xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision cbabf03c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45 
46 struct pt_regs_offset {
47 	const char *name;
48 	int offset;
49 };
50 
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55 
56 static const struct pt_regs_offset regoffset_table[] = {
57 	GPR_OFFSET_NAME(0),
58 	GPR_OFFSET_NAME(1),
59 	GPR_OFFSET_NAME(2),
60 	GPR_OFFSET_NAME(3),
61 	GPR_OFFSET_NAME(4),
62 	GPR_OFFSET_NAME(5),
63 	GPR_OFFSET_NAME(6),
64 	GPR_OFFSET_NAME(7),
65 	GPR_OFFSET_NAME(8),
66 	GPR_OFFSET_NAME(9),
67 	GPR_OFFSET_NAME(10),
68 	GPR_OFFSET_NAME(11),
69 	GPR_OFFSET_NAME(12),
70 	GPR_OFFSET_NAME(13),
71 	GPR_OFFSET_NAME(14),
72 	GPR_OFFSET_NAME(15),
73 	GPR_OFFSET_NAME(16),
74 	GPR_OFFSET_NAME(17),
75 	GPR_OFFSET_NAME(18),
76 	GPR_OFFSET_NAME(19),
77 	GPR_OFFSET_NAME(20),
78 	GPR_OFFSET_NAME(21),
79 	GPR_OFFSET_NAME(22),
80 	GPR_OFFSET_NAME(23),
81 	GPR_OFFSET_NAME(24),
82 	GPR_OFFSET_NAME(25),
83 	GPR_OFFSET_NAME(26),
84 	GPR_OFFSET_NAME(27),
85 	GPR_OFFSET_NAME(28),
86 	GPR_OFFSET_NAME(29),
87 	GPR_OFFSET_NAME(30),
88 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 	REG_OFFSET_NAME(sp),
90 	REG_OFFSET_NAME(pc),
91 	REG_OFFSET_NAME(pstate),
92 	REG_OFFSET_END,
93 };
94 
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:	the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104 	const struct pt_regs_offset *roff;
105 
106 	for (roff = regoffset_table; roff->name != NULL; roff++)
107 		if (!strcmp(roff->name, name))
108 			return roff->offset;
109 	return -EINVAL;
110 }
111 
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 	return ((addr & ~(THREAD_SIZE - 1))  ==
123 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 		on_irq_stack(addr, sizeof(unsigned long), NULL);
125 }
126 
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:	pt_regs which contains kernel stack pointer.
130  * @n:		stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139 
140 	addr += n;
141 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 		return *addr;
143 	else
144 		return 0;
145 }
146 
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151 
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157 	/*
158 	 * This would be better off in core code, but PTRACE_DETACH has
159 	 * grown its fair share of arch-specific worts and changing it
160 	 * is likely to cause regressions on obscure architectures.
161 	 */
162 	user_disable_single_step(child);
163 }
164 
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170 				struct perf_sample_data *data,
171 				struct pt_regs *regs)
172 {
173 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 	const char *desc = "Hardware breakpoint trap (ptrace)";
175 
176 #ifdef CONFIG_COMPAT
177 	if (is_compat_task()) {
178 		int si_errno = 0;
179 		int i;
180 
181 		for (i = 0; i < ARM_MAX_BRP; ++i) {
182 			if (current->thread.debug.hbp_break[i] == bp) {
183 				si_errno = (i << 1) + 1;
184 				break;
185 			}
186 		}
187 
188 		for (i = 0; i < ARM_MAX_WRP; ++i) {
189 			if (current->thread.debug.hbp_watch[i] == bp) {
190 				si_errno = -((i << 1) + 1);
191 				break;
192 			}
193 		}
194 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 						  desc);
196 		return;
197 	}
198 #endif
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201 
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 	int i;
209 	struct thread_struct *t = &tsk->thread;
210 
211 	for (i = 0; i < ARM_MAX_BRP; i++) {
212 		if (t->debug.hbp_break[i]) {
213 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 			t->debug.hbp_break[i] = NULL;
215 		}
216 	}
217 
218 	for (i = 0; i < ARM_MAX_WRP; i++) {
219 		if (t->debug.hbp_watch[i]) {
220 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 			t->debug.hbp_watch[i] = NULL;
222 		}
223 	}
224 }
225 
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230 
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 					       struct task_struct *tsk,
233 					       unsigned long idx)
234 {
235 	struct perf_event *bp = ERR_PTR(-EINVAL);
236 
237 	switch (note_type) {
238 	case NT_ARM_HW_BREAK:
239 		if (idx >= ARM_MAX_BRP)
240 			goto out;
241 		idx = array_index_nospec(idx, ARM_MAX_BRP);
242 		bp = tsk->thread.debug.hbp_break[idx];
243 		break;
244 	case NT_ARM_HW_WATCH:
245 		if (idx >= ARM_MAX_WRP)
246 			goto out;
247 		idx = array_index_nospec(idx, ARM_MAX_WRP);
248 		bp = tsk->thread.debug.hbp_watch[idx];
249 		break;
250 	}
251 
252 out:
253 	return bp;
254 }
255 
256 static int ptrace_hbp_set_event(unsigned int note_type,
257 				struct task_struct *tsk,
258 				unsigned long idx,
259 				struct perf_event *bp)
260 {
261 	int err = -EINVAL;
262 
263 	switch (note_type) {
264 	case NT_ARM_HW_BREAK:
265 		if (idx >= ARM_MAX_BRP)
266 			goto out;
267 		idx = array_index_nospec(idx, ARM_MAX_BRP);
268 		tsk->thread.debug.hbp_break[idx] = bp;
269 		err = 0;
270 		break;
271 	case NT_ARM_HW_WATCH:
272 		if (idx >= ARM_MAX_WRP)
273 			goto out;
274 		idx = array_index_nospec(idx, ARM_MAX_WRP);
275 		tsk->thread.debug.hbp_watch[idx] = bp;
276 		err = 0;
277 		break;
278 	}
279 
280 out:
281 	return err;
282 }
283 
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 					    struct task_struct *tsk,
286 					    unsigned long idx)
287 {
288 	struct perf_event *bp;
289 	struct perf_event_attr attr;
290 	int err, type;
291 
292 	switch (note_type) {
293 	case NT_ARM_HW_BREAK:
294 		type = HW_BREAKPOINT_X;
295 		break;
296 	case NT_ARM_HW_WATCH:
297 		type = HW_BREAKPOINT_RW;
298 		break;
299 	default:
300 		return ERR_PTR(-EINVAL);
301 	}
302 
303 	ptrace_breakpoint_init(&attr);
304 
305 	/*
306 	 * Initialise fields to sane defaults
307 	 * (i.e. values that will pass validation).
