xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision e330fb14)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46 
47 struct pt_regs_offset {
48 	const char *name;
49 	int offset;
50 };
51 
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56 
57 static const struct pt_regs_offset regoffset_table[] = {
58 	GPR_OFFSET_NAME(0),
59 	GPR_OFFSET_NAME(1),
60 	GPR_OFFSET_NAME(2),
61 	GPR_OFFSET_NAME(3),
62 	GPR_OFFSET_NAME(4),
63 	GPR_OFFSET_NAME(5),
64 	GPR_OFFSET_NAME(6),
65 	GPR_OFFSET_NAME(7),
66 	GPR_OFFSET_NAME(8),
67 	GPR_OFFSET_NAME(9),
68 	GPR_OFFSET_NAME(10),
69 	GPR_OFFSET_NAME(11),
70 	GPR_OFFSET_NAME(12),
71 	GPR_OFFSET_NAME(13),
72 	GPR_OFFSET_NAME(14),
73 	GPR_OFFSET_NAME(15),
74 	GPR_OFFSET_NAME(16),
75 	GPR_OFFSET_NAME(17),
76 	GPR_OFFSET_NAME(18),
77 	GPR_OFFSET_NAME(19),
78 	GPR_OFFSET_NAME(20),
79 	GPR_OFFSET_NAME(21),
80 	GPR_OFFSET_NAME(22),
81 	GPR_OFFSET_NAME(23),
82 	GPR_OFFSET_NAME(24),
83 	GPR_OFFSET_NAME(25),
84 	GPR_OFFSET_NAME(26),
85 	GPR_OFFSET_NAME(27),
86 	GPR_OFFSET_NAME(28),
87 	GPR_OFFSET_NAME(29),
88 	GPR_OFFSET_NAME(30),
89 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 	REG_OFFSET_NAME(sp),
91 	REG_OFFSET_NAME(pc),
92 	REG_OFFSET_NAME(pstate),
93 	REG_OFFSET_END,
94 };
95 
96 /**
97  * regs_query_register_offset() - query register offset from its name
98  * @name:	the name of a register
99  *
100  * regs_query_register_offset() returns the offset of a register in struct
101  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102  */
103 int regs_query_register_offset(const char *name)
104 {
105 	const struct pt_regs_offset *roff;
106 
107 	for (roff = regoffset_table; roff->name != NULL; roff++)
108 		if (!strcmp(roff->name, name))
109 			return roff->offset;
110 	return -EINVAL;
111 }
112 
113 /**
114  * regs_within_kernel_stack() - check the address in the stack
115  * @regs:      pt_regs which contains kernel stack pointer.
116  * @addr:      address which is checked.
117  *
118  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119  * If @addr is within the kernel stack, it returns true. If not, returns false.
120  */
121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 	return ((addr & ~(THREAD_SIZE - 1))  ==
124 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 		on_irq_stack(addr, sizeof(unsigned long), NULL);
126 }
127 
128 /**
129  * regs_get_kernel_stack_nth() - get Nth entry of the stack
130  * @regs:	pt_regs which contains kernel stack pointer.
131  * @n:		stack entry number.
132  *
133  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135  * this returns 0.
136  */
137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140 
141 	addr += n;
142 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 		return *addr;
144 	else
145 		return 0;
146 }
147 
148 /*
149  * TODO: does not yet catch signals sent when the child dies.
150  * in exit.c or in signal.c.
151  */
152 
153 /*
154  * Called by kernel/ptrace.c when detaching..
155  */
156 void ptrace_disable(struct task_struct *child)
157 {
158 	/*
159 	 * This would be better off in core code, but PTRACE_DETACH has
160 	 * grown its fair share of arch-specific worts and changing it
161 	 * is likely to cause regressions on obscure architectures.
162 	 */
163 	user_disable_single_step(child);
164 }
165 
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168  * Handle hitting a HW-breakpoint.
169  */
170 static void ptrace_hbptriggered(struct perf_event *bp,
171 				struct perf_sample_data *data,
172 				struct pt_regs *regs)
173 {
174 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 	const char *desc = "Hardware breakpoint trap (ptrace)";
176 
177 #ifdef CONFIG_COMPAT
178 	if (is_compat_task()) {
179 		int si_errno = 0;
180 		int i;
181 
182 		for (i = 0; i < ARM_MAX_BRP; ++i) {
183 			if (current->thread.debug.hbp_break[i] == bp) {
184 				si_errno = (i << 1) + 1;
185 				break;
186 			}
187 		}
188 
189 		for (i = 0; i < ARM_MAX_WRP; ++i) {
190 			if (current->thread.debug.hbp_watch[i] == bp) {
191 				si_errno = -((i << 1) + 1);
192 				break;
193 			}
194 		}
195 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 						  desc);
197 		return;
198 	}
199 #endif
200 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
201 }
202 
203 /*
204  * Unregister breakpoints from this task and reset the pointers in
205  * the thread_struct.
206  */
207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
208 {
209 	int i;
210 	struct thread_struct *t = &tsk->thread;
211 
212 	for (i = 0; i < ARM_MAX_BRP; i++) {
213 		if (t->debug.hbp_break[i]) {
214 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
215 			t->debug.hbp_break[i] = NULL;
216 		}
217 	}
218 
219 	for (i = 0; i < ARM_MAX_WRP; i++) {
220 		if (t->debug.hbp_watch[i]) {
221 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
222 			t->debug.hbp_watch[i] = NULL;
223 		}
224 	}
225 }
226 
227 void ptrace_hw_copy_thread(struct task_struct *tsk)
228 {
229 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
230 }
231 
232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
233 					       struct task_struct *tsk,
234 					       unsigned long idx)
235 {
236 	struct perf_event *bp = ERR_PTR(-EINVAL);
237 
238 	switch (note_type) {
239 	case NT_ARM_HW_BREAK:
240 		if (idx >= ARM_MAX_BRP)
241 			goto out;
242 		idx = array_index_nospec(idx, ARM_MAX_BRP);
243 		bp = tsk->thread.debug.hbp_break[idx];
244 		break;
245 	case NT_ARM_HW_WATCH:
246 		if (idx >= ARM_MAX_WRP)
247 			goto out;
248 		idx = array_index_nospec(idx, ARM_MAX_WRP);
249 		bp = tsk->thread.debug.hbp_watch[idx];
250 		break;
251 	}
252 
253 out:
254 	return bp;
255 }
256 
257 static int ptrace_hbp_set_event(unsigned int note_type,
258 				struct task_struct *tsk,
259 				unsigned long idx,
260 				struct perf_event *bp)
261 {
262 	int err = -EINVAL;
263 
264 	switch (note_type) {
265 	case NT_ARM_HW_BREAK:
266 		if (idx >= ARM_MAX_BRP)
267 			goto out;
268 		idx = array_index_nospec(idx, ARM_MAX_BRP);
269 		tsk->thread.debug.hbp_break[idx] = bp;
270 		err = 0;
271 		break;
272 	case NT_ARM_HW_WATCH:
273 		if (idx >= ARM_MAX_WRP)
274 			goto out;
275 		idx = array_index_nospec(idx, ARM_MAX_WRP);
276 		tsk->thread.debug.hbp_watch[idx] = bp;
277 		err = 0;
278 		break;
279 	}
280 
281 out:
282 	return err;
283 }
284 
285 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
286 					    struct task_struct *tsk,
287 					    unsigned long idx)
288 {
289 	struct perf_event *bp;
290 	struct perf_event_attr attr;
291 	int err, type;
292 
293 	switch (note_type) {
294 	case NT_ARM_HW_BREAK:
295 		type = HW_BREAKPOINT_X;
296 		break;
297 	case NT_ARM_HW_WATCH:
298 		type = HW_BREAKPOINT_RW;
299 		break;
300 	default:
301 		return ERR_PTR(-EINVAL);
302 	}
303 
304 	ptrace_breakpoint_init(&attr);
305 
306 	/*
307 	 * Initialise fields to sane defaults
308 	 * (i.e. values that will pass validation).
