1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/ptrace.c 4 * 5 * By Ross Biro 1/23/92 6 * edited by Linus Torvalds 7 * ARM modifications Copyright (C) 2000 Russell King 8 * Copyright (C) 2012 ARM Ltd. 9 */ 10 11 #include <linux/audit.h> 12 #include <linux/compat.h> 13 #include <linux/kernel.h> 14 #include <linux/sched/signal.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/mm.h> 17 #include <linux/nospec.h> 18 #include <linux/smp.h> 19 #include <linux/ptrace.h> 20 #include <linux/user.h> 21 #include <linux/seccomp.h> 22 #include <linux/security.h> 23 #include <linux/init.h> 24 #include <linux/signal.h> 25 #include <linux/string.h> 26 #include <linux/uaccess.h> 27 #include <linux/perf_event.h> 28 #include <linux/hw_breakpoint.h> 29 #include <linux/regset.h> 30 #include <linux/elf.h> 31 32 #include <asm/compat.h> 33 #include <asm/cpufeature.h> 34 #include <asm/debug-monitors.h> 35 #include <asm/fpsimd.h> 36 #include <asm/mte.h> 37 #include <asm/pointer_auth.h> 38 #include <asm/stacktrace.h> 39 #include <asm/syscall.h> 40 #include <asm/traps.h> 41 #include <asm/system_misc.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/syscalls.h> 45 46 struct pt_regs_offset { 47 const char *name; 48 int offset; 49 }; 50 51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} 52 #define REG_OFFSET_END {.name = NULL, .offset = 0} 53 #define GPR_OFFSET_NAME(r) \ 54 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])} 55 56 static const struct pt_regs_offset regoffset_table[] = { 57 GPR_OFFSET_NAME(0), 58 GPR_OFFSET_NAME(1), 59 GPR_OFFSET_NAME(2), 60 GPR_OFFSET_NAME(3), 61 GPR_OFFSET_NAME(4), 62 GPR_OFFSET_NAME(5), 63 GPR_OFFSET_NAME(6), 64 GPR_OFFSET_NAME(7), 65 GPR_OFFSET_NAME(8), 66 GPR_OFFSET_NAME(9), 67 GPR_OFFSET_NAME(10), 68 GPR_OFFSET_NAME(11), 69 GPR_OFFSET_NAME(12), 70 GPR_OFFSET_NAME(13), 71 GPR_OFFSET_NAME(14), 72 GPR_OFFSET_NAME(15), 73 GPR_OFFSET_NAME(16), 74 GPR_OFFSET_NAME(17), 75 GPR_OFFSET_NAME(18), 76 GPR_OFFSET_NAME(19), 77 GPR_OFFSET_NAME(20), 78 GPR_OFFSET_NAME(21), 79 GPR_OFFSET_NAME(22), 80 GPR_OFFSET_NAME(23), 81 GPR_OFFSET_NAME(24), 82 GPR_OFFSET_NAME(25), 83 GPR_OFFSET_NAME(26), 84 GPR_OFFSET_NAME(27), 85 GPR_OFFSET_NAME(28), 86 GPR_OFFSET_NAME(29), 87 GPR_OFFSET_NAME(30), 88 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])}, 89 REG_OFFSET_NAME(sp), 90 REG_OFFSET_NAME(pc), 91 REG_OFFSET_NAME(pstate), 92 REG_OFFSET_END, 93 }; 94 95 /** 96 * regs_query_register_offset() - query register offset from its name 97 * @name: the name of a register 98 * 99 * regs_query_register_offset() returns the offset of a register in struct 100 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 101 */ 102 int regs_query_register_offset(const char *name) 103 { 104 const struct pt_regs_offset *roff; 105 106 for (roff = regoffset_table; roff->name != NULL; roff++) 107 if (!strcmp(roff->name, name)) 108 return roff->offset; 109 return -EINVAL; 110 } 111 112 /** 113 * regs_within_kernel_stack() - check the address in the stack 114 * @regs: pt_regs which contains kernel stack pointer. 115 * @addr: address which is checked. 116 * 117 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 118 * If @addr is within the kernel stack, it returns true. If not, returns false. 119 */ 120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 121 { 122 return ((addr & ~(THREAD_SIZE - 1)) == 123 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) || 124 on_irq_stack(addr, sizeof(unsigned long)); 125 } 126 127 /** 128 * regs_get_kernel_stack_nth() - get Nth entry of the stack 129 * @regs: pt_regs which contains kernel stack pointer. 130 * @n: stack entry number. 131 * 132 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 133 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 134 * this returns 0. 135 */ 136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 137 { 138 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 139 140 addr += n; 141 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 142 return *addr; 143 else 144 return 0; 145 } 146 147 /* 148 * TODO: does not yet catch signals sent when the child dies. 149 * in exit.c or in signal.c. 150 */ 151 152 /* 153 * Called by kernel/ptrace.c when detaching.. 154 */ 155 void ptrace_disable(struct task_struct *child) 156 { 157 /* 158 * This would be better off in core code, but PTRACE_DETACH has 159 * grown its fair share of arch-specific worts and changing it 160 * is likely to cause regressions on obscure architectures. 161 */ 162 user_disable_single_step(child); 163 } 164 165 #ifdef CONFIG_HAVE_HW_BREAKPOINT 166 /* 167 * Handle hitting a HW-breakpoint. 168 */ 169 static void ptrace_hbptriggered(struct perf_event *bp, 170 struct perf_sample_data *data, 171 struct pt_regs *regs) 172 { 173 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 174 const char *desc = "Hardware breakpoint trap (ptrace)"; 175 176 #ifdef CONFIG_COMPAT 177 if (is_compat_task()) { 178 int si_errno = 0; 179 int i; 180 181 for (i = 0; i < ARM_MAX_BRP; ++i) { 182 if (current->thread.debug.hbp_break[i] == bp) { 183 si_errno = (i << 1) + 1; 184 break; 185 } 186 } 187 188 for (i = 0; i < ARM_MAX_WRP; ++i) { 189 if (current->thread.debug.hbp_watch[i] == bp) { 190 si_errno = -((i << 1) + 1); 191 break; 192 } 193 } 194 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger, 195 desc); 196 return; 197 } 198 #endif 199 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc); 200 } 201 202 /* 203 * Unregister breakpoints from this task and reset the pointers in 204 * the thread_struct. 205 */ 206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 207 { 208 int i; 209 struct thread_struct *t = &tsk->thread; 210 211 for (i = 0; i < ARM_MAX_BRP; i++) { 212 if (t->debug.hbp_break[i]) { 213 unregister_hw_breakpoint(t->debug.hbp_break[i]); 214 t->debug.hbp_break[i] = NULL; 215 } 216 } 217 218 for (i = 0; i < ARM_MAX_WRP; i++) { 219 if (t->debug.hbp_watch[i]) { 220 unregister_hw_breakpoint(t->debug.hbp_watch[i]); 221 t->debug.hbp_watch[i] = NULL; 222 } 223 } 224 } 225 226 void ptrace_hw_copy_thread(struct task_struct *tsk) 227 { 228 memset(&tsk->thread.debug, 0, sizeof(struct debug_info)); 229 } 230 231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type, 232 struct task_struct *tsk, 233 unsigned long idx) 234 { 235 struct perf_event *bp = ERR_PTR(-EINVAL); 236 237 switch (note_type) { 238 case NT_ARM_HW_BREAK: 239 if (idx >= ARM_MAX_BRP) 240 goto out; 241 idx = array_index_nospec(idx, ARM_MAX_BRP); 242 bp = tsk->thread.debug.hbp_break[idx]; 243 break; 244 case NT_ARM_HW_WATCH: 245 if (idx >= ARM_MAX_WRP) 246 goto out; 247 idx = array_index_nospec(idx, ARM_MAX_WRP); 248 bp = tsk->thread.debug.hbp_watch[idx]; 249 break; 250 } 251 252 out: 253 return bp; 254 } 255 256 static int ptrace_hbp_set_event(unsigned int note_type, 257 struct task_struct *tsk, 258 unsigned long idx, 259 struct perf_event *bp) 260 { 261 int err = -EINVAL; 262 263 switch (note_type) { 264 case NT_ARM_HW_BREAK: 265 if (idx >= ARM_MAX_BRP) 266 goto out; 267 idx = array_index_nospec(idx, ARM_MAX_BRP); 268 tsk->thread.debug.hbp_break[idx] = bp; 269 err = 0; 270 break; 271 case NT_ARM_HW_WATCH: 272 if (idx >= ARM_MAX_WRP) 273 goto out; 274 idx = array_index_nospec(idx, ARM_MAX_WRP); 275 tsk->thread.debug.hbp_watch[idx] = bp; 276 err = 0; 277 break; 278 } 279 280 out: 281 return err; 282 } 283 284 static struct perf_event *ptrace_hbp_create(unsigned int note_type, 285 struct task_struct *tsk, 286 unsigned long idx) 287 { 288 struct perf_event *bp; 289 struct perf_event_attr attr; 290 int err, type; 291 292 switch (note_type) { 293 case NT_ARM_HW_BREAK: 294 type = HW_BREAKPOINT_X; 295 break; 296 case NT_ARM_HW_WATCH: 297 type = HW_BREAKPOINT_RW; 298 break; 299 default: 300 return ERR_PTR(-EINVAL); 301 } 302 303 ptrace_breakpoint_init(&attr); 304 305 /* 306 * Initialise fields to sane defaults 307 * (i.e. values that will pass validation). 