308 	 */
309 	attr.bp_addr	= 0;
310 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
311 	attr.bp_type	= type;
312 	attr.disabled	= 1;
313 
314 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 	if (IS_ERR(bp))
316 		return bp;
317 
318 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 	if (err)
320 		return ERR_PTR(err);
321 
322 	return bp;
323 }
324 
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 				     struct arch_hw_breakpoint_ctrl ctrl,
327 				     struct perf_event_attr *attr)
328 {
329 	int err, len, type, offset, disabled = !ctrl.enabled;
330 
331 	attr->disabled = disabled;
332 	if (disabled)
333 		return 0;
334 
335 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 	if (err)
337 		return err;
338 
339 	switch (note_type) {
340 	case NT_ARM_HW_BREAK:
341 		if ((type & HW_BREAKPOINT_X) != type)
342 			return -EINVAL;
343 		break;
344 	case NT_ARM_HW_WATCH:
345 		if ((type & HW_BREAKPOINT_RW) != type)
346 			return -EINVAL;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	attr->bp_len	= len;
353 	attr->bp_type	= type;
354 	attr->bp_addr	+= offset;
355 
356 	return 0;
357 }
358 
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 	u8 num;
362 	u32 reg = 0;
363 
364 	switch (note_type) {
365 	case NT_ARM_HW_BREAK:
366 		num = hw_breakpoint_slots(TYPE_INST);
367 		break;
368 	case NT_ARM_HW_WATCH:
369 		num = hw_breakpoint_slots(TYPE_DATA);
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	reg |= debug_monitors_arch();
376 	reg <<= 8;
377 	reg |= num;
378 
379 	*info = reg;
380 	return 0;
381 }
382 
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 			       struct task_struct *tsk,
385 			       unsigned long idx,
386 			       u32 *ctrl)
387 {
388 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389 
390 	if (IS_ERR(bp))
391 		return PTR_ERR(bp);
392 
393 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u64 *addr)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*addr = bp ? counter_arch_bp(bp)->address : 0;
408 	return 0;
409 }
410 
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 							struct task_struct *tsk,
413 							unsigned long idx)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (!bp)
418 		bp = ptrace_hbp_create(note_type, tsk, idx);
419 
420 	return bp;
421 }
422 
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 			       struct task_struct *tsk,
425 			       unsigned long idx,
426 			       u32 uctrl)
427 {
428 	int err;
429 	struct perf_event *bp;
430 	struct perf_event_attr attr;
431 	struct arch_hw_breakpoint_ctrl ctrl;
432 
433 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 	if (IS_ERR(bp)) {
435 		err = PTR_ERR(bp);
436 		return err;
437 	}
438 
439 	attr = bp->attr;
440 	decode_ctrl_reg(uctrl, &ctrl);
441 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 	if (err)
443 		return err;
444 
445 	return modify_user_hw_breakpoint(bp, &attr);
446 }
447 
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 			       struct task_struct *tsk,
450 			       unsigned long idx,
451 			       u64 addr)
452 {
453 	int err;
454 	struct perf_event *bp;
455 	struct perf_event_attr attr;
456 
457 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 	if (IS_ERR(bp)) {
459 		err = PTR_ERR(bp);
460 		return err;
461 	}
462 
463 	attr = bp->attr;
464 	attr.bp_addr = addr;
465 	err = modify_user_hw_breakpoint(bp, &attr);
466 	return err;
467 }
468 
469 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
472 
473 static int hw_break_get(struct task_struct *target,
474 			const struct user_regset *regset,
475 			struct membuf to)
476 {
477 	unsigned int note_type = regset->core_note_type;
478 	int ret, idx = 0;
479 	u32 info, ctrl;
480 	u64 addr;
481 
482 	/* Resource info */
483 	ret = ptrace_hbp_get_resource_info(note_type, &info);
484 	if (ret)
485 		return ret;
486 
487 	membuf_write(&to, &info, sizeof(info));
488 	membuf_zero(&to, sizeof(u32));
489 	/* (address, ctrl) registers */
490 	while (to.left) {
491 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 		if (ret)
493 			return ret;
494 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 		if (ret)
496 			return ret;
497 		membuf_store(&to, addr);
498 		membuf_store(&to, ctrl);
499 		membuf_zero(&to, sizeof(u32));
500 		idx++;
501 	}
502 	return 0;
503 }
504 
505 static int hw_break_set(struct task_struct *target,
506 			const struct user_regset *regset,
507 			unsigned int pos, unsigned int count,
508 			const void *kbuf, const void __user *ubuf)
509 {
510 	unsigned int note_type = regset->core_note_type;
511 	int ret, idx = 0, offset, limit;
512 	u32 ctrl;
513 	u64 addr;
514 
515 	/* Resource info and pad */
516 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 	if (ret)
519 		return ret;
520 
521 	/* (address, ctrl) registers */
522 	limit = regset->n * regset->size;
523 	while (count && offset < limit) {
524 		if (count < PTRACE_HBP_ADDR_SZ)
525 			return -EINVAL;
526 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
527 					 offset, offset + PTRACE_HBP_ADDR_SZ);
528 		if (ret)
529 			return ret;
530 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
531 		if (ret)
532 			return ret;
533 		offset += PTRACE_HBP_ADDR_SZ;
534 
535 		if (!count)
536 			break;
537 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
538 					 offset, offset + PTRACE_HBP_CTRL_SZ);
539 		if (ret)
540 			return ret;
541 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
542 		if (ret)
543 			return ret;
544 		offset += PTRACE_HBP_CTRL_SZ;
545 
546 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
547 						offset,
548 						offset + PTRACE_HBP_PAD_SZ);
549 		if (ret)
550 			return ret;
551 		offset += PTRACE_HBP_PAD_SZ;
552 		idx++;
553 	}
554 
555 	return 0;
556 }
557 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
558 
559 static int gpr_get(struct task_struct *target,
560 		   const struct user_regset *regset,
561 		   struct membuf to)
562 {
563 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
564 	return membuf_write(&to, uregs, sizeof(*uregs));
565 }
566 
567 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
568 		   unsigned int pos, unsigned int count,
569 		   const void *kbuf, const void __user *ubuf)
570 {
571 	int ret;
572 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
573 
574 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
575 	if (ret)
576 		return ret;
577 
578 	if (!valid_user_regs(&newregs, target))
579 		return -EINVAL;
580 
581 	task_pt_regs(target)->user_regs = newregs;
582 	return 0;
583 }
584 
585 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
586 {
587 	if (!system_supports_fpsimd())
588 		return -ENODEV;
589 	return regset->n;
590 }
591 
592 /*
593  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
594  */
595 static int __fpr_get(struct task_struct *target,
596 		     const struct user_regset *regset,
597 		     struct membuf to)
598 {
599 	struct user_fpsimd_state *uregs;
600 
601 	sve_sync_to_fpsimd(target);
602 
603 	uregs = &target->thread.uw.fpsimd_state;
604 
605 	return membuf_write(&to, uregs, sizeof(*uregs));
606 }
607 
608 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
609 		   struct membuf to)
610 {
611 	if (!system_supports_fpsimd())
612 		return -EINVAL;
613 
614 	if (target == current)
615 		fpsimd_preserve_current_state();
616 
617 	return __fpr_get(target, regset, to);
618 }
619 
620 static int __fpr_set(struct task_struct *target,
621 		     const struct user_regset *regset,
622 		     unsigned int pos, unsigned int count,
623 		     const void *kbuf, const void __user *ubuf,
624 		     unsigned int start_pos)
625 {
626 	int ret;
627 	struct user_fpsimd_state newstate;
628 
629 	/*
630 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
631 	 * short copyin can't resurrect stale data.