309 	 */
310 	attr.bp_addr	= 0;
311 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
312 	attr.bp_type	= type;
313 	attr.disabled	= 1;
314 
315 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
316 	if (IS_ERR(bp))
317 		return bp;
318 
319 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
320 	if (err)
321 		return ERR_PTR(err);
322 
323 	return bp;
324 }
325 
326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
327 				     struct arch_hw_breakpoint_ctrl ctrl,
328 				     struct perf_event_attr *attr)
329 {
330 	int err, len, type, offset, disabled = !ctrl.enabled;
331 
332 	attr->disabled = disabled;
333 	if (disabled)
334 		return 0;
335 
336 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
337 	if (err)
338 		return err;
339 
340 	switch (note_type) {
341 	case NT_ARM_HW_BREAK:
342 		if ((type & HW_BREAKPOINT_X) != type)
343 			return -EINVAL;
344 		break;
345 	case NT_ARM_HW_WATCH:
346 		if ((type & HW_BREAKPOINT_RW) != type)
347 			return -EINVAL;
348 		break;
349 	default:
350 		return -EINVAL;
351 	}
352 
353 	attr->bp_len	= len;
354 	attr->bp_type	= type;
355 	attr->bp_addr	+= offset;
356 
357 	return 0;
358 }
359 
360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
361 {
362 	u8 num;
363 	u32 reg = 0;
364 
365 	switch (note_type) {
366 	case NT_ARM_HW_BREAK:
367 		num = hw_breakpoint_slots(TYPE_INST);
368 		break;
369 	case NT_ARM_HW_WATCH:
370 		num = hw_breakpoint_slots(TYPE_DATA);
371 		break;
372 	default:
373 		return -EINVAL;
374 	}
375 
376 	reg |= debug_monitors_arch();
377 	reg <<= 8;
378 	reg |= num;
379 
380 	*info = reg;
381 	return 0;
382 }
383 
384 static int ptrace_hbp_get_ctrl(unsigned int note_type,
385 			       struct task_struct *tsk,
386 			       unsigned long idx,
387 			       u32 *ctrl)
388 {
389 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
390 
391 	if (IS_ERR(bp))
392 		return PTR_ERR(bp);
393 
394 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
395 	return 0;
396 }
397 
398 static int ptrace_hbp_get_addr(unsigned int note_type,
399 			       struct task_struct *tsk,
400 			       unsigned long idx,
401 			       u64 *addr)
402 {
403 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
404 
405 	if (IS_ERR(bp))
406 		return PTR_ERR(bp);
407 
408 	*addr = bp ? counter_arch_bp(bp)->address : 0;
409 	return 0;
410 }
411 
412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
413 							struct task_struct *tsk,
414 							unsigned long idx)
415 {
416 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
417 
418 	if (!bp)
419 		bp = ptrace_hbp_create(note_type, tsk, idx);
420 
421 	return bp;
422 }
423 
424 static int ptrace_hbp_set_ctrl(unsigned int note_type,
425 			       struct task_struct *tsk,
426 			       unsigned long idx,
427 			       u32 uctrl)
428 {
429 	int err;
430 	struct perf_event *bp;
431 	struct perf_event_attr attr;
432 	struct arch_hw_breakpoint_ctrl ctrl;
433 
434 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
435 	if (IS_ERR(bp)) {
436 		err = PTR_ERR(bp);
437 		return err;
438 	}
439 
440 	attr = bp->attr;
441 	decode_ctrl_reg(uctrl, &ctrl);
442 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
443 	if (err)
444 		return err;
445 
446 	return modify_user_hw_breakpoint(bp, &attr);
447 }
448 
449 static int ptrace_hbp_set_addr(unsigned int note_type,
450 			       struct task_struct *tsk,
451 			       unsigned long idx,
452 			       u64 addr)
453 {
454 	int err;
455 	struct perf_event *bp;
456 	struct perf_event_attr attr;
457 
458 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
459 	if (IS_ERR(bp)) {
460 		err = PTR_ERR(bp);
461 		return err;
462 	}
463 
464 	attr = bp->attr;
465 	attr.bp_addr = addr;
466 	err = modify_user_hw_breakpoint(bp, &attr);
467 	return err;
468 }
469 
470 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
471 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
472 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
473 
474 static int hw_break_get(struct task_struct *target,
475 			const struct user_regset *regset,
476 			struct membuf to)
477 {
478 	unsigned int note_type = regset->core_note_type;
479 	int ret, idx = 0;
480 	u32 info, ctrl;
481 	u64 addr;
482 
483 	/* Resource info */
484 	ret = ptrace_hbp_get_resource_info(note_type, &info);
485 	if (ret)
486 		return ret;
487 
488 	membuf_write(&to, &info, sizeof(info));
489 	membuf_zero(&to, sizeof(u32));
490 	/* (address, ctrl) registers */
491 	while (to.left) {
492 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
493 		if (ret)
494 			return ret;
495 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
496 		if (ret)
497 			return ret;
498 		membuf_store(&to, addr);
499 		membuf_store(&to, ctrl);
500 		membuf_zero(&to, sizeof(u32));
501 		idx++;
502 	}
503 	return 0;
504 }
505 
506 static int hw_break_set(struct task_struct *target,
507 			const struct user_regset *regset,
508 			unsigned int pos, unsigned int count,
509 			const void *kbuf, const void __user *ubuf)
510 {
511 	unsigned int note_type = regset->core_note_type;
512 	int ret, idx = 0, offset, limit;
513 	u32 ctrl;
514 	u64 addr;
515 
516 	/* Resource info and pad */
517 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
518 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
519 	if (ret)
520 		return ret;
521 
522 	/* (address, ctrl) registers */
523 	limit = regset->n * regset->size;
524 	while (count && offset < limit) {
525 		if (count < PTRACE_HBP_ADDR_SZ)
526 			return -EINVAL;
527 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
528 					 offset, offset + PTRACE_HBP_ADDR_SZ);
529 		if (ret)
530 			return ret;
531 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
532 		if (ret)
533 			return ret;
534 		offset += PTRACE_HBP_ADDR_SZ;
535 
536 		if (!count)
537 			break;
538 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
539 					 offset, offset + PTRACE_HBP_CTRL_SZ);
540 		if (ret)
541 			return ret;
542 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
543 		if (ret)
544 			return ret;
545 		offset += PTRACE_HBP_CTRL_SZ;
546 
547 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
548 						offset,
549 						offset + PTRACE_HBP_PAD_SZ);
550 		if (ret)
551 			return ret;
552 		offset += PTRACE_HBP_PAD_SZ;
553 		idx++;
554 	}
555 
556 	return 0;
557 }
558 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
559 
560 static int gpr_get(struct task_struct *target,
561 		   const struct user_regset *regset,
562 		   struct membuf to)
563 {
564 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
565 	return membuf_write(&to, uregs, sizeof(*uregs));
566 }
567 
568 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
569 		   unsigned int pos, unsigned int count,
570 		   const void *kbuf, const void __user *ubuf)
571 {
572 	int ret;
573 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
574 
575 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
576 	if (ret)
577 		return ret;
578 
579 	if (!valid_user_regs(&newregs, target))
580 		return -EINVAL;
581 
582 	task_pt_regs(target)->user_regs = newregs;
583 	return 0;
584 }
585 
586 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
587 {
588 	if (!system_supports_fpsimd())