308 */ 309 attr.bp_addr = 0; 310 attr.bp_len = HW_BREAKPOINT_LEN_4; 311 attr.bp_type = type; 312 attr.disabled = 1; 313 314 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk); 315 if (IS_ERR(bp)) 316 return bp; 317 318 err = ptrace_hbp_set_event(note_type, tsk, idx, bp); 319 if (err) 320 return ERR_PTR(err); 321 322 return bp; 323 } 324 325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type, 326 struct arch_hw_breakpoint_ctrl ctrl, 327 struct perf_event_attr *attr) 328 { 329 int err, len, type, offset, disabled = !ctrl.enabled; 330 331 attr->disabled = disabled; 332 if (disabled) 333 return 0; 334 335 err = arch_bp_generic_fields(ctrl, &len, &type, &offset); 336 if (err) 337 return err; 338 339 switch (note_type) { 340 case NT_ARM_HW_BREAK: 341 if ((type & HW_BREAKPOINT_X) != type) 342 return -EINVAL; 343 break; 344 case NT_ARM_HW_WATCH: 345 if ((type & HW_BREAKPOINT_RW) != type) 346 return -EINVAL; 347 break; 348 default: 349 return -EINVAL; 350 } 351 352 attr->bp_len = len; 353 attr->bp_type = type; 354 attr->bp_addr += offset; 355 356 return 0; 357 } 358 359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info) 360 { 361 u8 num; 362 u32 reg = 0; 363 364 switch (note_type) { 365 case NT_ARM_HW_BREAK: 366 num = hw_breakpoint_slots(TYPE_INST); 367 break; 368 case NT_ARM_HW_WATCH: 369 num = hw_breakpoint_slots(TYPE_DATA); 370 break; 371 default: 372 return -EINVAL; 373 } 374 375 reg |= debug_monitors_arch(); 376 reg <<= 8; 377 reg |= num; 378 379 *info = reg; 380 return 0; 381 } 382 383 static int ptrace_hbp_get_ctrl(unsigned int note_type, 384 struct task_struct *tsk, 385 unsigned long idx, 386 u32 *ctrl) 387 { 388 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 389 390 if (IS_ERR(bp)) 391 return PTR_ERR(bp); 392 393 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0; 394 return 0; 395 } 396 397 static int ptrace_hbp_get_addr(unsigned int note_type, 398 struct task_struct *tsk, 399 unsigned long idx, 400 u64 *addr) 401 { 402 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 403 404 if (IS_ERR(bp)) 405 return PTR_ERR(bp); 406 407 *addr = bp ? counter_arch_bp(bp)->address : 0; 408 return 0; 409 } 410 411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type, 412 struct task_struct *tsk, 413 unsigned long idx) 414 { 415 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 416 417 if (!bp) 418 bp = ptrace_hbp_create(note_type, tsk, idx); 419 420 return bp; 421 } 422 423 static int ptrace_hbp_set_ctrl(unsigned int note_type, 424 struct task_struct *tsk, 425 unsigned long idx, 426 u32 uctrl) 427 { 428 int err; 429 struct perf_event *bp; 430 struct perf_event_attr attr; 431 struct arch_hw_breakpoint_ctrl ctrl; 432 433 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx); 434 if (IS_ERR(bp)) { 435 err = PTR_ERR(bp); 436 return err; 437 } 438 439 attr = bp->attr; 440 decode_ctrl_reg(uctrl, &ctrl); 441 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr); 442 if (err) 443 return err; 444 445 return modify_user_hw_breakpoint(bp, &attr); 446 } 447 448 static int ptrace_hbp_set_addr(unsigned int note_type, 449 struct task_struct *tsk, 450 unsigned long idx, 451 u64 addr) 452 { 453 int err; 454 struct perf_event *bp; 455 struct perf_event_attr attr; 456 457 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx); 458 if (IS_ERR(bp)) { 459 err = PTR_ERR(bp); 460 return err; 461 } 462 463 attr = bp->attr; 464 attr.bp_addr = addr; 465 err = modify_user_hw_breakpoint(bp, &attr); 466 return err; 467 } 468 469 #define PTRACE_HBP_ADDR_SZ sizeof(u64) 470 #define PTRACE_HBP_CTRL_SZ sizeof(u32) 471 #define PTRACE_HBP_PAD_SZ sizeof(u32) 472 473 static int hw_break_get(struct task_struct *target, 474 const struct user_regset *regset, 475 struct membuf to) 476 { 477 unsigned int note_type = regset->core_note_type; 478 int ret, idx = 0; 479 u32 info, ctrl; 480 u64 addr; 481 482 /* Resource info */ 483 ret = ptrace_hbp_get_resource_info(note_type, &info); 484 if (ret) 485 return ret; 486 487 membuf_write(&to, &info, sizeof(info)); 488 membuf_zero(&to, sizeof(u32)); 489 /* (address, ctrl) registers */ 490 while (to.left) { 491 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr); 492 if (ret) 493 return ret; 494 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl); 495 if (ret) 496 return ret; 497 membuf_store(&to, addr); 498 membuf_store(&to, ctrl); 499 membuf_zero(&to, sizeof(u32)); 500 idx++; 501 } 502 return 0; 503 } 504 505 static int hw_break_set(struct task_struct *target, 506 const struct user_regset *regset, 507 unsigned int pos, unsigned int count, 508 const void *kbuf, const void __user *ubuf) 509 { 510 unsigned int note_type = regset->core_note_type; 511 int ret, idx = 0, offset, limit; 512 u32 ctrl; 513 u64 addr; 514 515 /* Resource info and pad */ 516 offset = offsetof(struct user_hwdebug_state, dbg_regs); 517 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset); 518 519 /* (address, ctrl) registers */ 520 limit = regset->n * regset->size; 521 while (count && offset < limit) { 522 if (count < PTRACE_HBP_ADDR_SZ) 523 return -EINVAL; 524 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr, 525 offset, offset + PTRACE_HBP_ADDR_SZ); 526 if (ret) 527 return ret; 528 ret = ptrace_hbp_set_addr(note_type, target, idx, addr); 529 if (ret) 530 return ret; 531 offset += PTRACE_HBP_ADDR_SZ; 532 533 if (!count) 534 break; 535 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 536 offset, offset + PTRACE_HBP_CTRL_SZ); 537 if (ret) 538 return ret; 539 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl); 540 if (ret) 541 return ret; 542 offset += PTRACE_HBP_CTRL_SZ; 543 544 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 545 offset, offset + PTRACE_HBP_PAD_SZ); 546 offset += PTRACE_HBP_PAD_SZ; 547 idx++; 548 } 549 550 return 0; 551 } 552 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 553 554 static int gpr_get(struct task_struct *target, 555 const struct user_regset *regset, 556 struct membuf to) 557 { 558 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs; 559 return membuf_write(&to, uregs, sizeof(*uregs)); 560 } 561 562 static int gpr_set(struct task_struct *target, const struct user_regset *regset, 563 unsigned int pos, unsigned int count, 564 const void *kbuf, const void __user *ubuf) 565 { 566 int ret; 567 struct user_pt_regs newregs = task_pt_regs(target)->user_regs; 568 569 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1); 570 if (ret) 571 return ret; 572 573 if (!valid_user_regs(&newregs, target)) 574 return -EINVAL; 575 576 task_pt_regs(target)->user_regs = newregs; 577 return 0; 578 } 579 580 static int fpr_active(struct task_struct *target, const struct user_regset *regset) 581 { 582 if (!system_supports_fpsimd()) 583 return -ENODEV; 584 return regset->n; 585 } 586 587 /* 588 * TODO: update fp accessors for lazy context switching (sync/flush hwstate) 589 */ 590 static int __fpr_get(struct task_struct *target, 591 const struct user_regset *regset, 592 struct membuf to) 593 { 594 struct user_fpsimd_state *uregs; 595 596 sve_sync_to_fpsimd(target); 597 598 uregs = &target->thread.uw.fpsimd_state; 599 600 return membuf_write(&to, uregs, sizeof(*uregs)); 601 } 602 603 static int fpr_get(struct task_struct *target, const struct user_regset *regset, 604 struct membuf to) 605 { 606 if (!system_supports_fpsimd()) 607 return -EINVAL; 608 609 if (target == current) 610 fpsimd_preserve_current_state(); 611 612 return __fpr_get(target, regset, to); 613 } 614 615 static int __fpr_set(struct task_struct *target, 616 const struct user_regset *regset, 617 unsigned int pos, unsigned int count, 618 const void *kbuf, const void __user *ubuf, 619 unsigned int start_pos) 620 { 621 int ret; 622 struct user_fpsimd_state newstate; 623 624 /* 625 * Ensure target->thread.uw.fpsimd_state is up to date, so that a 626 * short copyin can't resurrect stale data. 627 */ 628 sve_sync_to_fpsimd(target); 629 630 newstate = target->thread.uw.fpsimd_state; 631 632 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate, 633 start_pos, start_pos + sizeof(newstate)); 634 if (ret) 635 return ret; 636 637 target->thread.uw.fpsimd_state = newstate; 638 639 return ret; 640 } 641 642 static int fpr_set(struct task_struct *target, const struct user_regset *regset, 643 unsigned int pos, unsigned int count, 644 const void *kbuf, const void __user *ubuf) 645 { 646 int ret; 647 648 if (!system_supports_fpsimd()) 649 return -EINVAL; 650 651 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0); 652 if (ret) 653 return ret; 654 655 sve_sync_from_fpsimd_zeropad(target); 656 fpsimd_flush_task_state(target); 657 658 return ret; 659 } 660 661 static int tls_get(struct task_struct *target, const struct user_regset *regset, 662 struct membuf to) 663 { 664 int ret; 665 666 if (target == current) 667 tls_preserve_current_state(); 668 669 ret = membuf_store(&to, target->thread.uw.tp_value); 670 if (system_supports_tpidr2()) 671 ret = membuf_store(&to, target->thread.tpidr2_el0); 672 else 673 ret = membuf_zero(&to, sizeof(u64)); 674 675 return ret; 676 } 677 678 static int tls_set(struct task_struct *target, const struct user_regset *regset, 679 unsigned int pos, unsigned int count, 680 const void *kbuf, const void __user *ubuf) 681 { 682 int ret; 683 unsigned long tls[2]; 684 685 tls[0] = target->thread.uw.tp_value; 686 if (system_supports_tpidr2()) 687 tls[1] = target->thread.tpidr2_el0; 688 689 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count); 690 if (ret) 691 return ret; 692 693 target->thread.uw.tp_value = tls[0]; 694 if (system_supports_tpidr2()) 695 target->thread.tpidr2_el0 = tls[1]; 696 697 return ret; 698 } 699 700 static int system_call_get(struct task_struct *target, 701 const struct user_regset *regset, 702 struct membuf to) 703 { 704 return membuf_store(&to, task_pt_regs(target)->syscallno); 705 } 706 707 static int system_call_set(struct task_struct *target, 708 const struct user_regset *regset, 709 unsigned int pos, unsigned int count, 710 const void *kbuf, const void __user *ubuf) 711 { 712 int syscallno = task_pt_regs(target)->syscallno; 713 int ret; 714 715 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1); 716 if (ret) 717 return ret; 718 719 task_pt_regs(target)->syscallno = syscallno; 720 return ret; 721 } 722 723 #ifdef CONFIG_ARM64_SVE 724 725 static void sve_init_header_from_task(struct user_sve_header *header, 726 struct task_struct *target, 727 enum vec_type type) 728 { 729 unsigned int vq; 730 bool active; 731 bool fpsimd_only; 732 enum vec_type task_type; 733 734 memset(header, 0, sizeof(*header)); 735 736 /* Check if the requested registers are active for the task */ 737 if (thread_sm_enabled(&target->thread)) 738 task_type = ARM64_VEC_SME; 739 else 740 task_type = ARM64_VEC_SVE; 741 active = (task_type == type); 742 743 switch (type) { 744 case ARM64_VEC_SVE: 745 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT)) 746 header->flags |= SVE_PT_VL_INHERIT; 747 fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE); 748 break; 749 case ARM64_VEC_SME: 750 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT)) 751 header->flags |= SVE_PT_VL_INHERIT; 752 fpsimd_only = false; 753 break; 754 default: 755 WARN_ON_ONCE(1); 756 return; 757 } 758 759 if (active) { 760 if (fpsimd_only) { 761 header->flags |= SVE_PT_REGS_FPSIMD; 762 } else { 763 header->flags |= SVE_PT_REGS_SVE; 764 } 765 } 766 767 header->vl = task_get_vl(target, type); 768 vq = sve_vq_from_vl(header->vl); 769 770 header->max_vl = vec_max_vl(type); 771 header->size = SVE_PT_SIZE(vq, header->flags); 772 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl), 773 SVE_PT_REGS_SVE); 774 } 775 776 static unsigned int sve_size_from_header(struct user_sve_header const *header) 777 { 778 return ALIGN(header->size, SVE_VQ_BYTES); 779 } 780 781 static int sve_get_common(struct task_struct *target, 782 const struct user_regset *regset, 783 struct membuf to, 784 enum vec_type type) 785 { 786 struct user_sve_header header; 787 unsigned int vq; 788 unsigned long start, end; 789 790 /* Header */ 791 sve_init_header_from_task(&header, target, type); 792 vq = sve_vq_from_vl(header.vl); 793 794 membuf_write(&to, &header, sizeof(header)); 795 796 if (target == current) 797 fpsimd_preserve_current_state(); 798 799 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header)); 800 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header)); 801 802 switch ((header.flags & SVE_PT_REGS_MASK)) { 803 case SVE_PT_REGS_FPSIMD: 804 return __fpr_get(target, regset, to); 805 806 case SVE_PT_REGS_SVE: 807 start = SVE_PT_SVE_OFFSET; 808 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq); 809 membuf_write(&to, target->thread.sve_state, end - start); 810 811 start = end; 812 end = SVE_PT_SVE_FPSR_OFFSET(vq); 813 membuf_zero(&to, end - start); 814 815 /* 816 * Copy fpsr, and fpcr which must follow contiguously in 817 * struct fpsimd_state: 818 */ 819 start = end; 820 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE; 821 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, 822 end - start); 823 824 start = end; 825 end = sve_size_from_header(&header); 826 return membuf_zero(&to, end - start); 827 828 default: 829 return 0; 830 } 831 } 832 833 static int sve_get(struct task_struct *target, 834 const struct user_regset *regset, 835 struct membuf to) 836 { 837 if (!system_supports_sve()) 838 return -EINVAL; 839 840 return sve_get_common(target, regset, to, ARM64_VEC_SVE); 841 } 842 843 static int sve_set_common(struct task_struct *target, 844 const struct user_regset *regset, 845 unsigned int pos, unsigned int count, 846 const void *kbuf, const void __user *ubuf, 847 enum vec_type type) 848 { 849 int ret; 850 struct user_sve_header header; 851 unsigned int vq; 852 unsigned long start, end; 853 854 /* Header */ 855 if (count < sizeof(header)) 856 return -EINVAL; 857 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header, 858 0, sizeof(header)); 859 if (ret) 860 goto out; 861 862 /* 863 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by 864 * vec_set_vector_length(), which will also validate them for us: 865 */ 866 ret = vec_set_vector_length(target, type, header.vl, 867 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16); 868 if (ret) 869 goto out; 870 871 /* Actual VL set may be less than the user asked for: */ 872 vq = sve_vq_from_vl(task_get_vl(target, type)); 873 874 /* Enter/exit streaming mode */ 875 if (system_supports_sme()) { 876 u64 old_svcr = target->thread.svcr; 877 878 switch (type) { 879 case ARM64_VEC_SVE: 880 target->thread.svcr &= ~SVCR_SM_MASK; 881 break; 882 case ARM64_VEC_SME: 883 target->thread.svcr |= SVCR_SM_MASK; 884 885 /* 886 * Disable traps and ensure there is SME storage but 887 * preserve any currently set values in ZA/ZT. 888 */ 889 sme_alloc(target, false); 890 set_tsk_thread_flag(target, TIF_SME); 891 break; 892 default: 893 WARN_ON_ONCE(1); 894 return -EINVAL; 895 } 896 897 /* 898 * If we switched then invalidate any existing SVE 899 * state and ensure there's storage. 900 */ 901 if (target->thread.svcr != old_svcr) 902 sve_alloc(target, true); 903 } 904 905 /* Registers: FPSIMD-only case */ 906 907 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header)); 908 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) { 909 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 910 SVE_PT_FPSIMD_OFFSET); 911 clear_tsk_thread_flag(target, TIF_SVE); 912 target->thread.fp_type = FP_STATE_FPSIMD; 913 goto out; 914 } 915 916 /* 917 * Otherwise: no registers or full SVE case. For backwards 918 * compatibility reasons we treat empty flags as SVE registers. 