632 	 */
633 	sve_sync_to_fpsimd(target);
634 
635 	newstate = target->thread.uw.fpsimd_state;
636 
637 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
638 				 start_pos, start_pos + sizeof(newstate));
639 	if (ret)
640 		return ret;
641 
642 	target->thread.uw.fpsimd_state = newstate;
643 
644 	return ret;
645 }
646 
647 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
648 		   unsigned int pos, unsigned int count,
649 		   const void *kbuf, const void __user *ubuf)
650 {
651 	int ret;
652 
653 	if (!system_supports_fpsimd())
654 		return -EINVAL;
655 
656 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
657 	if (ret)
658 		return ret;
659 
660 	sve_sync_from_fpsimd_zeropad(target);
661 	fpsimd_flush_task_state(target);
662 
663 	return ret;
664 }
665 
666 static int tls_get(struct task_struct *target, const struct user_regset *regset,
667 		   struct membuf to)
668 {
669 	if (target == current)
670 		tls_preserve_current_state();
671 
672 	return membuf_store(&to, target->thread.uw.tp_value);
673 }
674 
675 static int tls_set(struct task_struct *target, const struct user_regset *regset,
676 		   unsigned int pos, unsigned int count,
677 		   const void *kbuf, const void __user *ubuf)
678 {
679 	int ret;
680 	unsigned long tls = target->thread.uw.tp_value;
681 
682 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
683 	if (ret)
684 		return ret;
685 
686 	target->thread.uw.tp_value = tls;
687 	return ret;
688 }
689 
690 static int system_call_get(struct task_struct *target,
691 			   const struct user_regset *regset,
692 			   struct membuf to)
693 {
694 	return membuf_store(&to, task_pt_regs(target)->syscallno);
695 }
696 
697 static int system_call_set(struct task_struct *target,
698 			   const struct user_regset *regset,
699 			   unsigned int pos, unsigned int count,
700 			   const void *kbuf, const void __user *ubuf)
701 {
702 	int syscallno = task_pt_regs(target)->syscallno;
703 	int ret;
704 
705 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
706 	if (ret)
707 		return ret;
708 
709 	task_pt_regs(target)->syscallno = syscallno;
710 	return ret;
711 }
712 
713 #ifdef CONFIG_ARM64_SVE
714 
715 static void sve_init_header_from_task(struct user_sve_header *header,
716 				      struct task_struct *target)
717 {
718 	unsigned int vq;
719 
720 	memset(header, 0, sizeof(*header));
721 
722 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
723 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
724 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
725 		header->flags |= SVE_PT_VL_INHERIT;
726 
727 	header->vl = task_get_sve_vl(target);
728 	vq = sve_vq_from_vl(header->vl);
729 
730 	header->max_vl = sve_max_vl();
731 	header->size = SVE_PT_SIZE(vq, header->flags);
732 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
733 				      SVE_PT_REGS_SVE);
734 }
735 
736 static unsigned int sve_size_from_header(struct user_sve_header const *header)
737 {
738 	return ALIGN(header->size, SVE_VQ_BYTES);
739 }
740 
741 static int sve_get(struct task_struct *target,
742 		   const struct user_regset *regset,
743 		   struct membuf to)
744 {
745 	struct user_sve_header header;
746 	unsigned int vq;
747 	unsigned long start, end;
748 
749 	if (!system_supports_sve())
750 		return -EINVAL;
751 
752 	/* Header */
753 	sve_init_header_from_task(&header, target);
754 	vq = sve_vq_from_vl(header.vl);
755 
756 	membuf_write(&to, &header, sizeof(header));
757 
758 	if (target == current)
759 		fpsimd_preserve_current_state();
760 
761 	/* Registers: FPSIMD-only case */
762 
763 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
764 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
765 		return __fpr_get(target, regset, to);
766 
767 	/* Otherwise: full SVE case */
768 
769 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
770 	start = SVE_PT_SVE_OFFSET;
771 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
772 	membuf_write(&to, target->thread.sve_state, end - start);
773 
774 	start = end;
775 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
776 	membuf_zero(&to, end - start);
777 
778 	/*
779 	 * Copy fpsr, and fpcr which must follow contiguously in
780 	 * struct fpsimd_state:
781 	 */
782 	start = end;
783 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
784 	membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, end - start);
785 
786 	start = end;
787 	end = sve_size_from_header(&header);
788 	return membuf_zero(&to, end - start);
789 }
790 
791 static int sve_set(struct task_struct *target,
792 		   const struct user_regset *regset,
793 		   unsigned int pos, unsigned int count,
794 		   const void *kbuf, const void __user *ubuf)
795 {
796 	int ret;
797 	struct user_sve_header header;
798 	unsigned int vq;
799 	unsigned long start, end;
800 
801 	if (!system_supports_sve())
802 		return -EINVAL;
803 
804 	/* Header */
805 	if (count < sizeof(header))
806 		return -EINVAL;
807 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
808 				 0, sizeof(header));
809 	if (ret)
810 		goto out;
811 
812 	/*
813 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
814 	 * vec_set_vector_length(), which will also validate them for us:
815 	 */
816 	ret = vec_set_vector_length(target, ARM64_VEC_SVE, header.vl,
817 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
818 	if (ret)
819 		goto out;
820 
821 	/* Actual VL set may be less than the user asked for: */
822 	vq = sve_vq_from_vl(task_get_sve_vl(target));
823 
824 	/* Registers: FPSIMD-only case */
825 
826 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
827 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
828 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
829 				SVE_PT_FPSIMD_OFFSET);
830 		clear_tsk_thread_flag(target, TIF_SVE);
831 		goto out;
832 	}
833 
834 	/* Otherwise: full SVE case */
835 
836 	/*
837 	 * If setting a different VL from the requested VL and there is
838 	 * register data, the data layout will be wrong: don't even
839 	 * try to set the registers in this case.
840 	 */
841 	if (count && vq != sve_vq_from_vl(header.vl)) {
842 		ret = -EIO;
843 		goto out;
844 	}
845 
846 	sve_alloc(target);
847 	if (!target->thread.sve_state) {
848 		ret = -ENOMEM;
849 		clear_tsk_thread_flag(target, TIF_SVE);
850 		goto out;
851 	}
852 
853 	/*
854 	 * Ensure target->thread.sve_state is up to date with target's
855 	 * FPSIMD regs, so that a short copyin leaves trailing registers
856 	 * unmodified.
