xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision b9b77222)
1 /*
2  * Based on arch/arm/kernel/ptrace.c
3  *
4  * By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/audit.h>
23 #include <linux/compat.h>
24 #include <linux/kernel.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/mm.h>
28 #include <linux/nospec.h>
29 #include <linux/smp.h>
30 #include <linux/ptrace.h>
31 #include <linux/user.h>
32 #include <linux/seccomp.h>
33 #include <linux/security.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/string.h>
37 #include <linux/uaccess.h>
38 #include <linux/perf_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/regset.h>
41 #include <linux/tracehook.h>
42 #include <linux/elf.h>
43 
44 #include <asm/compat.h>
45 #include <asm/cpufeature.h>
46 #include <asm/debug-monitors.h>
47 #include <asm/fpsimd.h>
48 #include <asm/pgtable.h>
49 #include <asm/stacktrace.h>
50 #include <asm/syscall.h>
51 #include <asm/traps.h>
52 #include <asm/system_misc.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/syscalls.h>
56 
57 struct pt_regs_offset {
58 	const char *name;
59 	int offset;
60 };
61 
62 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
63 #define REG_OFFSET_END {.name = NULL, .offset = 0}
64 #define GPR_OFFSET_NAME(r) \
65 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
66 
67 static const struct pt_regs_offset regoffset_table[] = {
68 	GPR_OFFSET_NAME(0),
69 	GPR_OFFSET_NAME(1),
70 	GPR_OFFSET_NAME(2),
71 	GPR_OFFSET_NAME(3),
72 	GPR_OFFSET_NAME(4),
73 	GPR_OFFSET_NAME(5),
74 	GPR_OFFSET_NAME(6),
75 	GPR_OFFSET_NAME(7),
76 	GPR_OFFSET_NAME(8),
77 	GPR_OFFSET_NAME(9),
78 	GPR_OFFSET_NAME(10),
79 	GPR_OFFSET_NAME(11),
80 	GPR_OFFSET_NAME(12),
81 	GPR_OFFSET_NAME(13),
82 	GPR_OFFSET_NAME(14),
83 	GPR_OFFSET_NAME(15),
84 	GPR_OFFSET_NAME(16),
85 	GPR_OFFSET_NAME(17),
86 	GPR_OFFSET_NAME(18),
87 	GPR_OFFSET_NAME(19),
88 	GPR_OFFSET_NAME(20),
89 	GPR_OFFSET_NAME(21),
90 	GPR_OFFSET_NAME(22),
91 	GPR_OFFSET_NAME(23),
92 	GPR_OFFSET_NAME(24),
93 	GPR_OFFSET_NAME(25),
94 	GPR_OFFSET_NAME(26),
95 	GPR_OFFSET_NAME(27),
96 	GPR_OFFSET_NAME(28),
97 	GPR_OFFSET_NAME(29),
98 	GPR_OFFSET_NAME(30),
99 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
100 	REG_OFFSET_NAME(sp),
101 	REG_OFFSET_NAME(pc),
102 	REG_OFFSET_NAME(pstate),
103 	REG_OFFSET_END,
104 };
105 
106 /**
107  * regs_query_register_offset() - query register offset from its name
108  * @name:	the name of a register
109  *
110  * regs_query_register_offset() returns the offset of a register in struct
111  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
112  */
113 int regs_query_register_offset(const char *name)
114 {
115 	const struct pt_regs_offset *roff;
116 
117 	for (roff = regoffset_table; roff->name != NULL; roff++)
118 		if (!strcmp(roff->name, name))
119 			return roff->offset;
120 	return -EINVAL;
121 }
122 
123 /**
124  * regs_within_kernel_stack() - check the address in the stack
125  * @regs:      pt_regs which contains kernel stack pointer.
126  * @addr:      address which is checked.
127  *
128  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
129  * If @addr is within the kernel stack, it returns true. If not, returns false.
130  */
131 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
132 {
133 	return ((addr & ~(THREAD_SIZE - 1))  ==
134 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
135 		on_irq_stack(addr);
136 }
137 
138 /**
139  * regs_get_kernel_stack_nth() - get Nth entry of the stack
140  * @regs:	pt_regs which contains kernel stack pointer.
141  * @n:		stack entry number.
142  *
143  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
144  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
145  * this returns 0.