919 */ 920 921 /* 922 * If setting a different VL from the requested VL and there is 923 * register data, the data layout will be wrong: don't even 924 * try to set the registers in this case. 925 */ 926 if (count && vq != sve_vq_from_vl(header.vl)) { 927 ret = -EIO; 928 goto out; 929 } 930 931 sve_alloc(target, true); 932 if (!target->thread.sve_state) { 933 ret = -ENOMEM; 934 clear_tsk_thread_flag(target, TIF_SVE); 935 target->thread.fp_type = FP_STATE_FPSIMD; 936 goto out; 937 } 938 939 /* 940 * Ensure target->thread.sve_state is up to date with target's 941 * FPSIMD regs, so that a short copyin leaves trailing 942 * registers unmodified. Only enable SVE if we are 943 * configuring normal SVE, a system with streaming SVE may not 944 * have normal SVE. 945 */ 946 fpsimd_sync_to_sve(target); 947 if (type == ARM64_VEC_SVE) 948 set_tsk_thread_flag(target, TIF_SVE); 949 target->thread.fp_type = FP_STATE_SVE; 950 951 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header)); 952 start = SVE_PT_SVE_OFFSET; 953 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq); 954 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 955 target->thread.sve_state, 956 start, end); 957 if (ret) 958 goto out; 959 960 start = end; 961 end = SVE_PT_SVE_FPSR_OFFSET(vq); 962 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end); 963 964 /* 965 * Copy fpsr, and fpcr which must follow contiguously in 966 * struct fpsimd_state: 967 */ 968 start = end; 969 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE; 970 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 971 &target->thread.uw.fpsimd_state.fpsr, 972 start, end); 973 974 out: 975 fpsimd_flush_task_state(target); 976 return ret; 977 } 978 979 static int sve_set(struct task_struct *target, 980 const struct user_regset *regset, 981 unsigned int pos, unsigned int count, 982 const void *kbuf, const void __user *ubuf) 983 { 984 if (!system_supports_sve()) 985 return -EINVAL; 986 987 return sve_set_common(target, regset, pos, count, kbuf, ubuf, 988 ARM64_VEC_SVE); 989 } 990 991 #endif /* CONFIG_ARM64_SVE */ 992 993 #ifdef CONFIG_ARM64_SME 994 995 static int ssve_get(struct task_struct *target, 996 const struct user_regset *regset, 997 struct membuf to) 998 { 999 if (!system_supports_sme()) 1000 return -EINVAL; 1001 1002 return sve_get_common(target, regset, to, ARM64_VEC_SME); 1003 } 1004 1005 static int ssve_set(struct task_struct *target, 1006 const struct user_regset *regset, 1007 unsigned int pos, unsigned int count, 1008 const void *kbuf, const void __user *ubuf) 1009 { 1010 if (!system_supports_sme()) 1011 return -EINVAL; 1012 1013 return sve_set_common(target, regset, pos, count, kbuf, ubuf, 1014 ARM64_VEC_SME); 1015 } 1016 1017 static int za_get(struct task_struct *target, 1018 const struct user_regset *regset, 1019 struct membuf to) 1020 { 1021 struct user_za_header header; 1022 unsigned int vq; 1023 unsigned long start, end; 1024 1025 if (!system_supports_sme()) 1026 return -EINVAL; 1027 1028 /* Header */ 1029 memset(&header, 0, sizeof(header)); 1030 1031 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT)) 1032 header.flags |= ZA_PT_VL_INHERIT; 1033 1034 header.vl = task_get_sme_vl(target); 1035 vq = sve_vq_from_vl(header.vl); 1036 header.max_vl = sme_max_vl(); 1037 header.max_size = ZA_PT_SIZE(vq); 1038 1039 /* If ZA is not active there is only the header */ 1040 if (thread_za_enabled(&target->thread)) 1041 header.size = ZA_PT_SIZE(vq); 1042 else 1043 header.size = ZA_PT_ZA_OFFSET; 1044 1045 membuf_write(&to, &header, sizeof(header)); 1046 1047 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header)); 1048 end = ZA_PT_ZA_OFFSET; 1049 1050 if (target == current) 1051 fpsimd_preserve_current_state(); 1052 1053 /* Any register data to include? */ 1054 if (thread_za_enabled(&target->thread)) { 1055 start = end; 1056 end = ZA_PT_SIZE(vq); 1057 membuf_write(&to, target->thread.sme_state, end - start); 1058 } 1059 1060 /* Zero any trailing padding */ 1061 start = end; 1062 end = ALIGN(header.size, SVE_VQ_BYTES); 1063 return membuf_zero(&to, end - start); 1064 } 1065 1066 static int za_set(struct task_struct *target, 1067 const struct user_regset *regset, 1068 unsigned int pos, unsigned int count, 1069 const void *kbuf, const void __user *ubuf) 1070 { 1071 int ret; 1072 struct user_za_header header; 1073 unsigned int vq; 1074 unsigned long start, end; 1075 1076 if (!system_supports_sme()) 1077 return -EINVAL; 1078 1079 /* Header */ 1080 if (count < sizeof(header)) 1081 return -EINVAL; 1082 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header, 1083 0, sizeof(header)); 1084 if (ret) 1085 goto out; 1086 1087 /* 1088 * All current ZA_PT_* flags are consumed by 1089 * vec_set_vector_length(), which will also validate them for 1090 * us: 1091 */ 1092 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl, 1093 ((unsigned long)header.flags) << 16); 1094 if (ret) 1095 goto out; 1096 1097 /* Actual VL set may be less than the user asked for: */ 1098 vq = sve_vq_from_vl(task_get_sme_vl(target)); 1099 1100 /* Ensure there is some SVE storage for streaming mode */ 1101 if (!target->thread.sve_state) { 1102 sve_alloc(target, false); 1103 if (!target->thread.sve_state) { 1104 ret = -ENOMEM; 1105 goto out; 1106 } 1107 } 1108 1109 /* Allocate/reinit ZA storage */ 1110 sme_alloc(target, true); 1111 if (!target->thread.sme_state) { 1112 ret = -ENOMEM; 1113 goto out; 1114 } 1115 1116 /* If there is no data then disable ZA */ 1117 if (!count) { 1118 target->thread.svcr &= ~SVCR_ZA_MASK; 1119 goto out; 1120 } 1121 1122 /* 1123 * If setting a different VL from the requested VL and there is 1124 * register data, the data layout will be wrong: don't even 1125 * try to set the registers in this case. 1126 */ 1127 if (vq != sve_vq_from_vl(header.vl)) { 1128 ret = -EIO; 1129 goto out; 1130 } 1131 1132 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header)); 1133 start = ZA_PT_ZA_OFFSET; 1134 end = ZA_PT_SIZE(vq); 1135 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1136 target->thread.sme_state, 1137 start, end); 1138 if (ret) 1139 goto out; 1140 1141 /* Mark ZA as active and let userspace use it */ 1142 set_tsk_thread_flag(target, TIF_SME); 1143 target->thread.svcr |= SVCR_ZA_MASK; 1144 1145 out: 1146 fpsimd_flush_task_state(target); 1147 return ret; 1148 } 1149 1150 static int zt_get(struct task_struct *target, 1151 const struct user_regset *regset, 1152 struct membuf to) 1153 { 1154 if (!system_supports_sme2()) 1155 return -EINVAL; 1156 1157 /* 1158 * If PSTATE.ZA is not set then ZT will be zeroed when it is 1159 * enabled so report the current register value as zero. 1160 */ 1161 if (thread_za_enabled(&target->thread)) 1162 membuf_write(&to, thread_zt_state(&target->thread), 1163 ZT_SIG_REG_BYTES); 1164 else 1165 membuf_zero(&to, ZT_SIG_REG_BYTES); 1166 1167 return 0; 1168 } 1169 1170 static int zt_set(struct task_struct *target, 1171 const struct user_regset *regset, 1172 unsigned int pos, unsigned int count, 1173 const void *kbuf, const void __user *ubuf) 1174 { 1175 int ret; 1176 1177 if (!system_supports_sme2()) 1178 return -EINVAL; 1179 1180 /* Ensure SVE storage in case this is first use of SME */ 1181 sve_alloc(target, false); 1182 if (!target->thread.sve_state) 1183 return -ENOMEM; 1184 1185 if (!thread_za_enabled(&target->thread)) { 1186 sme_alloc(target, true); 1187 if (!target->thread.sme_state) 1188 return -ENOMEM; 1189 } 1190 1191 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1192 thread_zt_state(&target->thread), 1193 0, ZT_SIG_REG_BYTES); 1194 if (ret == 0) { 1195 target->thread.svcr |= SVCR_ZA_MASK; 1196 set_tsk_thread_flag(target, TIF_SME); 1197 } 1198 1199 fpsimd_flush_task_state(target); 1200 1201 return ret; 1202 } 1203 1204 #endif /* CONFIG_ARM64_SME */ 1205 1206 #ifdef CONFIG_ARM64_PTR_AUTH 1207 static int pac_mask_get(struct task_struct *target, 1208 const struct user_regset *regset, 1209 struct membuf to) 1210 { 1211 /* 1212 * The PAC bits can differ across data and instruction pointers 1213 * depending on TCR_EL1.TBID*, which we may make use of in future, so 1214 * we expose separate masks. 