857 	 */
858 	fpsimd_sync_to_sve(target);
859 	set_tsk_thread_flag(target, TIF_SVE);
860 
861 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
862 	start = SVE_PT_SVE_OFFSET;
863 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
864 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
865 				 target->thread.sve_state,
866 				 start, end);
867 	if (ret)
868 		goto out;
869 
870 	start = end;
871 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
872 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
873 					start, end);
874 	if (ret)
875 		goto out;
876 
877 	/*
878 	 * Copy fpsr, and fpcr which must follow contiguously in
879 	 * struct fpsimd_state:
880 	 */
881 	start = end;
882 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
883 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
884 				 &target->thread.uw.fpsimd_state.fpsr,
885 				 start, end);
886 
887 out:
888 	fpsimd_flush_task_state(target);
889 	return ret;
890 }
891 
892 #endif /* CONFIG_ARM64_SVE */
893 
894 #ifdef CONFIG_ARM64_PTR_AUTH
895 static int pac_mask_get(struct task_struct *target,
896 			const struct user_regset *regset,
897 			struct membuf to)
898 {
899 	/*
900 	 * The PAC bits can differ across data and instruction pointers
901 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
902 	 * we expose separate masks.
903 	 */
904 	unsigned long mask = ptrauth_user_pac_mask();
905 	struct user_pac_mask uregs = {
906 		.data_mask = mask,
907 		.insn_mask = mask,
908 	};
909 
910 	if (!system_supports_address_auth())
911 		return -EINVAL;
912 
913 	return membuf_write(&to, &uregs, sizeof(uregs));
914 }
915 
916 static int pac_enabled_keys_get(struct task_struct *target,
917 				const struct user_regset *regset,
918 				struct membuf to)
919 {
920 	long enabled_keys = ptrauth_get_enabled_keys(target);
921 
922 	if (IS_ERR_VALUE(enabled_keys))
923 		return enabled_keys;
924 
925 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
926 }
927 
928 static int pac_enabled_keys_set(struct task_struct *target,
929 				const struct user_regset *regset,
930 				unsigned int pos, unsigned int count,
931 				const void *kbuf, const void __user *ubuf)
932 {
933 	int ret;
934 	long enabled_keys = ptrauth_get_enabled_keys(target);
935 
936 	if (IS_ERR_VALUE(enabled_keys))
937 		return enabled_keys;
938 
939 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
940 				 sizeof(long));
941 	if (ret)
942 		return ret;
943 
944 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
945 					enabled_keys);
946 }
947 
948 #ifdef CONFIG_CHECKPOINT_RESTORE
949 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
950 {
951 	return (__uint128_t)key->hi << 64 | key->lo;
952 }
953 
954 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
955 {
956 	struct ptrauth_key key = {
957 		.lo = (unsigned long)ukey,
958 		.hi = (unsigned long)(ukey >> 64),
959 	};
960 
961 	return key;
962 }
963 
964 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
965 				     const struct ptrauth_keys_user *keys)
966 {
967 	ukeys->apiakey = pac_key_to_user(&keys->apia);
968 	ukeys->apibkey = pac_key_to_user(&keys->apib);
969 	ukeys->apdakey = pac_key_to_user(&keys->apda);
970 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
971 }
972 
973 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
974 				       const struct user_pac_address_keys *ukeys)
975 {
976 	keys->apia = pac_key_from_user(ukeys->apiakey);
977 	keys->apib = pac_key_from_user(ukeys->apibkey);
978 	keys->apda = pac_key_from_user(ukeys->apdakey);
979 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
980 }
981 
982 static int pac_address_keys_get(struct task_struct *target,
983 				const struct user_regset *regset,
984 				struct membuf to)
985 {
986 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
987 	struct user_pac_address_keys user_keys;
988 
989 	if (!system_supports_address_auth())
990 		return -EINVAL;
991 
992 	pac_address_keys_to_user(&user_keys, keys);
993 
994 	return membuf_write(&to, &user_keys, sizeof(user_keys));
995 }
996 
997 static int pac_address_keys_set(struct task_struct *target,
998 				const struct user_regset *regset,
999 				unsigned int pos, unsigned int count,
1000 				const void *kbuf, const void __user *ubuf)
1001 {
1002 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1003 	struct user_pac_address_keys user_keys;
1004 	int ret;
1005 
1006 	if (!system_supports_address_auth())
1007 		return -EINVAL;
1008 
1009 	pac_address_keys_to_user(&user_keys, keys);
1010 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1011 				 &user_keys, 0, -1);
1012 	if (ret)
1013 		return ret;
1014 	pac_address_keys_from_user(keys, &user_keys);
1015 
1016 	return 0;
1017 }
1018 
1019 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1020 				     const struct ptrauth_keys_user *keys)
1021 {
1022 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1023 }
1024 
1025 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1026 				       const struct user_pac_generic_keys *ukeys)
1027 {
1028 	keys->apga = pac_key_from_user(ukeys->apgakey);
1029 }
1030 
1031 static int pac_generic_keys_get(struct task_struct *target,
1032 				const struct user_regset *regset,
1033 				struct membuf to)
1034 {
1035 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1036 	struct user_pac_generic_keys user_keys;
1037 
1038 	if (!system_supports_generic_auth())
1039 		return -EINVAL;
1040 
1041 	pac_generic_keys_to_user(&user_keys, keys);
1042 
1043 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1044 }
1045 
1046 static int pac_generic_keys_set(struct task_struct *target,
1047 				const struct user_regset *regset,
1048 				unsigned int pos, unsigned int count,
1049 				const void *kbuf, const void __user *ubuf)
1050 {
1051 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1052 	struct user_pac_generic_keys user_keys;
1053 	int ret;
1054 
1055 	if (!system_supports_generic_auth())
1056 		return -EINVAL;
1057 
1058 	pac_generic_keys_to_user(&user_keys, keys);
1059 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1060 				 &user_keys, 0, -1);
1061 	if (ret)
1062 		return ret;
1063 	pac_generic_keys_from_user(keys, &user_keys);
1064 
1065 	return 0;
1066 }
1067 #endif /* CONFIG_CHECKPOINT_RESTORE */
1068 #endif /* CONFIG_ARM64_PTR_AUTH */
1069 
1070 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1071 static int tagged_addr_ctrl_get(struct task_struct *target,
1072 				const struct user_regset *regset,
1073 				struct membuf to)
1074 {
1075 	long ctrl = get_tagged_addr_ctrl(target);
1076 
1077 	if (IS_ERR_VALUE(ctrl))
1078 		return ctrl;
1079 
1080 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1081 }
1082 
1083 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1084 				user_regset *regset, unsigned int pos,
1085 				unsigned int count, const void *kbuf, const
1086 				void __user *ubuf)
1087 {
1088 	int ret;
1089 	long ctrl;
1090 
1091 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1092 	if (ret)
1093 		return ret;
1094 
1095 	return set_tagged_addr_ctrl(target, ctrl);
1096 }
1097 #endif
1098 
1099 enum aarch64_regset {
1100 	REGSET_GPR,
1101 	REGSET_FPR,
1102 	REGSET_TLS,
1103 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1104 	REGSET_HW_BREAK,
1105 	REGSET_HW_WATCH,
1106 #endif
1107 	REGSET_SYSTEM_CALL,
1108 #ifdef CONFIG_ARM64_SVE
1109 	REGSET_SVE,
1110 #endif
1111 #ifdef CONFIG_ARM64_PTR_AUTH
1112 	REGSET_PAC_MASK,
1113 	REGSET_PAC_ENABLED_KEYS,
1114 #ifdef CONFIG_CHECKPOINT_RESTORE
1115 	REGSET_PACA_KEYS,
1116 	REGSET_PACG_KEYS,
1117 #endif
1118 #endif
1119 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1120 	REGSET_TAGGED_ADDR_CTRL,
1121 #endif
1122 };
1123 
1124 static const struct user_regset aarch64_regsets[] = {
1125 	[REGSET_GPR] = {
1126 		.core_note_type = NT_PRSTATUS,
1127 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1128 		.size = sizeof(u64),
1129 		.align = sizeof(u64),
1130 		.regset_get = gpr_get,
1131 		.set = gpr_set
1132 	},
1133 	[REGSET_FPR] = {
1134 		.core_note_type = NT_PRFPREG,
1135 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1136 		/*
1137 		 * We pretend we have 32-bit registers because the fpsr and
1138 		 * fpcr are 32-bits wide.