589 		return -ENODEV;
590 	return regset->n;
591 }
592 
593 /*
594  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
595  */
596 static int __fpr_get(struct task_struct *target,
597 		     const struct user_regset *regset,
598 		     struct membuf to)
599 {
600 	struct user_fpsimd_state *uregs;
601 
602 	sve_sync_to_fpsimd(target);
603 
604 	uregs = &target->thread.uw.fpsimd_state;
605 
606 	return membuf_write(&to, uregs, sizeof(*uregs));
607 }
608 
609 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
610 		   struct membuf to)
611 {
612 	if (!system_supports_fpsimd())
613 		return -EINVAL;
614 
615 	if (target == current)
616 		fpsimd_preserve_current_state();
617 
618 	return __fpr_get(target, regset, to);
619 }
620 
621 static int __fpr_set(struct task_struct *target,
622 		     const struct user_regset *regset,
623 		     unsigned int pos, unsigned int count,
624 		     const void *kbuf, const void __user *ubuf,
625 		     unsigned int start_pos)
626 {
627 	int ret;
628 	struct user_fpsimd_state newstate;
629 
630 	/*
631 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
632 	 * short copyin can't resurrect stale data.
633 	 */
634 	sve_sync_to_fpsimd(target);
635 
636 	newstate = target->thread.uw.fpsimd_state;
637 
638 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
639 				 start_pos, start_pos + sizeof(newstate));
640 	if (ret)
641 		return ret;
642 
643 	target->thread.uw.fpsimd_state = newstate;
644 
645 	return ret;
646 }
647 
648 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
649 		   unsigned int pos, unsigned int count,
650 		   const void *kbuf, const void __user *ubuf)
651 {
652 	int ret;
653 
654 	if (!system_supports_fpsimd())
655 		return -EINVAL;
656 
657 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
658 	if (ret)
659 		return ret;
660 
661 	sve_sync_from_fpsimd_zeropad(target);
662 	fpsimd_flush_task_state(target);
663 
664 	return ret;
665 }
666 
667 static int tls_get(struct task_struct *target, const struct user_regset *regset,
668 		   struct membuf to)
669 {
670 	if (target == current)
671 		tls_preserve_current_state();
672 
673 	return membuf_store(&to, target->thread.uw.tp_value);
674 }
675 
676 static int tls_set(struct task_struct *target, const struct user_regset *regset,
677 		   unsigned int pos, unsigned int count,
678 		   const void *kbuf, const void __user *ubuf)
679 {
680 	int ret;
681 	unsigned long tls = target->thread.uw.tp_value;
682 
683 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
684 	if (ret)
685 		return ret;
686 
687 	target->thread.uw.tp_value = tls;
688 	return ret;
689 }
690 
691 static int system_call_get(struct task_struct *target,
692 			   const struct user_regset *regset,
693 			   struct membuf to)
694 {
695 	return membuf_store(&to, task_pt_regs(target)->syscallno);
696 }
697 
698 static int system_call_set(struct task_struct *target,
699 			   const struct user_regset *regset,
700 			   unsigned int pos, unsigned int count,
701 			   const void *kbuf, const void __user *ubuf)
702 {
703 	int syscallno = task_pt_regs(target)->syscallno;
704 	int ret;
705 
706 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
707 	if (ret)
708 		return ret;
709 
710 	task_pt_regs(target)->syscallno = syscallno;
711 	return ret;
712 }
713 
714 #ifdef CONFIG_ARM64_SVE
715 
716 static void sve_init_header_from_task(struct user_sve_header *header,
717 				      struct task_struct *target)
718 {
719 	unsigned int vq;
720 
721 	memset(header, 0, sizeof(*header));
722 
723 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
724 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
725 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
726 		header->flags |= SVE_PT_VL_INHERIT;
727 
728 	header->vl = target->thread.sve_vl;
729 	vq = sve_vq_from_vl(header->vl);
730 
731 	header->max_vl = sve_max_vl;
732 	header->size = SVE_PT_SIZE(vq, header->flags);
733 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
734 				      SVE_PT_REGS_SVE);
735 }
736 
737 static unsigned int sve_size_from_header(struct user_sve_header const *header)
738 {
739 	return ALIGN(header->size, SVE_VQ_BYTES);
740 }
741 
742 static int sve_get(struct task_struct *target,
743 		   const struct user_regset *regset,
744 		   struct membuf to)
745 {
746 	struct user_sve_header header;
747 	unsigned int vq;
748 	unsigned long start, end;
749 
750 	if (!system_supports_sve())
751 		return -EINVAL;
752 
753 	/* Header */
754 	sve_init_header_from_task(&header, target);
755 	vq = sve_vq_from_vl(header.vl);
756 
757 	membuf_write(&to, &header, sizeof(header));
758 
759 	if (target == current)
760 		fpsimd_preserve_current_state();
761 
762 	/* Registers: FPSIMD-only case */
763 
764 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
765 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
766 		return __fpr_get(target, regset, to);
767 
768 	/* Otherwise: full SVE case */
769 
770 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
771 	start = SVE_PT_SVE_OFFSET;
772 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
773 	membuf_write(&to, target->thread.sve_state, end - start);
774 
775 	start = end;
776 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
777 	membuf_zero(&to, end - start);
778 
779 	/*
780 	 * Copy fpsr, and fpcr which must follow contiguously in
781 	 * struct fpsimd_state:
782 	 */
783 	start = end;
784 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
785 	membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, end - start);
786 
787 	start = end;
788 	end = sve_size_from_header(&header);
789 	return membuf_zero(&to, end - start);
790 }
791 
792 static int sve_set(struct task_struct *target,
793 		   const struct user_regset *regset,
794 		   unsigned int pos, unsigned int count,
795 		   const void *kbuf, const void __user *ubuf)
796 {
797 	int ret;
798 	struct user_sve_header header;
799 	unsigned int vq;
800 	unsigned long start, end;
801 
802 	if (!system_supports_sve())
803 		return -EINVAL;
804 
805 	/* Header */
806 	if (count < sizeof(header))
807 		return -EINVAL;
808 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
809 				 0, sizeof(header));
810 	if (ret)
811 		goto out;
812 
813 	/*
814 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
815 	 * sve_set_vector_length(), which will also validate them for us:
816 	 */
817 	ret = sve_set_vector_length(target, header.vl,
818 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
819 	if (ret)
820 		goto out;
821 
822 	/* Actual VL set may be less than the user asked for: */
823 	vq = sve_vq_from_vl(target->thread.sve_vl);
824 
825 	/* Registers: FPSIMD-only case */
826 
827 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
828 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
829 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
830 				SVE_PT_FPSIMD_OFFSET);
831 		clear_tsk_thread_flag(target, TIF_SVE);
832 		goto out;
833 	}
834 
835 	/* Otherwise: full SVE case */
836 
837 	/*
838 	 * If setting a different VL from the requested VL and there is
839 	 * register data, the data layout will be wrong: don't even
840 	 * try to set the registers in this case.