1215 */ 1216 unsigned long mask = ptrauth_user_pac_mask(); 1217 struct user_pac_mask uregs = { 1218 .data_mask = mask, 1219 .insn_mask = mask, 1220 }; 1221 1222 if (!system_supports_address_auth()) 1223 return -EINVAL; 1224 1225 return membuf_write(&to, &uregs, sizeof(uregs)); 1226 } 1227 1228 static int pac_enabled_keys_get(struct task_struct *target, 1229 const struct user_regset *regset, 1230 struct membuf to) 1231 { 1232 long enabled_keys = ptrauth_get_enabled_keys(target); 1233 1234 if (IS_ERR_VALUE(enabled_keys)) 1235 return enabled_keys; 1236 1237 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys)); 1238 } 1239 1240 static int pac_enabled_keys_set(struct task_struct *target, 1241 const struct user_regset *regset, 1242 unsigned int pos, unsigned int count, 1243 const void *kbuf, const void __user *ubuf) 1244 { 1245 int ret; 1246 long enabled_keys = ptrauth_get_enabled_keys(target); 1247 1248 if (IS_ERR_VALUE(enabled_keys)) 1249 return enabled_keys; 1250 1251 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0, 1252 sizeof(long)); 1253 if (ret) 1254 return ret; 1255 1256 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK, 1257 enabled_keys); 1258 } 1259 1260 #ifdef CONFIG_CHECKPOINT_RESTORE 1261 static __uint128_t pac_key_to_user(const struct ptrauth_key *key) 1262 { 1263 return (__uint128_t)key->hi << 64 | key->lo; 1264 } 1265 1266 static struct ptrauth_key pac_key_from_user(__uint128_t ukey) 1267 { 1268 struct ptrauth_key key = { 1269 .lo = (unsigned long)ukey, 1270 .hi = (unsigned long)(ukey >> 64), 1271 }; 1272 1273 return key; 1274 } 1275 1276 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys, 1277 const struct ptrauth_keys_user *keys) 1278 { 1279 ukeys->apiakey = pac_key_to_user(&keys->apia); 1280 ukeys->apibkey = pac_key_to_user(&keys->apib); 1281 ukeys->apdakey = pac_key_to_user(&keys->apda); 1282 ukeys->apdbkey = pac_key_to_user(&keys->apdb); 1283 } 1284 1285 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys, 1286 const struct user_pac_address_keys *ukeys) 1287 { 1288 keys->apia = pac_key_from_user(ukeys->apiakey); 1289 keys->apib = pac_key_from_user(ukeys->apibkey); 1290 keys->apda = pac_key_from_user(ukeys->apdakey); 1291 keys->apdb = pac_key_from_user(ukeys->apdbkey); 1292 } 1293 1294 static int pac_address_keys_get(struct task_struct *target, 1295 const struct user_regset *regset, 1296 struct membuf to) 1297 { 1298 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1299 struct user_pac_address_keys user_keys; 1300 1301 if (!system_supports_address_auth()) 1302 return -EINVAL; 1303 1304 pac_address_keys_to_user(&user_keys, keys); 1305 1306 return membuf_write(&to, &user_keys, sizeof(user_keys)); 1307 } 1308 1309 static int pac_address_keys_set(struct task_struct *target, 1310 const struct user_regset *regset, 1311 unsigned int pos, unsigned int count, 1312 const void *kbuf, const void __user *ubuf) 1313 { 1314 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1315 struct user_pac_address_keys user_keys; 1316 int ret; 1317 1318 if (!system_supports_address_auth()) 1319 return -EINVAL; 1320 1321 pac_address_keys_to_user(&user_keys, keys); 1322 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1323 &user_keys, 0, -1); 1324 if (ret) 1325 return ret; 1326 pac_address_keys_from_user(keys, &user_keys); 1327 1328 return 0; 1329 } 1330 1331 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys, 1332 const struct ptrauth_keys_user *keys) 1333 { 1334 ukeys->apgakey = pac_key_to_user(&keys->apga); 1335 } 1336 1337 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys, 1338 const struct user_pac_generic_keys *ukeys) 1339 { 1340 keys->apga = pac_key_from_user(ukeys->apgakey); 1341 } 1342 1343 static int pac_generic_keys_get(struct task_struct *target, 1344 const struct user_regset *regset, 1345 struct membuf to) 1346 { 1347 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1348 struct user_pac_generic_keys user_keys; 1349 1350 if (!system_supports_generic_auth()) 1351 return -EINVAL; 1352 1353 pac_generic_keys_to_user(&user_keys, keys); 1354 1355 return membuf_write(&to, &user_keys, sizeof(user_keys)); 1356 } 1357 1358 static int pac_generic_keys_set(struct task_struct *target, 1359 const struct user_regset *regset, 1360 unsigned int pos, unsigned int count, 1361 const void *kbuf, const void __user *ubuf) 1362 { 1363 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1364 struct user_pac_generic_keys user_keys; 1365 int ret; 1366 1367 if (!system_supports_generic_auth()) 1368 return -EINVAL; 1369 1370 pac_generic_keys_to_user(&user_keys, keys); 1371 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1372 &user_keys, 0, -1); 1373 if (ret) 1374 return ret; 1375 pac_generic_keys_from_user(keys, &user_keys); 1376 1377 return 0; 1378 } 1379 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1380 #endif /* CONFIG_ARM64_PTR_AUTH */ 1381 1382 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1383 static int tagged_addr_ctrl_get(struct task_struct *target, 1384 const struct user_regset *regset, 1385 struct membuf to) 1386 { 1387 long ctrl = get_tagged_addr_ctrl(target); 1388 1389 if (IS_ERR_VALUE(ctrl)) 1390 return ctrl; 1391 1392 return membuf_write(&to, &ctrl, sizeof(ctrl)); 1393 } 1394 1395 static int tagged_addr_ctrl_set(struct task_struct *target, const struct 1396 user_regset *regset, unsigned int pos, 1397 unsigned int count, const void *kbuf, const 1398 void __user *ubuf) 1399 { 1400 int ret; 1401 long ctrl; 1402 1403 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1); 1404 if (ret) 1405 return ret; 1406 1407 return set_tagged_addr_ctrl(target, ctrl); 1408 } 1409 #endif 1410 1411 enum aarch64_regset { 1412 REGSET_GPR, 1413 REGSET_FPR, 1414 REGSET_TLS, 1415 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1416 REGSET_HW_BREAK, 1417 REGSET_HW_WATCH, 1418 #endif 1419 REGSET_SYSTEM_CALL, 1420 #ifdef CONFIG_ARM64_SVE 1421 REGSET_SVE, 1422 #endif 1423 #ifdef CONFIG_ARM64_SME 1424 REGSET_SSVE, 1425 REGSET_ZA, 1426 REGSET_ZT, 1427 #endif 1428 #ifdef CONFIG_ARM64_PTR_AUTH 1429 REGSET_PAC_MASK, 1430 REGSET_PAC_ENABLED_KEYS, 1431 #ifdef CONFIG_CHECKPOINT_RESTORE 1432 REGSET_PACA_KEYS, 1433 REGSET_PACG_KEYS, 1434 #endif 1435 #endif 1436 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1437 REGSET_TAGGED_ADDR_CTRL, 1438 #endif 1439 }; 1440 1441 static const struct user_regset aarch64_regsets[] = { 1442 [REGSET_GPR] = { 1443 .core_note_type = NT_PRSTATUS, 1444 .n = sizeof(struct user_pt_regs) / sizeof(u64), 1445 .size = sizeof(u64), 1446 .align = sizeof(u64), 1447 .regset_get = gpr_get, 1448 .set = gpr_set 1449 }, 1450 [REGSET_FPR] = { 1451 .core_note_type = NT_PRFPREG, 1452 .n = sizeof(struct user_fpsimd_state) / sizeof(u32), 1453 /* 1454 * We pretend we have 32-bit registers because the fpsr and 1455 * fpcr are 32-bits wide. 1456 */ 1457 .size = sizeof(u32), 1458 .align = sizeof(u32), 1459 .active = fpr_active, 1460 .regset_get = fpr_get, 1461 .set = fpr_set 1462 }, 1463 [REGSET_TLS] = { 1464 .core_note_type = NT_ARM_TLS, 1465 .n = 2, 1466 .size = sizeof(void *), 1467 .align = sizeof(void *), 1468 .regset_get = tls_get, 1469 .set = tls_set, 1470 }, 1471 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1472 [REGSET_HW_BREAK] = { 1473 .core_note_type = NT_ARM_HW_BREAK, 1474 