1139 		 */
1140 		.size = sizeof(u32),
1141 		.align = sizeof(u32),
1142 		.active = fpr_active,
1143 		.regset_get = fpr_get,
1144 		.set = fpr_set
1145 	},
1146 	[REGSET_TLS] = {
1147 		.core_note_type = NT_ARM_TLS,
1148 		.n = 1,
1149 		.size = sizeof(void *),
1150 		.align = sizeof(void *),
1151 		.regset_get = tls_get,
1152 		.set = tls_set,
1153 	},
1154 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1155 	[REGSET_HW_BREAK] = {
1156 		.core_note_type = NT_ARM_HW_BREAK,
1157 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1158 		.size = sizeof(u32),
1159 		.align = sizeof(u32),
1160 		.regset_get = hw_break_get,
1161 		.set = hw_break_set,
1162 	},
1163 	[REGSET_HW_WATCH] = {
1164 		.core_note_type = NT_ARM_HW_WATCH,
1165 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1166 		.size = sizeof(u32),
1167 		.align = sizeof(u32),
1168 		.regset_get = hw_break_get,
1169 		.set = hw_break_set,
1170 	},
1171 #endif
1172 	[REGSET_SYSTEM_CALL] = {
1173 		.core_note_type = NT_ARM_SYSTEM_CALL,
1174 		.n = 1,
1175 		.size = sizeof(int),
1176 		.align = sizeof(int),
1177 		.regset_get = system_call_get,
1178 		.set = system_call_set,
1179 	},
1180 #ifdef CONFIG_ARM64_SVE
1181 	[REGSET_SVE] = { /* Scalable Vector Extension */
1182 		.core_note_type = NT_ARM_SVE,
1183 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1184 				  SVE_VQ_BYTES),
1185 		.size = SVE_VQ_BYTES,
1186 		.align = SVE_VQ_BYTES,
1187 		.regset_get = sve_get,
1188 		.set = sve_set,
1189 	},
1190 #endif
1191 #ifdef CONFIG_ARM64_PTR_AUTH
1192 	[REGSET_PAC_MASK] = {
1193 		.core_note_type = NT_ARM_PAC_MASK,
1194 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1195 		.size = sizeof(u64),
1196 		.align = sizeof(u64),
1197 		.regset_get = pac_mask_get,
1198 		/* this cannot be set dynamically */
1199 	},
1200 	[REGSET_PAC_ENABLED_KEYS] = {
1201 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1202 		.n = 1,
1203 		.size = sizeof(long),
1204 		.align = sizeof(long),
1205 		.regset_get = pac_enabled_keys_get,
1206 		.set = pac_enabled_keys_set,
1207 	},
1208 #ifdef CONFIG_CHECKPOINT_RESTORE
1209 	[REGSET_PACA_KEYS] = {
1210 		.core_note_type = NT_ARM_PACA_KEYS,
1211 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1212 		.size = sizeof(__uint128_t),
1213 		.align = sizeof(__uint128_t),
1214 		.regset_get = pac_address_keys_get,
1215 		.set = pac_address_keys_set,
1216 	},
1217 	[REGSET_PACG_KEYS] = {
1218 		.core_note_type = NT_ARM_PACG_KEYS,
1219 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1220 		.size = sizeof(__uint128_t),
1221 		.align = sizeof(__uint128_t),
1222 		.regset_get = pac_generic_keys_get,
1223 		.set = pac_generic_keys_set,
1224 	},
1225 #endif
1226 #endif
1227 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1228 	[REGSET_TAGGED_ADDR_CTRL] = {
1229 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1230 		.n = 1,
1231 		.size = sizeof(long),
1232 		.align = sizeof(long),
1233 		.regset_get = tagged_addr_ctrl_get,
1234 		.set = tagged_addr_ctrl_set,
1235 	},
1236 #endif
1237 };
1238 
1239 static const struct user_regset_view user_aarch64_view = {
1240 	.name = "aarch64", .e_machine = EM_AARCH64,
1241 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1242 };
1243 
1244 #ifdef CONFIG_COMPAT
1245 enum compat_regset {
1246 	REGSET_COMPAT_GPR,
1247 	REGSET_COMPAT_VFP,
1248 };
1249 
1250 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1251 {
1252 	struct pt_regs *regs = task_pt_regs(task);
1253 
1254 	switch (idx) {
1255 	case 15:
1256 		return regs->pc;
1257 	case 16:
1258 		return pstate_to_compat_psr(regs->pstate);
1259 	case 17:
1260 		return regs->orig_x0;
1261 	default:
1262 		return regs->regs[idx];
1263 	}
1264 }
1265 
1266 static int compat_gpr_get(struct task_struct *target,
1267 			  const struct user_regset *regset,
1268 			  struct membuf to)
1269 {
1270 	int i = 0;
1271 
1272 	while (to.left)
1273 		membuf_store(&to, compat_get_user_reg(target, i++));
1274 	return 0;
1275 }
1276 
1277 static int compat_gpr_set(struct task_struct *target,
1278 			  const struct user_regset *regset,
1279 			  unsigned int pos, unsigned int count,
1280 			  const void *kbuf, const void __user *ubuf)
1281 {
1282 	struct pt_regs newregs;
1283 	int ret = 0;
1284 	unsigned int i, start, num_regs;
1285 
1286 	/* Calculate the number of AArch32 registers contained in count */
1287 	num_regs = count / regset->size;
1288 
1289 	/* Convert pos into an register number */
1290 	start = pos / regset->size;
1291 
1292 	if (start + num_regs > regset->n)
1293 		return -EIO;
1294 
1295 	newregs = *task_pt_regs(target);
1296 
1297 	for (i = 0; i < num_regs; ++i) {
1298 		unsigned int idx = start + i;
1299 		compat_ulong_t reg;
1300 
1301 		if (kbuf) {
1302 			memcpy(&reg, kbuf, sizeof(reg));
1303 			kbuf += sizeof(reg);
1304 		} else {
1305 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1306 			if (ret) {
1307 				ret = -EFAULT;
1308 				break;
1309 			}
1310 
1311 			ubuf += sizeof(reg);
1312 		}
1313 
1314 		switch (idx) {
1315 		case 15:
1316 			newregs.pc = reg;
1317 			break;
1318 		case 16:
1319 			reg = compat_psr_to_pstate(reg);
1320 			newregs.pstate = reg;
1321 			break;
1322 		case 17:
1323 			newregs.orig_x0 = reg;
1324 			break;
1325 		default:
1326 			newregs.regs[idx] = reg;
1327 		}
1328 
1329 	}
1330 
1331 	if (valid_user_regs(&newregs.user_regs, target))
1332 		*task_pt_regs(target) = newregs;
1333 	else
1334 		ret = -EINVAL;
1335 
1336 	return ret;
1337 }
1338 
1339 static int compat_vfp_get(struct task_struct *target,
1340 			  const struct user_regset *regset,
1341 			  struct membuf to)
1342 {
1343 	struct user_fpsimd_state *uregs;
1344 	compat_ulong_t fpscr;
1345 
1346 	if (!system_supports_fpsimd())
1347 		return -EINVAL;
1348 
1349 	uregs = &target->thread.uw.fpsimd_state;
1350 
1351 	if (target == current)
1352 		fpsimd_preserve_current_state();