841 	 */
842 	if (count && vq != sve_vq_from_vl(header.vl)) {
843 		ret = -EIO;
844 		goto out;
845 	}
846 
847 	sve_alloc(target);
848 	if (!target->thread.sve_state) {
849 		ret = -ENOMEM;
850 		clear_tsk_thread_flag(target, TIF_SVE);
851 		goto out;
852 	}
853 
854 	/*
855 	 * Ensure target->thread.sve_state is up to date with target's
856 	 * FPSIMD regs, so that a short copyin leaves trailing registers
857 	 * unmodified.
858 	 */
859 	fpsimd_sync_to_sve(target);
860 	set_tsk_thread_flag(target, TIF_SVE);
861 
862 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
863 	start = SVE_PT_SVE_OFFSET;
864 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
865 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
866 				 target->thread.sve_state,
867 				 start, end);
868 	if (ret)
869 		goto out;
870 
871 	start = end;
872 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
873 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
874 					start, end);
875 	if (ret)
876 		goto out;
877 
878 	/*
879 	 * Copy fpsr, and fpcr which must follow contiguously in
880 	 * struct fpsimd_state:
881 	 */
882 	start = end;
883 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
884 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
885 				 &target->thread.uw.fpsimd_state.fpsr,
886 				 start, end);
887 
888 out:
889 	fpsimd_flush_task_state(target);
890 	return ret;
891 }
892 
893 #endif /* CONFIG_ARM64_SVE */
894 
895 #ifdef CONFIG_ARM64_PTR_AUTH
896 static int pac_mask_get(struct task_struct *target,
897 			const struct user_regset *regset,
898 			struct membuf to)
899 {
900 	/*
901 	 * The PAC bits can differ across data and instruction pointers
902 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
903 	 * we expose separate masks.
904 	 */
905 	unsigned long mask = ptrauth_user_pac_mask();
906 	struct user_pac_mask uregs = {
907 		.data_mask = mask,
908 		.insn_mask = mask,
909 	};
910 
911 	if (!system_supports_address_auth())
912 		return -EINVAL;
913 
914 	return membuf_write(&to, &uregs, sizeof(uregs));
915 }
916 
917 static int pac_enabled_keys_get(struct task_struct *target,
918 				const struct user_regset *regset,
919 				struct membuf to)
920 {
921 	long enabled_keys = ptrauth_get_enabled_keys(target);
922 
923 	if (IS_ERR_VALUE(enabled_keys))
924 		return enabled_keys;
925 
926 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
927 }
928 
929 static int pac_enabled_keys_set(struct task_struct *target,
930 				const struct user_regset *regset,
931 				unsigned int pos, unsigned int count,
932 				const void *kbuf, const void __user *ubuf)
933 {
934 	int ret;
935 	long enabled_keys = ptrauth_get_enabled_keys(target);
936 
937 	if (IS_ERR_VALUE(enabled_keys))
938 		return enabled_keys;
939 
940 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
941 				 sizeof(long));
942 	if (ret)
943 		return ret;
944 
945 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
946 					enabled_keys);
947 }
948 
949 #ifdef CONFIG_CHECKPOINT_RESTORE
950 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
951 {
952 	return (__uint128_t)key->hi << 64 | key->lo;
953 }
954 
955 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
956 {
957 	struct ptrauth_key key = {
958 		.lo = (unsigned long)ukey,
959 		.hi = (unsigned long)(ukey >> 64),
960 	};
961 
962 	return key;
963 }
964 
965 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
966 				     const struct ptrauth_keys_user *keys)
967 {
968 	ukeys->apiakey = pac_key_to_user(&keys->apia);
969 	ukeys->apibkey = pac_key_to_user(&keys->apib);
970 	ukeys->apdakey = pac_key_to_user(&keys->apda);
971 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
972 }
973 
974 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
975 				       const struct user_pac_address_keys *ukeys)
976 {
977 	keys->apia = pac_key_from_user(ukeys->apiakey);
978 	keys->apib = pac_key_from_user(ukeys->apibkey);
979 	keys->apda = pac_key_from_user(ukeys->apdakey);
980 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
981 }
982 
983 static int pac_address_keys_get(struct task_struct *target,
984 				const struct user_regset *regset,
985 				struct membuf to)
986 {
987 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
988 	struct user_pac_address_keys user_keys;
989 
990 	if (!system_supports_address_auth())
991 		return -EINVAL;
992 
993 	pac_address_keys_to_user(&user_keys, keys);
994 
995 	return membuf_write(&to, &user_keys, sizeof(user_keys));
996 }
997 
998 static int pac_address_keys_set(struct task_struct *target,
999 				const struct user_regset *regset,
1000 				unsigned int pos, unsigned int count,
1001 				const void *kbuf, const void __user *ubuf)
1002 {
1003 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1004 	struct user_pac_address_keys user_keys;
1005 	int ret;
1006 
1007 	if (!system_supports_address_auth())
1008 		return -EINVAL;
1009 
1010 	pac_address_keys_to_user(&user_keys, keys);
1011 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1012 				 &user_keys, 0, -1);
1013 	if (ret)
1014 		return ret;
1015 	pac_address_keys_from_user(keys, &user_keys);
1016 
1017 	return 0;
1018 }
1019 
1020 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1021 				     const struct ptrauth_keys_user *keys)
1022 {
1023 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1024 }
1025 
1026 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1027 				       const struct user_pac_generic_keys *ukeys)
1028 {
1029 	keys->apga = pac_key_from_user(ukeys->apgakey);
1030 }
1031 
1032 static int pac_generic_keys_get(struct task_struct *target,
1033 				const struct user_regset *regset,
1034 				struct membuf to)
1035 {
1036 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1037 	struct user_pac_generic_keys user_keys;
1038 
1039 	if (!system_supports_generic_auth())
1040 		return -EINVAL;
1041 
1042 	pac_generic_keys_to_user(&user_keys, keys);
1043 
1044 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1045 }
1046 
1047 static int pac_generic_keys_set(struct task_struct *target,
1048 				const struct user_regset *regset,
1049 				unsigned int pos, unsigned int count,
1050 				const void *kbuf, const void __user *ubuf)
1051 {
1052 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1053 	struct user_pac_generic_keys user_keys;
1054 	int ret;
1055 
1056 	if (!system_supports_generic_auth())
1057 		return -EINVAL;
1058 
1059 	pac_generic_keys_to_user(&user_keys, keys);
1060 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1061 				 &user_keys, 0, -1);
1062 	if (ret)
1063 		return ret;
