ret = copy_regset_from_user(child,
1533 						    &user_aarch32_view,
1534 						    REGSET_COMPAT_GPR,
1535 						    0, sizeof(compat_elf_gregset_t),
1536 						    datap);
1537 			break;
1538 
1539 		case COMPAT_PTRACE_GET_THREAD_AREA:
1540 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1541 				       (compat_ulong_t __user *)datap);
1542 			break;
1543 
1544 		case COMPAT_PTRACE_SET_SYSCALL:
1545 			task_pt_regs(child)->syscallno = data;
1546 			ret = 0;
1547 			break;
1548 
1549 		case COMPAT_PTRACE_GETVFPREGS:
1550 			ret = copy_regset_to_user(child,
1551 						  &user_aarch32_view,
1552 						  REGSET_COMPAT_VFP,
1553 						  0, VFP_STATE_SIZE,
1554 						  datap);
1555 			break;
1556 
1557 		case COMPAT_PTRACE_SETVFPREGS:
1558 			ret = copy_regset_from_user(child,
1559 						    &user_aarch32_view,
1560 						    REGSET_COMPAT_VFP,
1561 						    0, VFP_STATE_SIZE,
1562 						    datap);
1563 			break;
1564 
1565 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1566 		case COMPAT_PTRACE_GETHBPREGS:
1567 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1568 			break;
1569 
1570 		case COMPAT_PTRACE_SETHBPREGS:
1571 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1572 			break;
1573 #endif
1574 
1575 		default:
1576 			ret = compat_ptrace_request(child, request, addr,
1577 						    data);
1578 			break;
1579 	}
1580 
1581 	return ret;
1582 }
1583 #endif /* CONFIG_COMPAT */
1584 
1585 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1586 {
1587 #ifdef CONFIG_COMPAT
1588 	/*
1589 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1590 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1591 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1592 	 * access to the TLS register.
1593 	 */
1594 	if (is_compat_task())
1595 		return &user_aarch32_view;
1596 	else if (is_compat_thread(task_thread_info(task)))
1597 		return &user_aarch32_ptrace_view;
1598 #endif
1599 	return &user_aarch64_view;
1600 }
1601 
1602 long arch_ptrace(struct task_struct *child, long request,
1603 		 unsigned long addr, unsigned long data)
1604 {
1605 	return ptrace_request(child, request, addr, data);
1606 }
1607 
1608 enum ptrace_syscall_dir {
1609 	PTRACE_SYSCALL_ENTER = 0,
1610 	PTRACE_SYSCALL_EXIT,
1611 };
1612 
1613 static void tracehook_report_syscall(struct pt_regs *regs,
1614 				     enum ptrace_syscall_dir dir)
1615 {
1616 	int regno;
1617 	unsigned long saved_reg;
1618 
1619 	/*
1620 	 * A scratch register (ip(r12) on AArch32, x7 on AArch64) is
1621 	 * used to denote syscall entry/exit:
1622 	 */
1623 	regno = (is_compat_task() ? 12 : 7);
1624 	saved_reg = regs->regs[regno];
1625 	regs->regs[regno] = dir;
1626 
1627 	if (dir == PTRACE_SYSCALL_EXIT)
1628 		tracehook_report_syscall_exit(regs, 0);
1629 	else if (tracehook_report_syscall_entry(regs))
1630 		forget_syscall(regs);
1631 
1632 	regs->regs[regno] = saved_reg;
1633 }
1634 
1635 int syscall_trace_enter(struct pt_regs *regs)
1636 {
1637 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1638 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1639 
1640 	/* Do the secure computing after ptrace; failures should be fast. */
1641 	if (secure_computing(NULL) == -1)
1642 		return -1;
1643 
1644 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1645 		trace_sys_enter(regs, regs->syscallno);
1646 
1647 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1648 			    regs->regs[2], regs->regs[3]);
1649 
1650 	return regs->syscallno;
1651 }
1652 
1653 void syscall_trace_exit(struct pt_regs *regs)
1654 {
1655 	audit_syscall_exit(regs);
1656 
1657 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1658 		trace_sys_exit(regs, regs_return_value(regs));
1659 
1660 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1661 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1662 
1663 	rseq_syscall(regs);
1664 }
1665 
1666 /*
1667  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487C.a
1668  * We also take into account DIT (bit 24), which is not yet documented, and
1669  * treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may be
1670  * allocated an EL0 meaning in future.
1671  * Userspace cannot use these until they have an architectural meaning.
1672  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1673  * We also reserve IL for the kernel; SS is handled dynamically.
1674  */
1675 #define SPSR_EL1_AARCH64_RES0_BITS \
1676 	(GENMASK_ULL(63,32) | GENMASK_ULL(27, 25) | GENMASK_ULL(23, 22) | \
1677 	 GENMASK_ULL(20, 10) | GENMASK_ULL(5, 5))
1678 #define SPSR_EL1_AARCH32_RES0_BITS \
1679 	(GENMASK_ULL(63,32) | GENMASK_ULL(23, 22) | GENMASK_ULL(20,20))
1680 
1681 static int valid_compat_regs(struct user_pt_regs *regs)
1682 {
1683 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1684 
1685 	if (!system_supports_mixed_endian_el0()) {
1686 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1687 			regs->pstate |= PSR_AA32_E_BIT;
1688 		else
1689 			regs->pstate &= ~PSR_AA32_E_BIT;
1690 	}
1691 
1692 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1693 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1694 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1695 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
1696 		return 1;
1697 	}
1698 
1699 	/*
1700 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1701 	 * arch/arm.
1702 	 */
1703 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1704 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1705 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1706 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1707 			PSR_AA32_T_BIT;
1708 	regs->pstate |= PSR_MODE32_BIT;
1709 
1710 	return 0;
1711 }
1712 
1713 static int valid_native_regs(struct user_pt_regs *regs)
1714 {
1715 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1716 
1717 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1718 	    (regs->pstate & PSR_D_BIT) == 0 &&
1719 	    (regs->pstate & PSR_A_BIT) == 0 &&
1720 	    (regs->pstate & PSR_I_BIT) == 0 &&
1721 	    (regs->pstate & PSR_F_BIT) == 0) {
1722 		return 1;
1723 	}
1724 
1725 	/* Force PSR to a valid 64-bit EL0t */
1726 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1727 
1728 	return 0;
1729 }
1730 
1731 /*
1732  * Are the current registers suitable for user mode? (used to maintain
1733  * security in signal handlers)
1734  */
1735 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1736 {
1737 	if (!test_tsk_thread_flag(task, TIF_SINGLESTEP))
1738 		regs->pstate &= ~DBG_SPSR_SS;
1739 
1740 	if (is_compat_thread(task_thread_info(task)))
1741 		return valid_compat_regs(regs);
1742 	else
1743 		return valid_native_regs(regs);
1744 }
1745