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1475 .size = sizeof(u32), 1476 .align = sizeof(u32), 1477 .regset_get = hw_break_get, 1478 .set = hw_break_set, 1479 }, 1480 [REGSET_HW_WATCH] = { 1481 .core_note_type = NT_ARM_HW_WATCH, 1482 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1483 .size = sizeof(u32), 1484 .align = sizeof(u32), 1485 .regset_get = hw_break_get, 1486 .set = hw_break_set, 1487 }, 1488 #endif 1489 [REGSET_SYSTEM_CALL] = { 1490 .core_note_type = NT_ARM_SYSTEM_CALL, 1491 .n = 1, 1492 .size = sizeof(int), 1493 .align = sizeof(int), 1494 .regset_get = system_call_get, 1495 .set = system_call_set, 1496 }, 1497 #ifdef CONFIG_ARM64_SVE 1498 [REGSET_SVE] = { /* Scalable Vector Extension */ 1499 .core_note_type = NT_ARM_SVE, 1500 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE), 1501 SVE_VQ_BYTES), 1502 .size = SVE_VQ_BYTES, 1503 .align = SVE_VQ_BYTES, 1504 .regset_get = sve_get, 1505 .set = sve_set, 1506 }, 1507 #endif 1508 #ifdef CONFIG_ARM64_SME 1509 [REGSET_SSVE] = { /* Streaming mode SVE */ 1510 .core_note_type = NT_ARM_SSVE, 1511 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE), 1512 SVE_VQ_BYTES), 1513 .size = SVE_VQ_BYTES, 1514 .align = SVE_VQ_BYTES, 1515 .regset_get = ssve_get, 1516 .set = ssve_set, 1517 }, 1518 [REGSET_ZA] = { /* SME ZA */ 1519 .core_note_type = NT_ARM_ZA, 1520 /* 1521 * ZA is a single register but it's variably sized and 1522 * the ptrace core requires that the size of any data 1523 * be an exact multiple of the configured register 1524 * size so report as though we had SVE_VQ_BYTES 1525 * registers. These values aren't exposed to 1526 * userspace. 1527 */ 1528 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES), 1529 .size = SVE_VQ_BYTES, 1530 .align = SVE_VQ_BYTES, 1531 .regset_get = za_get, 1532 .set = za_set, 1533 }, 1534 [REGSET_ZT] = { /* SME ZT */ 1535 .core_note_type = NT_ARM_ZT, 1536 .n = 1, 1537 .size = ZT_SIG_REG_BYTES, 1538 .align = sizeof(u64), 1539 .regset_get = zt_get, 1540 .set = zt_set, 1541 }, 1542 #endif 1543 #ifdef CONFIG_ARM64_PTR_AUTH 1544 [REGSET_PAC_MASK] = { 1545 .core_note_type = NT_ARM_PAC_MASK, 1546 .n = sizeof(struct user_pac_mask) / sizeof(u64), 1547 .size = sizeof(u64), 1548 .align = sizeof(u64), 1549 .regset_get = pac_mask_get, 1550 /* this cannot be set dynamically */ 1551 }, 1552 [REGSET_PAC_ENABLED_KEYS] = { 1553 .core_note_type = NT_ARM_PAC_ENABLED_KEYS, 1554 .n = 1, 1555 .size = sizeof(long), 1556 .align = sizeof(long), 1557 .regset_get = pac_enabled_keys_get, 1558 .set = pac_enabled_keys_set, 1559 }, 1560 #ifdef CONFIG_CHECKPOINT_RESTORE 1561 [REGSET_PACA_KEYS] = { 1562 .core_note_type = NT_ARM_PACA_KEYS, 1563 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t), 1564 .size = sizeof(__uint128_t), 1565 .align = sizeof(__uint128_t), 1566 .regset_get = pac_address_keys_get, 1567 .set = pac_address_keys_set, 1568 }, 1569 [REGSET_PACG_KEYS] = { 1570 .core_note_type = NT_ARM_PACG_KEYS, 1571 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t), 1572 .size = sizeof(__uint128_t), 1573 .align = sizeof(__uint128_t), 1574 .regset_get = pac_generic_keys_get, 1575 .set = pac_generic_keys_set, 1576 }, 1577 #endif 1578 #endif 1579 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1580 [REGSET_TAGGED_ADDR_CTRL] = { 1581 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL, 1582 .n = 1, 1583 .size = sizeof(long), 1584 .align = sizeof(long), 1585 .regset_get = tagged_addr_ctrl_get, 1586 .set = tagged_addr_ctrl_set, 1587 }, 1588 #endif 1589 }; 1590 1591 static const struct user_regset_view user_aarch64_view = { 1592 .name = "aarch64", .e_machine = EM_AARCH64, 1593 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets) 1594 }; 1595 1596 #ifdef CONFIG_COMPAT 1597 enum compat_regset { 1598 REGSET_COMPAT_GPR, 1599 REGSET_COMPAT_VFP, 1600 }; 1601 1602 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx) 1603 { 1604 struct pt_regs *regs = task_pt_regs(task); 1605 1606 switch (idx) { 1607 case 15: 1608 return regs->pc; 1609 case 16: 1610 return pstate_to_compat_psr(regs->pstate); 1611 case 17: 1612 return regs->orig_x0; 1613 default: 1614 return regs->regs[idx]; 1615 } 1616 } 1617 1618 static int compat_gpr_get(struct task_struct *target, 1619 const struct user_regset *regset, 1620 struct membuf to) 1621 { 1622 int i = 0; 1623 1624 while (to.left) 1625 membuf_store(&to, compat_get_user_reg(target, i++)); 1626 return 0; 1627 } 1628 1629 static int compat_gpr_set(struct task_struct *target, 1630 const struct user_regset *regset, 1631 unsigned int pos, unsigned int count, 1632 const void *kbuf, const void __user *ubuf) 1633 { 1634 struct pt_regs newregs; 1635 int ret = 0; 1636 unsigned int i, start, num_regs; 1637 1638 /* Calculate the number of AArch32 registers contained in count */ 1639 num_regs = count / regset->size; 1640 1641 /* Convert pos into an register number */ 1642 start = pos / regset->size; 1643 1644 if (start + num_regs > regset->n) 1645 return -EIO; 1646 1647 newregs = *task_pt_regs(target); 1648 1649 for (i = 0; i < num_regs; ++i) { 1650 unsigned int idx = start + i; 1651 compat_ulong_t reg; 1652 1653 if (kbuf) { 1654 memcpy(®, kbuf, sizeof(reg)); 1655 kbuf += sizeof(reg); 1656 } else { 1657 ret = copy_from_user(®, ubuf, sizeof(reg)); 1658 if (ret) { 1659 ret = -EFAULT; 1660 break; 1661 } 1662 1663 ubuf += sizeof(reg); 1664 } 1665 1666 switch (idx) { 1667 case 15: 1668 newregs.pc = reg; 1669 break; 1670 case 16: 1671 reg = compat_psr_to_pstate(reg); 1672 newregs.pstate = reg; 1673 break; 1674 case 17: 1675 newregs.orig_x0 = reg; 1676 break; 1677 default: 1678 newregs.regs[idx] = reg; 1679 } 1680 1681 } 1682 1683 if (valid_user_regs(&newregs.user_regs, target)) 1684 *task_pt_regs(target) = newregs; 1685 else 1686 ret = -EINVAL; 1687 1688 return ret; 1689 } 1690 1691 static int compat_vfp_get(struct task_struct *target, 1692 const struct user_regset *regset, 1693 struct membuf to) 1694 { 1695 struct user_fpsimd_state *uregs; 1696 compat_ulong_t fpscr; 1697 1698 if (!system_supports_fpsimd()) 1699 return -EINVAL; 1700 1701 uregs = &target->thread.uw.fpsimd_state; 1702 1703 if (target == current) 1704 fpsimd_preserve_current_state(); 1705 1706 /* 1707 * The VFP registers are packed into the fpsimd_state, so they all sit 1708 * nicely together for us. We just need to create the fpscr separately. 1709 */ 1710 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t)); 1711 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) | 1712 (uregs->fpcr & VFP_FPSCR_CTRL_MASK); 1713 return membuf_store(&to, fpscr); 1714 } 1715 1716 static int compat_vfp_set(struct task_struct *target, 1717 const struct user_regset *regset, 1718 unsigned int pos, unsigned int count, 1719 const void *kbuf, const void __user *ubuf) 1720 { 1721 struct user_fpsimd_state *uregs; 1722 compat_ulong_t fpscr; 1723 int ret, vregs_end_pos; 1724 1725 if (!system_supports_fpsimd()) 1726 return -EINVAL; 1727 1728 uregs = &target->thread.uw.fpsimd_state; 1729 1730 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t); 1731 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0, 1732 vregs_end_pos); 1733 1734 if (count && !ret) { 1735 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr, 1736 vregs_end_pos, VFP_STATE_SIZE); 1737 if (!ret) { 1738 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK; 1739 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK; 1740 } 1741 } 1742 1743 fpsimd_flush_task_state(target); 1744 return ret; 1745 } 1746 1747 static int compat_tls_get(struct task_struct *target, 1748 const struct user_regset *regset, 1749 struct membuf to) 1750 { 1751 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value); 1752 } 1753 1754 static int compat_tls_set(struct task_struct *target, 1755 const struct user_regset *regset, unsigned int