1064 	pac_generic_keys_from_user(keys, &user_keys);
1065 
1066 	return 0;
1067 }
1068 #endif /* CONFIG_CHECKPOINT_RESTORE */
1069 #endif /* CONFIG_ARM64_PTR_AUTH */
1070 
1071 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1072 static int tagged_addr_ctrl_get(struct task_struct *target,
1073 				const struct user_regset *regset,
1074 				struct membuf to)
1075 {
1076 	long ctrl = get_tagged_addr_ctrl(target);
1077 
1078 	if (IS_ERR_VALUE(ctrl))
1079 		return ctrl;
1080 
1081 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1082 }
1083 
1084 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1085 				user_regset *regset, unsigned int pos,
1086 				unsigned int count, const void *kbuf, const
1087 				void __user *ubuf)
1088 {
1089 	int ret;
1090 	long ctrl;
1091 
1092 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1093 	if (ret)
1094 		return ret;
1095 
1096 	return set_tagged_addr_ctrl(target, ctrl);
1097 }
1098 #endif
1099 
1100 enum aarch64_regset {
1101 	REGSET_GPR,
1102 	REGSET_FPR,
1103 	REGSET_TLS,
1104 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1105 	REGSET_HW_BREAK,
1106 	REGSET_HW_WATCH,
1107 #endif
1108 	REGSET_SYSTEM_CALL,
1109 #ifdef CONFIG_ARM64_SVE
1110 	REGSET_SVE,
1111 #endif
1112 #ifdef CONFIG_ARM64_PTR_AUTH
1113 	REGSET_PAC_MASK,
1114 	REGSET_PAC_ENABLED_KEYS,
1115 #ifdef CONFIG_CHECKPOINT_RESTORE
1116 	REGSET_PACA_KEYS,
1117 	REGSET_PACG_KEYS,
1118 #endif
1119 #endif
1120 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1121 	REGSET_TAGGED_ADDR_CTRL,
1122 #endif
1123 };
1124 
1125 static const struct user_regset aarch64_regsets[] = {
1126 	[REGSET_GPR] = {
1127 		.core_note_type = NT_PRSTATUS,
1128 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1129 		.size = sizeof(u64),
1130 		.align = sizeof(u64),
1131 		.regset_get = gpr_get,
1132 		.set = gpr_set
1133 	},
1134 	[REGSET_FPR] = {
1135 		.core_note_type = NT_PRFPREG,
1136 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1137 		/*
1138 		 * We pretend we have 32-bit registers because the fpsr and
1139 		 * fpcr are 32-bits wide.
1140 		 */
1141 		.size = sizeof(u32),
1142 		.align = sizeof(u32),
1143 		.active = fpr_active,
1144 		.regset_get = fpr_get,
1145 		.set = fpr_set
1146 	},
1147 	[REGSET_TLS] = {
1148 		.core_note_type = NT_ARM_TLS,
1149 		.n = 1,
1150 		.size = sizeof(void *),
1151 		.align = sizeof(void *),
1152 		.regset_get = tls_get,
1153 		.set = tls_set,
1154 	},
1155 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1156 	[REGSET_HW_BREAK] = {
1157 		.core_note_type = NT_ARM_HW_BREAK,
1158 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1159 		.size = sizeof(u32),
1160 		.align = sizeof(u32),
1161 		.regset_get = hw_break_get,
1162 		.set = hw_break_set,
1163 	},
1164 	[REGSET_HW_WATCH] = {
1165 		.core_note_type = NT_ARM_HW_WATCH,
1166 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1167 		.size = sizeof(u32),
1168 		.align = sizeof(u32),
1169 		.regset_get = hw_break_get,
1170 		.set = hw_break_set,
1171 	},
1172 #endif
1173 	[REGSET_SYSTEM_CALL] = {
1174 		.core_note_type = NT_ARM_SYSTEM_CALL,
1175 		.n = 1,
1176 		.size = sizeof(int),
1177 		.align = sizeof(int),
1178 		.regset_get = system_call_get,
1179 		.set = system_call_set,
1180 	},
1181 #ifdef CONFIG_ARM64_SVE
1182 	[REGSET_SVE] = { /* Scalable Vector Extension */
1183 		.core_note_type = NT_ARM_SVE,
1184 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1185 				  SVE_VQ_BYTES),
1186 		.size = SVE_VQ_BYTES,
1187 		.align = SVE_VQ_BYTES,
1188 		.regset_get = sve_get,
1189 		.set = sve_set,
1190 	},
1191 #endif
1192 #ifdef CONFIG_ARM64_PTR_AUTH
1193 	[REGSET_PAC_MASK] = {
1194 		.core_note_type = NT_ARM_PAC_MASK,
1195 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1196 		.size = sizeof(u64),
1197 		.align = sizeof(u64),
1198 		.regset_get = pac_mask_get,
1199 		/* this cannot be set dynamically */
1200 	},
1201 	[REGSET_PAC_ENABLED_KEYS] = {
1202 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1203 		.n = 1,
1204 		.size = sizeof(long),
1205 		.align = sizeof(long),
1206 		.regset_get = pac_enabled_keys_get,
1207 		.set = pac_enabled_keys_set,
1208 	},
1209 #ifdef CONFIG_CHECKPOINT_RESTORE
1210 	[REGSET_PACA_KEYS] = {
1211 		.core_note_type = NT_ARM_PACA_KEYS,
1212 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1213 		.size = sizeof(__uint128_t),
1214 		.align = sizeof(__uint128_t),
1215 		.regset_get = pac_address_keys_get,
1216 		.set = pac_address_keys_set,
1217 	},
1218 	[REGSET_PACG_KEYS] = {
1219 		.core_note_type = NT_ARM_PACG_KEYS,
1220 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1221 		.size = sizeof(__uint128_t),
1222 		.align = sizeof(__uint128_t),
1223 		.regset_get = pac_generic_keys_get,
1224 		.set = pac_generic_keys_set,
1225 	},
1226 #endif
1227 #endif
1228 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1229 	[REGSET_TAGGED_ADDR_CTRL] = {
1230 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1231 		.n = 1,
1232 		.size = sizeof(long),
1233 		.align = sizeof(long),
1234 		.regset_get = tagged_addr_ctrl_get,
1235 		.set = tagged_addr_ctrl_set,
1236 	},
1237 #endif
1238 };
1239 
1240 static const struct user_regset_view user_aarch64_view = {
1241 	.name = "aarch64", .e_machine = EM_AARCH64,
1242 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1243 };
1244 
1245 #ifdef CONFIG_COMPAT
1246 enum compat_regset {
1247 	REGSET_COMPAT_GPR,
1248 	REGSET_COMPAT_VFP,
1249 };
1250 
1251 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1252 {
1253 	struct pt_regs *regs = task_pt_regs(task);
1254 
1255 	switch (idx) {
1256 	case 15:
1257 		return regs->pc;
1258 	case 16:
1259 		return pstate_to_compat_psr(regs->pstate);
1260 	case 17:
1261 		return regs->orig_x0;
1262 	default:
1263 		return regs->regs[idx];
1264 	}
1265 }
1266 
1267 static int compat_gpr_get(struct task_struct *target,
1268 			  const struct user_regset *regset,
1269 			  struct membuf to)
1270 {
1271 	int i = 0;
1272 
1273 	while (to.left)
1274 		membuf_store(&to, compat_get_user_reg(target, i++));
1275 	return 0;
1276 }
1277 
1278 static int compat_gpr_set(struct task_struct *target,
1279 			  const struct user_regset *regset,
1280 			  unsigned int pos, unsigned int count,
1281 			  const void *kbuf, const void __user *ubuf)
1282 {
1283 	struct pt_regs newregs;
1284 	int ret = 0;
1285 	unsigned int i, start, num_regs;
1286 
1287 	/* Calculate the number of AArch32 registers contained in count */
1288 	num_regs = count / regset->size;
1289 
1290 	/* Convert pos into an register number */
1291 	start = pos / regset->size;