1353 
1354 	/*
1355 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1356 	 * nicely together for us. We just need to create the fpscr separately.
1357 	 */
1358 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1359 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1360 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1361 	return membuf_store(&to, fpscr);
1362 }
1363 
1364 static int compat_vfp_set(struct task_struct *target,
1365 			  const struct user_regset *regset,
1366 			  unsigned int pos, unsigned int count,
1367 			  const void *kbuf, const void __user *ubuf)
1368 {
1369 	struct user_fpsimd_state *uregs;
1370 	compat_ulong_t fpscr;
1371 	int ret, vregs_end_pos;
1372 
1373 	if (!system_supports_fpsimd())
1374 		return -EINVAL;
1375 
1376 	uregs = &target->thread.uw.fpsimd_state;
1377 
1378 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1379 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1380 				 vregs_end_pos);
1381 
1382 	if (count && !ret) {
1383 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1384 					 vregs_end_pos, VFP_STATE_SIZE);
1385 		if (!ret) {
1386 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1387 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1388 		}
1389 	}
1390 
1391 	fpsimd_flush_task_state(target);
1392 	return ret;
1393 }
1394 
1395 static int compat_tls_get(struct task_struct *target,
1396 			  const struct user_regset *regset,
1397 			  struct membuf to)
1398 {
1399 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1400 }
1401 
1402 static int compat_tls_set(struct task_struct *target,
1403 			  const struct user_regset *regset, unsigned int pos,
1404 			  unsigned int count, const void *kbuf,
1405 			  const void __user *ubuf)
1406 {
1407 	int ret;
1408 	compat_ulong_t tls = target->thread.uw.tp_value;
1409 
1410 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1411 	if (ret)
1412 		return ret;
1413 
1414 	target->thread.uw.tp_value = tls;
1415 	return ret;
1416 }
1417 
1418 static const struct user_regset aarch32_regsets[] = {
1419 	[REGSET_COMPAT_GPR] = {
1420 		.core_note_type = NT_PRSTATUS,
1421 		.n = COMPAT_ELF_NGREG,
1422 		.size = sizeof(compat_elf_greg_t),
1423 		.align = sizeof(compat_elf_greg_t),
1424 		.regset_get = compat_gpr_get,
1425 		.set = compat_gpr_set
1426 	},
1427 	[REGSET_COMPAT_VFP] = {
1428 		.core_note_type = NT_ARM_VFP,
1429 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1430 		.size = sizeof(compat_ulong_t),
1431 		.align = sizeof(compat_ulong_t),
1432 		.active = fpr_active,
1433 		.regset_get = compat_vfp_get,
1434 		.set = compat_vfp_set
1435 	},
1436 };
1437 
1438 static const struct user_regset_view user_aarch32_view = {
1439 	.name = "aarch32", .e_machine = EM_ARM,
1440 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1441 };
1442 
1443 static const struct user_regset aarch32_ptrace_regsets[] = {
1444 	[REGSET_GPR] = {
1445 		.core_note_type = NT_PRSTATUS,
1446 		.n = COMPAT_ELF_NGREG,
1447 		.size = sizeof(compat_elf_greg_t),
1448 		.align = sizeof(compat_elf_greg_t),
1449 		.regset_get = compat_gpr_get,
1450 		.set = compat_gpr_set
1451 	},
1452 	[REGSET_FPR] = {
1453 		.core_note_type = NT_ARM_VFP,
1454 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1455 		.size = sizeof(compat_ulong_t),
1456 		.align = sizeof(compat_ulong_t),
1457 		.regset_get = compat_vfp_get,
1458 		.set = compat_vfp_set
1459 	},
1460 	[REGSET_TLS] = {
1461 		.core_note_type = NT_ARM_TLS,
1462 		.n = 1,
1463 		.size = sizeof(compat_ulong_t),
1464 		.align = sizeof(compat_ulong_t),
1465 		.regset_get = compat_tls_get,
1466 		.set = compat_tls_set,
1467 	},
1468 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1469 	[REGSET_HW_BREAK] = {
1470 		.core_note_type = NT_ARM_HW_BREAK,
1471 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1472 		.size = sizeof(u32),
1473 		.align = sizeof(u32),
1474 		.regset_get = hw_break_get,
1475 		.set = hw_break_set,
1476 	},
1477 	[REGSET_HW_WATCH] = {
1478 		.core_note_type = NT_ARM_HW_WATCH,
1479 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1480 		.size = sizeof(u32),
1481 		.align = sizeof(u32),
1482 		.regset_get = hw_break_get,
1483 		.set = hw_break_set,
1484 	},
1485 #endif
1486 	[REGSET_SYSTEM_CALL] = {
1487 		.core_note_type = NT_ARM_SYSTEM_CALL,
1488 		.n = 1,
1489 		.size = sizeof(int),
1490 		.align = sizeof(int),
1491 		.regset_get = system_call_get,
1492 		.set = system_call_set,
1493 	},
1494 };
1495 
1496 static const struct user_regset_view user_aarch32_ptrace_view = {
1497 	.name = "aarch32", .e_machine = EM_ARM,
1498 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1499 };
1500 
1501 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1502 				   compat_ulong_t __user *ret)
1503 {
1504 	compat_ulong_t tmp;
1505 
1506 	if (off & 3)
1507 		return -EIO;
1508 
1509 	if (off == COMPAT_PT_TEXT_ADDR)
1510 		tmp = tsk->mm->start_code;
1511 	else if (off == COMPAT_PT_DATA_ADDR)
1512 		tmp = tsk->mm->start_data;
1513 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1514 		tmp = tsk->mm->end_code;
1515 	else if (off < sizeof(compat_elf_gregset_t))
1516 		tmp = compat_get_user_reg(tsk, off >> 2);
1517 	else if (off >= COMPAT_USER_SZ)
1518 		return -EIO;
1519 	else
1520 		tmp = 0;
1521 
1522 	return put_user(tmp, ret);
1523 }
1524 
1525 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1526 				    compat_ulong_t val)
1527 {
1528 	struct pt_regs newregs = *task_pt_regs(tsk);
1529 	unsigned int idx = off / 4;
1530 
1531 	if (off & 3 || off >= COMPAT_USER_SZ)
1532 		return -EIO;
1533 
1534 	if (off >= sizeof(compat_elf_gregset_t))
1535 		return 0;
1536 
1537 	switch (idx) {
1538 	case 15:
1539 		newregs.pc = val;
1540 		break;
1541 	case 16:
1542 		newregs.pstate = compat_psr_to_pstate(val);
1543 		break;
1544 	case 17:
1545 		newregs.orig_x0 = val;
1546 		break;