pos, 1756 unsigned int count, const void *kbuf, 1757 const void __user *ubuf) 1758 { 1759 int ret; 1760 compat_ulong_t tls = target->thread.uw.tp_value; 1761 1762 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1); 1763 if (ret) 1764 return ret; 1765 1766 target->thread.uw.tp_value = tls; 1767 return ret; 1768 } 1769 1770 static const struct user_regset aarch32_regsets[] = { 1771 [REGSET_COMPAT_GPR] = { 1772 .core_note_type = NT_PRSTATUS, 1773 .n = COMPAT_ELF_NGREG, 1774 .size = sizeof(compat_elf_greg_t), 1775 .align = sizeof(compat_elf_greg_t), 1776 .regset_get = compat_gpr_get, 1777 .set = compat_gpr_set 1778 }, 1779 [REGSET_COMPAT_VFP] = { 1780 .core_note_type = NT_ARM_VFP, 1781 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t), 1782 .size = sizeof(compat_ulong_t), 1783 .align = sizeof(compat_ulong_t), 1784 .active = fpr_active, 1785 .regset_get = compat_vfp_get, 1786 .set = compat_vfp_set 1787 }, 1788 }; 1789 1790 static const struct user_regset_view user_aarch32_view = { 1791 .name = "aarch32", .e_machine = EM_ARM, 1792 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets) 1793 }; 1794 1795 static const struct user_regset aarch32_ptrace_regsets[] = { 1796 [REGSET_GPR] = { 1797 .core_note_type = NT_PRSTATUS, 1798 .n = COMPAT_ELF_NGREG, 1799 .size = sizeof(compat_elf_greg_t), 1800 .align = sizeof(compat_elf_greg_t), 1801 .regset_get = compat_gpr_get, 1802 .set = compat_gpr_set 1803 }, 1804 [REGSET_FPR] = { 1805 .core_note_type = NT_ARM_VFP, 1806 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t), 1807 .size = sizeof(compat_ulong_t), 1808 .align = sizeof(compat_ulong_t), 1809 .regset_get = compat_vfp_get, 1810 .set = compat_vfp_set 1811 }, 1812 [REGSET_TLS] = { 1813 .core_note_type = NT_ARM_TLS, 1814 .n = 1, 1815 .size = sizeof(compat_ulong_t), 1816 .align = sizeof(compat_ulong_t), 1817 .regset_get = compat_tls_get, 1818 .set = compat_tls_set, 1819 }, 1820 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1821 [REGSET_HW_BREAK] = { 1822 .core_note_type = NT_ARM_HW_BREAK, 1823 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1824 .size = sizeof(u32), 1825 .align = sizeof(u32), 1826 .regset_get = hw_break_get, 1827 .set = hw_break_set, 1828 }, 1829 [REGSET_HW_WATCH] = { 1830 .core_note_type = NT_ARM_HW_WATCH, 1831 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1832 .size = sizeof(u32), 1833 .align = sizeof(u32), 1834 .regset_get = hw_break_get, 1835 .set = hw_break_set, 1836 }, 1837 #endif 1838 [REGSET_SYSTEM_CALL] = { 1839 .core_note_type = NT_ARM_SYSTEM_CALL, 1840 .n = 1, 1841 .size = sizeof(int), 1842 .align = sizeof(int), 1843 .regset_get = system_call_get, 1844 .set = system_call_set, 1845 }, 1846 }; 1847 1848 static const struct user_regset_view user_aarch32_ptrace_view = { 1849 .name = "aarch32", .e_machine = EM_ARM, 1850 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets) 1851 }; 1852 1853 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off, 1854 compat_ulong_t __user *ret) 1855 { 1856 compat_ulong_t tmp; 1857 1858 if (off & 3) 1859 return -EIO; 1860 1861 if (off == COMPAT_PT_TEXT_ADDR) 1862 tmp = tsk->mm->start_code; 1863 else if (off == COMPAT_PT_DATA_ADDR) 1864 tmp = tsk->mm->start_data; 1865 else if (off == COMPAT_PT_TEXT_END_ADDR) 1866 tmp = tsk->mm->end_code; 1867 else if (off < sizeof(compat_elf_gregset_t)) 1868 tmp = compat_get_user_reg(tsk, off >> 2); 1869 else if (off >= COMPAT_USER_SZ) 1870 return -EIO; 1871 else 1872 tmp = 0; 1873 1874 return put_user(tmp, ret); 1875 } 1876 1877 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off, 1878 compat_ulong_t val) 1879 { 1880 struct pt_regs newregs = *task_pt_regs(tsk); 1881 unsigned int idx = off / 4; 1882 1883 if (off & 3 || off >= COMPAT_USER_SZ) 1884 return -EIO; 1885 1886 if (off >= sizeof(compat_elf_gregset_t)) 1887 return 0; 1888 1889 switch (idx) { 1890 case 15: 1891 newregs.pc = val; 1892 break; 1893 case 16: 1894 newregs.pstate = compat_psr_to_pstate(val); 1895 break; 1896 case 17: 1897 newregs.orig_x0 = val; 1898 break; 1899 default: 1900 newregs.regs[idx] = val; 1901 } 1902 1903 if (!valid_user_regs(&newregs.user_regs, tsk)) 1904 return -EINVAL; 1905 1906 *task_pt_regs(tsk) = newregs; 1907 return 0; 1908 } 1909 1910 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1911 1912 /* 1913 * Convert a virtual register number into an index for a thread_info 1914 * breakpoint array. Breakpoints are identified using positive numbers 1915 * whilst watchpoints are negative. The registers are laid out as pairs 1916 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 1917 * Register 0 is reserved for describing resource information. 1918 */ 1919 static int compat_ptrace_hbp_num_to_idx(compat_long_t num) 1920 { 1921 return (abs(num) - 1) >> 1; 1922 } 1923 1924 static int compat_ptrace_hbp_get_resource_info(u32 *kdata) 1925 { 1926 u8 num_brps, num_wrps, debug_arch, wp_len; 1927 u32 reg = 0; 1928 1929 num_brps = hw_breakpoint_slots(TYPE_INST); 1930 num_wrps = hw_breakpoint_slots(TYPE_DATA); 1931 1932 debug_arch = debug_monitors_arch(); 1933 wp_len = 8; 1934 reg |= debug_arch; 1935 reg <<= 8; 1936 reg |= wp_len; 1937 reg <<= 8; 1938 reg |= num_wrps; 1939 reg <<= 8; 1940 reg |= num_brps; 1941 1942 *kdata = reg; 1943 return 0; 1944 } 1945 1946 static int compat_ptrace_hbp_get(unsigned int note_type, 1947 struct task_struct *tsk, 1948 compat_long_t num, 1949 u32 *kdata) 1950 { 1951 u64 addr = 0; 1952 u32 ctrl = 0; 1953 1954 int err, idx = compat_ptrace_hbp_num_to_idx(num); 1955 1956 if (num & 1) { 1957 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr); 1958 *kdata = (u32)addr; 1959 } else { 1960 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl); 1961 *kdata = ctrl; 1962 } 1963 1964 return err; 1965 } 1966 1967 static int compat_ptrace_hbp_set(unsigned int note_type, 1968 struct task_struct *tsk, 1969 compat_long_t num, 1970 u32 *kdata) 1971 { 1972 u64 addr; 1973 u32 ctrl; 1974 1975 int err, idx = compat_ptrace_hbp_num_to_idx(num); 1976 1977 if (num & 1) { 1978 addr = *kdata; 1979 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr); 1980 } else { 1981 ctrl = *kdata; 1982 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl); 1983 } 1984 1985 return err; 1986 } 1987 1988 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num, 1989 compat_ulong_t __user *data) 1990 { 1991 int ret; 1992 u32 kdata; 1993 1994 /* Watchpoint */ 1995 if (num < 0) { 1996 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata); 1997 /* Resource info */ 1998 } else if (num == 0) { 1999 ret = compat_ptrace_hbp_get_resource_info(&kdata); 2000 /* Breakpoint */ 2001 } else { 2002 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata); 2003 } 2004 2005 if (!ret) 2006 ret = put_user(kdata, data); 2007 2008 return ret; 2009 } 2010 2011 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num, 2012 compat_ulong_t __user *data) 2013 { 2014 int ret; 2015 u32 kdata = 0; 2016 2017 if (num == 0) 2018 return 0; 2019 2020 ret = get_user(kdata, data); 2021 if (ret) 2022 return ret; 2023 2024 if (num < 0) 2025 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata); 2026 else 2027 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata); 2028 2029 return ret; 2030 } 2031 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 2032 2033 long compat_arch_ptrace(struct task_struct *child, compat_long_t request, 2034 compat_ulong_t caddr, compat_ulong_t cdata) 2035 { 2036 unsigned long addr = caddr; 2037 unsigned long data = cdata; 2038 void __user *datap = compat_ptr(data); 2039 int ret; 2040 2041 switch (request) { 2042 case PTRACE_PEEKUSR: 2043 ret = compat_ptrace_read_user(child, addr, datap); 2044 break; 2045 2046 case PTRACE_POKEUSR: 2047 ret = compat_ptrace_write_user(child, addr, data); 2048 break; 2049 2050 case COMPAT_PTRACE_GETREGS: 