1292 
1293 	if (start + num_regs > regset->n)
1294 		return -EIO;
1295 
1296 	newregs = *task_pt_regs(target);
1297 
1298 	for (i = 0; i < num_regs; ++i) {
1299 		unsigned int idx = start + i;
1300 		compat_ulong_t reg;
1301 
1302 		if (kbuf) {
1303 			memcpy(&reg, kbuf, sizeof(reg));
1304 			kbuf += sizeof(reg);
1305 		} else {
1306 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1307 			if (ret) {
1308 				ret = -EFAULT;
1309 				break;
1310 			}
1311 
1312 			ubuf += sizeof(reg);
1313 		}
1314 
1315 		switch (idx) {
1316 		case 15:
1317 			newregs.pc = reg;
1318 			break;
1319 		case 16:
1320 			reg = compat_psr_to_pstate(reg);
1321 			newregs.pstate = reg;
1322 			break;
1323 		case 17:
1324 			newregs.orig_x0 = reg;
1325 			break;
1326 		default:
1327 			newregs.regs[idx] = reg;
1328 		}
1329 
1330 	}
1331 
1332 	if (valid_user_regs(&newregs.user_regs, target))
1333 		*task_pt_regs(target) = newregs;
1334 	else
1335 		ret = -EINVAL;
1336 
1337 	return ret;
1338 }
1339 
1340 static int compat_vfp_get(struct task_struct *target,
1341 			  const struct user_regset *regset,
1342 			  struct membuf to)
1343 {
1344 	struct user_fpsimd_state *uregs;
1345 	compat_ulong_t fpscr;
1346 
1347 	if (!system_supports_fpsimd())
1348 		return -EINVAL;
1349 
1350 	uregs = &target->thread.uw.fpsimd_state;
1351 
1352 	if (target == current)
1353 		fpsimd_preserve_current_state();
1354 
1355 	/*
1356 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1357 	 * nicely together for us. We just need to create the fpscr separately.
1358 	 */
1359 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1360 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1361 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1362 	return membuf_store(&to, fpscr);
1363 }
1364 
1365 static int compat_vfp_set(struct task_struct *target,
1366 			  const struct user_regset *regset,
1367 			  unsigned int pos, unsigned int count,
1368 			  const void *kbuf, const void __user *ubuf)
1369 {
1370 	struct user_fpsimd_state *uregs;
1371 	compat_ulong_t fpscr;
1372 	int ret, vregs_end_pos;
1373 
1374 	if (!system_supports_fpsimd())
1375 		return -EINVAL;
1376 
1377 	uregs = &target->thread.uw.fpsimd_state;
1378 
1379 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1380 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1381 				 vregs_end_pos);
1382 
1383 	if (count && !ret) {
1384 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1385 					 vregs_end_pos, VFP_STATE_SIZE);
1386 		if (!ret) {
1387 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1388 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1389 		}
1390 	}
1391 
1392 	fpsimd_flush_task_state(target);
1393 	return ret;
1394 }
1395 
1396 static int compat_tls_get(struct task_struct *target,
1397 			  const struct user_regset *regset,
1398 			  struct membuf to)
1399 {
1400 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1401 }
1402 
1403 static int compat_tls_set(struct task_struct *target,
1404 			  const struct user_regset *regset, unsigned int pos,
1405 			  unsigned int count, const void *kbuf,
1406 			  const void __user *ubuf)
1407 {
1408 	int ret;
1409 	compat_ulong_t tls = target->thread.uw.tp_value;
1410 
1411 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1412 	if (ret)
1413 		return ret;
1414 
1415 	target->thread.uw.tp_value = tls;
1416 	return ret;
1417 }
1418 
1419 static const struct user_regset aarch32_regsets[] = {
1420 	[REGSET_COMPAT_GPR] = {
1421 		.core_note_type = NT_PRSTATUS,
1422 		.n = COMPAT_ELF_NGREG,
1423 		.size = sizeof(compat_elf_greg_t),
1424 		.align = sizeof(compat_elf_greg_t),
1425 		.regset_get = compat_gpr_get,
1426 		.set = compat_gpr_set
1427 	},
1428 	[REGSET_COMPAT_VFP] = {
1429 		.core_note_type = NT_ARM_VFP,
1430 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1431 		.size = sizeof(compat_ulong_t),
1432 		.align = sizeof(compat_ulong_t),
1433 		.active = fpr_active,
1434 		.regset_get = compat_vfp_get,
1435 		.set = compat_vfp_set
1436 	},
1437 };
1438 
1439 static const struct user_regset_view user_aarch32_view = {
1440 	.name = "aarch32", .e_machine = EM_ARM,
1441 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1442 };
1443 
1444 static const struct user_regset aarch32_ptrace_regsets[] = {
1445 	[REGSET_GPR] = {
1446 		.core_note_type = NT_PRSTATUS,
1447 		.n = COMPAT_ELF_NGREG,
1448 		.size = sizeof(compat_elf_greg_t),
1449 		.align = sizeof(compat_elf_greg_t),
1450 		.regset_get = compat_gpr_get,
1451 		.set = compat_gpr_set
1452 	},
1453 	[REGSET_FPR] = {
1454 		.core_note_type = NT_ARM_VFP,
1455 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1456 		.size = sizeof(compat_ulong_t),
1457 		.align = sizeof(compat_ulong_t),
1458 		.regset_get = compat_vfp_get,
1459 		.set = compat_vfp_set
1460 	},
1461 	[REGSET_TLS] = {
1462 		.core_note_type = NT_ARM_TLS,
1463 		.n = 1,
1464 		.size = sizeof(compat_ulong_t),
1465 		.align = sizeof(compat_ulong_t),
1466 		.regset_get = compat_tls_get,
1467 		.set = compat_tls_set,
1468 	},
1469 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1470 	[REGSET_HW_BREAK] = {
1471 		.core_note_type = NT_ARM_HW_BREAK,
1472 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1473 		.size = sizeof(u32),
1474 		.align = sizeof(u32),
1475 		.regset_get = hw_break_get,
1476 		.set = hw_break_set,
1477 	},
1478 	[REGSET_HW_WATCH] = {
1479 		.core_note_type = NT_ARM_HW_WATCH,
1480 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1481 		.size = sizeof(u32),
1482 		.align = sizeof(u32),
1483 		.regset_get = hw_break_get,
1484 		.set = hw_break_set,
1485 	},
1486 #endif
1487 	[REGSET_SYSTEM_CALL] = {
1488 		.core_note_type = NT_ARM_SYSTEM_CALL,
1489 		.n = 1,
1490 		.size = sizeof(int),
1491 		.align = sizeof(int),
1492 		.regset_get = system_call_get,
1493 		.set = system_call_set,
1494 	},
1495 };
1496 
1497 static const struct user_regset_view user_aarch32_ptrace_view = {
1498 	.name = "aarch32", .e_machine = EM_ARM,
1499 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1500 };
1501 
1502 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1503 				   compat_ulong_t __user *ret)
1504 {
1505 	compat_ulong_t tmp;
1506 
1507 	if (off & 3)
1508 		return -EIO;
1509 
1510 	if (off == COMPAT_PT_TEXT_ADDR)
1511 		tmp = tsk->mm->start_code;
1512 	else if (off == COMPAT_PT_DATA_ADDR)
1513 		tmp = tsk->mm->start_data;
1514 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1515 		tmp = tsk->mm->end_code;
1516 	else if (off < sizeof(compat_elf_gregset_t))
1517 		tmp = compat_get_user_reg(tsk, off >> 2);