1547 	default:
1548 		newregs.regs[idx] = val;
1549 	}
1550 
1551 	if (!valid_user_regs(&newregs.user_regs, tsk))
1552 		return -EINVAL;
1553 
1554 	*task_pt_regs(tsk) = newregs;
1555 	return 0;
1556 }
1557 
1558 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1559 
1560 /*
1561  * Convert a virtual register number into an index for a thread_info
1562  * breakpoint array. Breakpoints are identified using positive numbers
1563  * whilst watchpoints are negative. The registers are laid out as pairs
1564  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1565  * Register 0 is reserved for describing resource information.
1566  */
1567 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1568 {
1569 	return (abs(num) - 1) >> 1;
1570 }
1571 
1572 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1573 {
1574 	u8 num_brps, num_wrps, debug_arch, wp_len;
1575 	u32 reg = 0;
1576 
1577 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1578 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1579 
1580 	debug_arch	= debug_monitors_arch();
1581 	wp_len		= 8;
1582 	reg		|= debug_arch;
1583 	reg		<<= 8;
1584 	reg		|= wp_len;
1585 	reg		<<= 8;
1586 	reg		|= num_wrps;
1587 	reg		<<= 8;
1588 	reg		|= num_brps;
1589 
1590 	*kdata = reg;
1591 	return 0;
1592 }
1593 
1594 static int compat_ptrace_hbp_get(unsigned int note_type,
1595 				 struct task_struct *tsk,
1596 				 compat_long_t num,
1597 				 u32 *kdata)
1598 {
1599 	u64 addr = 0;
1600 	u32 ctrl = 0;
1601 
1602 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1603 
1604 	if (num & 1) {
1605 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1606 		*kdata = (u32)addr;
1607 	} else {
1608 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1609 		*kdata = ctrl;
1610 	}
1611 
1612 	return err;
1613 }
1614 
1615 static int compat_ptrace_hbp_set(unsigned int note_type,
1616 				 struct task_struct *tsk,
1617 				 compat_long_t num,
1618 				 u32 *kdata)
1619 {
1620 	u64 addr;
1621 	u32 ctrl;
1622 
1623 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1624 
1625 	if (num & 1) {
1626 		addr = *kdata;
1627 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1628 	} else {
1629 		ctrl = *kdata;
1630 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1631 	}
1632 
1633 	return err;
1634 }
1635 
1636 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1637 				    compat_ulong_t __user *data)
1638 {
1639 	int ret;
1640 	u32 kdata;
1641 
1642 	/* Watchpoint */
1643 	if (num < 0) {
1644 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1645 	/* Resource info */
1646 	} else if (num == 0) {
1647 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1648 	/* Breakpoint */
1649 	} else {
1650 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1651 	}
1652 
1653 	if (!ret)
1654 		ret = put_user(kdata, data);
1655 
1656 	return ret;
1657 }
1658 
1659 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1660 				    compat_ulong_t __user *data)
1661 {
1662 	int ret;
1663 	u32 kdata = 0;
1664 
1665 	if (num == 0)
1666 		return 0;
1667 
1668 	ret = get_user(kdata, data);
1669 	if (ret)
1670 		return ret;
1671 
1672 	if (num < 0)
1673 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1674 	else
1675 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1676 
1677 	return ret;
1678 }
1679 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1680 
1681 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1682 			compat_ulong_t caddr, compat_ulong_t cdata)
1683 {
1684 	unsigned long addr = caddr;
1685 	unsigned long data = cdata;
1686 	void __user *datap = compat_ptr(data);
1687 	int ret;
1688 
1689 	switch (request) {
1690 		case PTRACE_PEEKUSR:
1691 			ret = compat_ptrace_read_user(child, addr, datap);
1692 			break;
1693 
1694 		case PTRACE_POKEUSR:
1695 			ret = compat_ptrace_write_user(child, addr, data);
1696 			break;
1697 
1698 		case COMPAT_PTRACE_GETREGS:
1699 			ret = copy_regset_to_user(child,
1700 						  &user_aarch32_view,
1701 						  REGSET_COMPAT_GPR,
1702 						  0, sizeof(compat_elf_gregset_t),
1703 						  datap);
1704 			break;
1705 
1706 		case COMPAT_PTRACE_SETREGS:
1707 			ret = copy_regset_from_user(child,
1708 						    &user_aarch32_view,
1709 						    REGSET_COMPAT_GPR,
1710 						    0, sizeof(compat_elf_gregset_t),
1711 						    datap);
1712 			break;
1713 
1714 		case COMPAT_PTRACE_GET_THREAD_AREA:
1715 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1716 				       (compat_ulong_t __user *)datap);
1717 			break;
1718 
1719 		case COMPAT_PTRACE_SET_SYSCALL:
1720 			task_pt_regs(child)->syscallno = data;
1721 			ret = 0;
1722 			break;
1723 
1724 		case COMPAT_PTRACE_GETVFPREGS:
1725 			ret = copy_regset_to_user(child,
1726 						  &user_aarch32_view,
1727 						  REGSET_COMPAT_VFP,
1728 						  0, VFP_STATE_SIZE,
1729 						  datap);
1730 			break;
1731 
1732 		case COMPAT_PTRACE_SETVFPREGS:
1733 			ret = copy_regset_from_user(child,
1734 						    &user_aarch32_view,
1735 						    REGSET_COMPAT_VFP,
1736 						    0, VFP_STATE_SIZE,
1737 						    datap);
1738 			break;
1739 
1740 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1741 		case COMPAT_PTRACE_GETHBPREGS:
1742 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1743 			break;
1744 
1745 		case COMPAT_PTRACE_SETHBPREGS:
1746 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1747 			break;
1748 #endif
1749 
1750 		default:
1751 			ret = compat_ptrace_request(child, request, addr,
1752 						    data);
1753 			break;
1754 	}
1755 
1756 	return ret;
1757 }
1758 #endif /* CONFIG_COMPAT */
1759 
1760 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1761 {
1762 #ifdef CONFIG_COMPAT
1763 	/*
1764 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1765 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1766 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1767 	 * access to the TLS register.