2051 ret = copy_regset_to_user(child, 2052 &user_aarch32_view, 2053 REGSET_COMPAT_GPR, 2054 0, sizeof(compat_elf_gregset_t), 2055 datap); 2056 break; 2057 2058 case COMPAT_PTRACE_SETREGS: 2059 ret = copy_regset_from_user(child, 2060 &user_aarch32_view, 2061 REGSET_COMPAT_GPR, 2062 0, sizeof(compat_elf_gregset_t), 2063 datap); 2064 break; 2065 2066 case COMPAT_PTRACE_GET_THREAD_AREA: 2067 ret = put_user((compat_ulong_t)child->thread.uw.tp_value, 2068 (compat_ulong_t __user *)datap); 2069 break; 2070 2071 case COMPAT_PTRACE_SET_SYSCALL: 2072 task_pt_regs(child)->syscallno = data; 2073 ret = 0; 2074 break; 2075 2076 case COMPAT_PTRACE_GETVFPREGS: 2077 ret = copy_regset_to_user(child, 2078 &user_aarch32_view, 2079 REGSET_COMPAT_VFP, 2080 0, VFP_STATE_SIZE, 2081 datap); 2082 break; 2083 2084 case COMPAT_PTRACE_SETVFPREGS: 2085 ret = copy_regset_from_user(child, 2086 &user_aarch32_view, 2087 REGSET_COMPAT_VFP, 2088 0, VFP_STATE_SIZE, 2089 datap); 2090 break; 2091 2092 #ifdef CONFIG_HAVE_HW_BREAKPOINT 2093 case COMPAT_PTRACE_GETHBPREGS: 2094 ret = compat_ptrace_gethbpregs(child, addr, datap); 2095 break; 2096 2097 case COMPAT_PTRACE_SETHBPREGS: 2098 ret = compat_ptrace_sethbpregs(child, addr, datap); 2099 break; 2100 #endif 2101 2102 default: 2103 ret = compat_ptrace_request(child, request, addr, 2104 data); 2105 break; 2106 } 2107 2108 return ret; 2109 } 2110 #endif /* CONFIG_COMPAT */ 2111 2112 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 2113 { 2114 #ifdef CONFIG_COMPAT 2115 /* 2116 * Core dumping of 32-bit tasks or compat ptrace requests must use the 2117 * user_aarch32_view compatible with arm32. Native ptrace requests on 2118 * 32-bit children use an extended user_aarch32_ptrace_view to allow 2119 * access to the TLS register. 2120 */ 2121 if (is_compat_task()) 2122 return &user_aarch32_view; 2123 else if (is_compat_thread(task_thread_info(task))) 2124 return &user_aarch32_ptrace_view; 2125 #endif 2126 return &user_aarch64_view; 2127 } 2128 2129 long arch_ptrace(struct task_struct *child, long request, 2130 unsigned long addr, unsigned long data) 2131 { 2132 switch (request) { 2133 case PTRACE_PEEKMTETAGS: 2134 case PTRACE_POKEMTETAGS: 2135 return mte_ptrace_copy_tags(child, request, addr, data); 2136 } 2137 2138 return ptrace_request(child, request, addr, data); 2139 } 2140 2141 enum ptrace_syscall_dir { 2142 PTRACE_SYSCALL_ENTER = 0, 2143 PTRACE_SYSCALL_EXIT, 2144 }; 2145 2146 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir) 2147 { 2148 int regno; 2149 unsigned long saved_reg; 2150 2151 /* 2152 * We have some ABI weirdness here in the way that we handle syscall 2153 * exit stops because we indicate whether or not the stop has been 2154 * signalled from syscall entry or syscall exit by clobbering a general 2155 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee 2156 * and restoring its old value after the stop. This means that: 2157 * 2158 * - Any writes by the tracer to this register during the stop are 2159 * ignored/discarded. 2160 * 2161 * - The actual value of the register is not available during the stop, 2162 * so the tracer cannot save it and restore it later. 2163 * 2164 * - Syscall stops behave differently to seccomp and pseudo-step traps 2165 * (the latter do not nobble any registers). 2166 */ 2167 regno = (is_compat_task() ? 12 : 7); 2168 saved_reg = regs->regs[regno]; 2169 regs->regs[regno] = dir; 2170 2171 if (dir == PTRACE_SYSCALL_ENTER) { 2172 if (ptrace_report_syscall_entry(regs)) 2173 forget_syscall(regs); 2174 regs->regs[regno] = saved_reg; 2175 } else if (!test_thread_flag(TIF_SINGLESTEP)) { 2176 ptrace_report_syscall_exit(regs, 0); 2177 regs->regs[regno] = saved_reg; 2178 } else { 2179 regs->regs[regno] = saved_reg; 2180 2181 /* 2182 * Signal a pseudo-step exception since we are stepping but 2183 * tracer modifications to the registers may have rewound the 2184 * state machine. 2185 */ 2186 ptrace_report_syscall_exit(regs, 1); 2187 } 2188 } 2189 2190 int syscall_trace_enter(struct pt_regs *regs) 2191 { 2192 unsigned long flags = read_thread_flags(); 2193 2194 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) { 2195 report_syscall(regs, PTRACE_SYSCALL_ENTER); 2196 if (flags & _TIF_SYSCALL_EMU) 2197 return NO_SYSCALL; 2198 } 2199 2200 /* Do the secure computing after ptrace; failures should be fast. */ 2201 if (secure_computing() == -1) 2202 return NO_SYSCALL; 2203 2204 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 2205 trace_sys_enter(regs, regs->syscallno); 2206 2207 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1], 2208 regs->regs[2], regs->regs[3]); 2209 2210 return regs->syscallno; 2211 } 2212 2213 void syscall_trace_exit(struct pt_regs *regs) 2214 { 2215 unsigned long flags = read_thread_flags(); 2216 2217 audit_syscall_exit(regs); 2218 2219 if (flags & _TIF_SYSCALL_TRACEPOINT) 2220 trace_sys_exit(regs, syscall_get_return_value(current, regs)); 2221 2222 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP)) 2223 report_syscall(regs, PTRACE_SYSCALL_EXIT); 2224 2225 rseq_syscall(regs); 2226 } 2227 2228 /* 2229 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a. 2230 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is 2231 * not described in ARM DDI 0487D.a. 2232 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may 2233 * be allocated an EL0 meaning in future. 2234 * Userspace cannot use these until they have an architectural meaning. 2235 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format. 2236 * We also reserve IL for the kernel; SS is handled dynamically. 2237 */ 2238 #define SPSR_EL1_AARCH64_RES0_BITS \ 2239 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \ 2240 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5)) 2241 #define SPSR_EL1_AARCH32_RES0_BITS \ 2242 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20)) 2243 2244 static int valid_compat_regs(struct user_pt_regs *regs) 2245 { 2246 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS; 2247 2248 if (!system_supports_mixed_endian_el0()) { 2249 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 2250 regs->pstate |= PSR_AA32_E_BIT; 2251 else 2252 regs->pstate &= ~PSR_AA32_E_BIT; 2253 } 2254 2255 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) && 2256 (regs->pstate & PSR_AA32_A_BIT) == 0 && 2257 (regs->pstate & PSR_AA32_I_BIT) == 0 && 2258 (regs->pstate & PSR_AA32_F_BIT) == 0) { 2259 return 1; 2260 } 2261 2262 /* 2263 * Force PSR to a valid 32-bit EL0t, preserving the same bits as 2264 * arch/arm. 2265 */ 2266 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT | 2267 PSR_AA32_C_BIT | PSR_AA32_V_BIT | 2268 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK | 2269 PSR_AA32_GE_MASK | PSR_AA32_E_BIT | 2270 PSR_AA32_T_BIT; 2271 regs->pstate |= PSR_MODE32_BIT; 2272 2273 return 0; 2274 } 2275 2276 static int valid_native_regs(struct user_pt_regs *regs) 2277 { 2278 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS; 2279 2280 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) && 2281 (regs->pstate & PSR_D_BIT) == 0 && 2282 (regs->pstate & PSR_A_BIT) == 0 && 2283 (regs->pstate & PSR_I_BIT) == 0 && 2284 (regs->pstate & PSR_F_BIT) == 0) { 2285 return 1; 2286 } 2287 2288 /* Force PSR to a valid 64-bit EL0t */ 2289 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT; 2290 2291 return 0; 2292 } 2293 2294 /* 2295 * Are the current registers suitable for user mode? (used to maintain 2296 * security in signal handlers) 2297 */ 2298 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task) 2299 { 2300 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */ 2301 user_regs_reset_single_step(regs, task); 2302 2303 if (is_compat_thread(task_thread_info(task))) 2304 return valid_compat_regs(regs); 2305 else 2306 return valid_native_regs(regs); 2307 } 2308