1518 	else if (off >= COMPAT_USER_SZ)
1519 		return -EIO;
1520 	else
1521 		tmp = 0;
1522 
1523 	return put_user(tmp, ret);
1524 }
1525 
1526 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1527 				    compat_ulong_t val)
1528 {
1529 	struct pt_regs newregs = *task_pt_regs(tsk);
1530 	unsigned int idx = off / 4;
1531 
1532 	if (off & 3 || off >= COMPAT_USER_SZ)
1533 		return -EIO;
1534 
1535 	if (off >= sizeof(compat_elf_gregset_t))
1536 		return 0;
1537 
1538 	switch (idx) {
1539 	case 15:
1540 		newregs.pc = val;
1541 		break;
1542 	case 16:
1543 		newregs.pstate = compat_psr_to_pstate(val);
1544 		break;
1545 	case 17:
1546 		newregs.orig_x0 = val;
1547 		break;
1548 	default:
1549 		newregs.regs[idx] = val;
1550 	}
1551 
1552 	if (!valid_user_regs(&newregs.user_regs, tsk))
1553 		return -EINVAL;
1554 
1555 	*task_pt_regs(tsk) = newregs;
1556 	return 0;
1557 }
1558 
1559 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1560 
1561 /*
1562  * Convert a virtual register number into an index for a thread_info
1563  * breakpoint array. Breakpoints are identified using positive numbers
1564  * whilst watchpoints are negative. The registers are laid out as pairs
1565  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1566  * Register 0 is reserved for describing resource information.
1567  */
1568 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1569 {
1570 	return (abs(num) - 1) >> 1;
1571 }
1572 
1573 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1574 {
1575 	u8 num_brps, num_wrps, debug_arch, wp_len;
1576 	u32 reg = 0;
1577 
1578 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1579 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1580 
1581 	debug_arch	= debug_monitors_arch();
1582 	wp_len		= 8;
1583 	reg		|= debug_arch;
1584 	reg		<<= 8;
1585 	reg		|= wp_len;
1586 	reg		<<= 8;
1587 	reg		|= num_wrps;
1588 	reg		<<= 8;
1589 	reg		|= num_brps;
1590 
1591 	*kdata = reg;
1592 	return 0;
1593 }
1594 
1595 static int compat_ptrace_hbp_get(unsigned int note_type,
1596 				 struct task_struct *tsk,
1597 				 compat_long_t num,
1598 				 u32 *kdata)
1599 {
1600 	u64 addr = 0;
1601 	u32 ctrl = 0;
1602 
1603 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1604 
1605 	if (num & 1) {
1606 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1607 		*kdata = (u32)addr;
1608 	} else {
1609 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1610 		*kdata = ctrl;
1611 	}
1612 
1613 	return err;
1614 }
1615 
1616 static int compat_ptrace_hbp_set(unsigned int note_type,
1617 				 struct task_struct *tsk,
1618 				 compat_long_t num,
1619 				 u32 *kdata)
1620 {
1621 	u64 addr;
1622 	u32 ctrl;
1623 
1624 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1625 
1626 	if (num & 1) {
1627 		addr = *kdata;
1628 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1629 	} else {
1630 		ctrl = *kdata;
1631 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1632 	}
1633 
1634 	return err;
1635 }
1636 
1637 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1638 				    compat_ulong_t __user *data)
1639 {
1640 	int ret;
1641 	u32 kdata;
1642 
1643 	/* Watchpoint */
1644 	if (num < 0) {
1645 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1646 	/* Resource info */
1647 	} else if (num == 0) {
1648 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1649 	/* Breakpoint */
1650 	} else {
1651 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1652 	}
1653 
1654 	if (!ret)
1655 		ret = put_user(kdata, data);
1656 
1657 	return ret;
1658 }
1659 
1660 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1661 				    compat_ulong_t __user *data)
1662 {
1663 	int ret;
1664 	u32 kdata = 0;
1665 
1666 	if (num == 0)
1667 		return 0;
1668 
1669 	ret = get_user(kdata, data);
1670 	if (ret)
1671 		return ret;
1672 
1673 	if (num < 0)
1674 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1675 	else
1676 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1677 
1678 	return ret;
1679 }
1680 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1681 
1682 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1683 			compat_ulong_t caddr, compat_ulong_t cdata)
1684 {
1685 	unsigned long addr = caddr;
1686 	unsigned long data = cdata;
1687 	void __user *datap = compat_ptr(data);
1688 	int ret;
1689 
1690 	switch (request) {
1691 		case PTRACE_PEEKUSR:
1692 			ret = compat_ptrace_read_user(child, addr, datap);
1693 			break;
1694 
1695 		case PTRACE_POKEUSR:
1696 			ret = compat_ptrace_write_user(child, addr, data);
1697 			break;
1698 
1699 		case COMPAT_PTRACE_GETREGS:
1700 			ret = copy_regset_to_user(child,
1701 						  &user_aarch32_view,
1702 						  REGSET_COMPAT_GPR,
1703 						  0, sizeof(compat_elf_gregset_t),
1704 						  datap);
1705 			break;
1706 
1707 		case COMPAT_PTRACE_SETREGS:
1708 			ret = copy_regset_from_user(child,
1709 						    &user_aarch32_view,
1710 						    REGSET_COMPAT_GPR,
1711 						    0, sizeof(compat_elf_gregset_t),
1712 						    datap);
1713 			break;
1714 
1715 		case COMPAT_PTRACE_GET_THREAD_AREA:
1716 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1717 				       (compat_ulong_t __user *)datap);
1718 			break;
1719 
1720 		case COMPAT_PTRACE_SET_SYSCALL:
1721 			task_pt_regs(child)->syscallno = data;
1722 			ret = 0;
1723 			break;
1724 
1725 		case COMPAT_PTRACE_GETVFPREGS:
1726 			ret = copy_regset_to_user(child,
1727 						  &user_aarch32_view,
1728 						  REGSET_COMPAT_VFP,
1729 						  0, VFP_STATE_SIZE,
1730 						  datap);
1731 			break;
1732 
1733 		case COMPAT_PTRACE_SETVFPREGS:
1734 			ret = copy_regset_from_user(child,
1735 						    &user_aarch32_view,
1736 						    REGSET_COMPAT_VFP,
1737 						    0, VFP_STATE_SIZE,
1738 						    datap);
1739 			break;
1740 
1741 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1742 		case COMPAT_PTRACE_GETHBPREGS:
1743 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1744 			break;
1745 
1746 		case COMPAT_PTRACE_SETHBPREGS:
1747 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1748 			break;
1749 #endif
1750 
1751 		default:
1752 			ret = compat_ptrace_request(child, request, addr,
1753 						    data);
1754 			break;
1755 	}
1756 
1757 	return ret;
1758 }
1759 #endif /* CONFIG_COMPAT */
1760 
1761 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1762 {
1763 #ifdef CONFIG_COMPAT
1764 	/*
1765 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1766 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1767 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1768 	 * access to the TLS register.