1768 	 */
1769 	if (is_compat_task())
1770 		return &user_aarch32_view;
1771 	else if (is_compat_thread(task_thread_info(task)))
1772 		return &user_aarch32_ptrace_view;
1773 #endif
1774 	return &user_aarch64_view;
1775 }
1776 
1777 long arch_ptrace(struct task_struct *child, long request,
1778 		 unsigned long addr, unsigned long data)
1779 {
1780 	switch (request) {
1781 	case PTRACE_PEEKMTETAGS:
1782 	case PTRACE_POKEMTETAGS:
1783 		return mte_ptrace_copy_tags(child, request, addr, data);
1784 	}
1785 
1786 	return ptrace_request(child, request, addr, data);
1787 }
1788 
1789 enum ptrace_syscall_dir {
1790 	PTRACE_SYSCALL_ENTER = 0,
1791 	PTRACE_SYSCALL_EXIT,
1792 };
1793 
1794 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
1795 {
1796 	int regno;
1797 	unsigned long saved_reg;
1798 
1799 	/*
1800 	 * We have some ABI weirdness here in the way that we handle syscall
1801 	 * exit stops because we indicate whether or not the stop has been
1802 	 * signalled from syscall entry or syscall exit by clobbering a general
1803 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
1804 	 * and restoring its old value after the stop. This means that:
1805 	 *
1806 	 * - Any writes by the tracer to this register during the stop are
1807 	 *   ignored/discarded.
1808 	 *
1809 	 * - The actual value of the register is not available during the stop,
1810 	 *   so the tracer cannot save it and restore it later.
1811 	 *
1812 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
1813 	 *   (the latter do not nobble any registers).
1814 	 */
1815 	regno = (is_compat_task() ? 12 : 7);
1816 	saved_reg = regs->regs[regno];
1817 	regs->regs[regno] = dir;
1818 
1819 	if (dir == PTRACE_SYSCALL_ENTER) {
1820 		if (ptrace_report_syscall_entry(regs))
1821 			forget_syscall(regs);
1822 		regs->regs[regno] = saved_reg;
1823 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
1824 		ptrace_report_syscall_exit(regs, 0);
1825 		regs->regs[regno] = saved_reg;
1826 	} else {
1827 		regs->regs[regno] = saved_reg;
1828 
1829 		/*
1830 		 * Signal a pseudo-step exception since we are stepping but
1831 		 * tracer modifications to the registers may have rewound the
1832 		 * state machine.
1833 		 */
1834 		ptrace_report_syscall_exit(regs, 1);
1835 	}
1836 }
1837 
1838 int syscall_trace_enter(struct pt_regs *regs)
1839 {
1840 	unsigned long flags = read_thread_flags();
1841 
1842 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
1843 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
1844 		if (flags & _TIF_SYSCALL_EMU)
1845 			return NO_SYSCALL;
1846 	}
1847 
1848 	/* Do the secure computing after ptrace; failures should be fast. */
1849 	if (secure_computing() == -1)
1850 		return NO_SYSCALL;
1851 
1852 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1853 		trace_sys_enter(regs, regs->syscallno);
1854 
1855 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1856 			    regs->regs[2], regs->regs[3]);
1857 
1858 	return regs->syscallno;
1859 }
1860 
1861 void syscall_trace_exit(struct pt_regs *regs)
1862 {
1863 	unsigned long flags = read_thread_flags();
1864 
1865 	audit_syscall_exit(regs);
1866 
1867 	if (flags & _TIF_SYSCALL_TRACEPOINT)
1868 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
1869 
1870 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
1871 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
1872 
1873 	rseq_syscall(regs);
1874 }
1875 
1876 /*
1877  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1878  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1879  * not described in ARM DDI 0487D.a.
1880  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1881  * be allocated an EL0 meaning in future.
1882  * Userspace cannot use these until they have an architectural meaning.
1883  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1884  * We also reserve IL for the kernel; SS is handled dynamically.
1885  */
1886 #define SPSR_EL1_AARCH64_RES0_BITS \
1887 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
1888 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
1889 #define SPSR_EL1_AARCH32_RES0_BITS \
1890 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1891 
1892 static int valid_compat_regs(struct user_pt_regs *regs)
1893 {
1894 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1895 
1896 	if (!system_supports_mixed_endian_el0()) {
1897 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1898 			regs->pstate |= PSR_AA32_E_BIT;
1899 		else
1900 			regs->pstate &= ~PSR_AA32_E_BIT;
1901 	}
1902 
1903 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1904 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1905 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1906 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
1907 		return 1;
1908 	}
1909 
1910 	/*
1911 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1912 	 * arch/arm.
1913 	 */
1914 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1915 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1916 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1917 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1918 			PSR_AA32_T_BIT;
1919 	regs->pstate |= PSR_MODE32_BIT;
1920 
1921 	return 0;
1922 }
1923 
1924 static int valid_native_regs(struct user_pt_regs *regs)
1925 {
1926 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1927 
1928 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1929 	    (regs->pstate & PSR_D_BIT) == 0 &&
1930 	    (regs->pstate & PSR_A_BIT) == 0 &&
1931 	    (regs->pstate & PSR_I_BIT) == 0 &&
1932 	    (regs->pstate & PSR_F_BIT) == 0) {
1933 		return 1;
1934 	}
1935 
1936 	/* Force PSR to a valid 64-bit EL0t */
1937 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1938 
1939 	return 0;
1940 }
1941 
1942 /*
1943  * Are the current registers suitable for user mode? (used to maintain
1944  * security in signal handlers)
1945  */
1946 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1947 {
1948 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
1949 	user_regs_reset_single_step(regs, task);
1950 
1951 	if (is_compat_thread(task_thread_info(task)))
1952 		return valid_compat_regs(regs);
1953 	else
1954 		return valid_native_regs(regs);
1955 }
1956