1769 	 */
1770 	if (is_compat_task())
1771 		return &user_aarch32_view;
1772 	else if (is_compat_thread(task_thread_info(task)))
1773 		return &user_aarch32_ptrace_view;
1774 #endif
1775 	return &user_aarch64_view;
1776 }
1777 
1778 long arch_ptrace(struct task_struct *child, long request,
1779 		 unsigned long addr, unsigned long data)
1780 {
1781 	switch (request) {
1782 	case PTRACE_PEEKMTETAGS:
1783 	case PTRACE_POKEMTETAGS:
1784 		return mte_ptrace_copy_tags(child, request, addr, data);
1785 	}
1786 
1787 	return ptrace_request(child, request, addr, data);
1788 }
1789 
1790 enum ptrace_syscall_dir {
1791 	PTRACE_SYSCALL_ENTER = 0,
1792 	PTRACE_SYSCALL_EXIT,
1793 };
1794 
1795 static void tracehook_report_syscall(struct pt_regs *regs,
1796 				     enum ptrace_syscall_dir dir)
1797 {
1798 	int regno;
1799 	unsigned long saved_reg;
1800 
1801 	/*
1802 	 * We have some ABI weirdness here in the way that we handle syscall
1803 	 * exit stops because we indicate whether or not the stop has been
1804 	 * signalled from syscall entry or syscall exit by clobbering a general
1805 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
1806 	 * and restoring its old value after the stop. This means that:
1807 	 *
1808 	 * - Any writes by the tracer to this register during the stop are
1809 	 *   ignored/discarded.
1810 	 *
1811 	 * - The actual value of the register is not available during the stop,
1812 	 *   so the tracer cannot save it and restore it later.
1813 	 *
1814 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
1815 	 *   (the latter do not nobble any registers).
1816 	 */
1817 	regno = (is_compat_task() ? 12 : 7);
1818 	saved_reg = regs->regs[regno];
1819 	regs->regs[regno] = dir;
1820 
1821 	if (dir == PTRACE_SYSCALL_ENTER) {
1822 		if (tracehook_report_syscall_entry(regs))
1823 			forget_syscall(regs);
1824 		regs->regs[regno] = saved_reg;
1825 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
1826 		tracehook_report_syscall_exit(regs, 0);
1827 		regs->regs[regno] = saved_reg;
1828 	} else {
1829 		regs->regs[regno] = saved_reg;
1830 
1831 		/*
1832 		 * Signal a pseudo-step exception since we are stepping but
1833 		 * tracer modifications to the registers may have rewound the
1834 		 * state machine.
1835 		 */
1836 		tracehook_report_syscall_exit(regs, 1);
1837 	}
1838 }
1839 
1840 int syscall_trace_enter(struct pt_regs *regs)
1841 {
1842 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
1843 
1844 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
1845 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1846 		if (flags & _TIF_SYSCALL_EMU)
1847 			return NO_SYSCALL;
1848 	}
1849 
1850 	/* Do the secure computing after ptrace; failures should be fast. */
1851 	if (secure_computing() == -1)
1852 		return NO_SYSCALL;
1853 
1854 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1855 		trace_sys_enter(regs, regs->syscallno);
1856 
1857 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1858 			    regs->regs[2], regs->regs[3]);
1859 
1860 	return regs->syscallno;
1861 }
1862 
1863 void syscall_trace_exit(struct pt_regs *regs)
1864 {
1865 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
1866 
1867 	audit_syscall_exit(regs);
1868 
1869 	if (flags & _TIF_SYSCALL_TRACEPOINT)
1870 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
1871 
1872 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
1873 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1874 
1875 	rseq_syscall(regs);
1876 }
1877 
1878 /*
1879  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1880  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1881  * not described in ARM DDI 0487D.a.
1882  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1883  * be allocated an EL0 meaning in future.
1884  * Userspace cannot use these until they have an architectural meaning.
1885  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1886  * We also reserve IL for the kernel; SS is handled dynamically.
1887  */
1888 #define SPSR_EL1_AARCH64_RES0_BITS \
1889 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
1890 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
1891 #define SPSR_EL1_AARCH32_RES0_BITS \
1892 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1893 
1894 static int valid_compat_regs(struct user_pt_regs *regs)
1895 {
1896 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1897 
1898 	if (!system_supports_mixed_endian_el0()) {
1899 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1900 			regs->pstate |= PSR_AA32_E_BIT;
1901 		else
1902 			regs->pstate &= ~PSR_AA32_E_BIT;
1903 	}
1904 
1905 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1906 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1907 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1908 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
1909 		return 1;
1910 	}
1911 
1912 	/*
1913 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1914 	 * arch/arm.
1915 	 */
1916 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1917 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1918 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1919 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1920 			PSR_AA32_T_BIT;
1921 	regs->pstate |= PSR_MODE32_BIT;
1922 
1923 	return 0;
1924 }
1925 
1926 static int valid_native_regs(struct user_pt_regs *regs)
1927 {
1928 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1929 
1930 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1931 	    (regs->pstate & PSR_D_BIT) == 0 &&
1932 	    (regs->pstate & PSR_A_BIT) == 0 &&
1933 	    (regs->pstate & PSR_I_BIT) == 0 &&
1934 	    (regs->pstate & PSR_F_BIT) == 0) {
1935 		return 1;
1936 	}
1937 
1938 	/* Force PSR to a valid 64-bit EL0t */
1939 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1940 
1941 	return 0;
1942 }
1943 
1944 /*
1945  * Are the current registers suitable for user mode? (used to maintain
1946  * security in signal handlers)
1947  */
1948 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1949 {
1950 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
1951 	user_regs_reset_single_step(regs, task);
1952 
1953 	if (is_compat_thread(task_thread_info(task)))
1954 		return valid_compat_regs(regs);
1955 	else
1956 		return valid_native_regs(regs);
1957 }
1958