146  */
147 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
148 {
149 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
150 
151 	addr += n;
152 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
153 		return *addr;
154 	else
155 		return 0;
156 }
157 
158 /*
159  * TODO: does not yet catch signals sent when the child dies.
160  * in exit.c or in signal.c.
161  */
162 
163 /*
164  * Called by kernel/ptrace.c when detaching..
165  */
166 void ptrace_disable(struct task_struct *child)
167 {
168 	/*
169 	 * This would be better off in core code, but PTRACE_DETACH has
170 	 * grown its fair share of arch-specific worts and changing it
171 	 * is likely to cause regressions on obscure architectures.
172 	 */
173 	user_disable_single_step(child);
174 }
175 
176 #ifdef CONFIG_HAVE_HW_BREAKPOINT
177 /*
178  * Handle hitting a HW-breakpoint.
179  */
180 static void ptrace_hbptriggered(struct perf_event *bp,
181 				struct perf_sample_data *data,
182 				struct pt_regs *regs)
183 {
184 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
185 	siginfo_t info;
186 
187 	clear_siginfo(&info);
188 	info.si_signo	= SIGTRAP;
189 	info.si_errno	= 0;
190 	info.si_code	= TRAP_HWBKPT;
191 	info.si_addr	= (void __user *)(bkpt->trigger);
192 
193 #ifdef CONFIG_COMPAT
194 	if (is_compat_task()) {
195 		int si_errno = 0;
196 		int i;
197 
198 		for (i = 0; i < ARM_MAX_BRP; ++i) {
199 			if (current->thread.debug.hbp_break[i] == bp) {
200 				si_errno = (i << 1) + 1;
201 				break;
202 			}
203 		}
204 
205 		for (i = 0; i < ARM_MAX_WRP; ++i) {
206 			if (current->thread.debug.hbp_watch[i] == bp) {
207 				si_errno = -((i << 1) + 1);
208 				break;
209 			}
210 		}
211 		force_sig_ptrace_errno_trap(si_errno, (void __user *)bkpt->trigger);
212 	}
213 #endif
214 	arm64_force_sig_info(&info, "Hardware breakpoint trap (ptrace)", current);
215 }
216 
217 /*
218  * Unregister breakpoints from this task and reset the pointers in
219  * the thread_struct.
220  */
221 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
222 {
223 	int i;
224 	struct thread_struct *t = &tsk->thread;
225 
226 	for (i = 0; i < ARM_MAX_BRP; i++) {
227 		if (t->debug.hbp_break[i]) {
228 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
229 			t->debug.hbp_break[i] = NULL;
230 		}
231 	}
232 
233 	for (i = 0; i < ARM_MAX_WRP; i++) {
234 		if (t->debug.hbp_watch[i]) {
235 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
236 			t->debug.hbp_watch[i] = NULL;
237 		}
238 	}
239 }
240 
241 void ptrace_hw_copy_thread(struct task_struct *tsk)
242 {
243 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
244 }
245 
246 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
247 					       struct task_struct *tsk,
248 					       unsigned long idx)
249 {
250 	struct perf_event *bp = ERR_PTR(-EINVAL);
251 
252 	switch (note_type) {
253 	case NT_ARM_HW_BREAK:
254 		if (idx >= ARM_MAX_BRP)
255 			goto out;
256 		idx = array_index_nospec(idx, ARM_MAX_BRP);
257 		bp = tsk->thread.debug.hbp_break[idx];
258 		break;
259 	case NT_ARM_HW_WATCH:
260 		if (idx >= ARM_MAX_WRP)
261 			goto out;
262 		idx = array_index_nospec(idx, ARM_MAX_WRP);
263 		bp = tsk->thread.debug.hbp_watch[idx];
264 		break;
265 	}
266 
267 out:
268 	return bp;
269 }
270 
271 static int ptrace_hbp_set_event(unsigned int note_type,
272 				struct task_struct *tsk,
273 				unsigned long idx,
274 				struct perf_event *bp)
275 {
276 	int err = -EINVAL;
277 
278 	switch (note_type) {
279 	case NT_ARM_HW_BREAK:
280 		if (idx < ARM_MAX_BRP) {
281 			tsk->thread.debug.hbp_break[idx] = bp;
282 			err = 0;
283 		}
284 		break;
285 	case NT_ARM_HW_WATCH:
286 		if (idx < ARM_MAX_WRP) {
287 			tsk->thread.debug.hbp_watch[idx] = bp;
288 			err = 0;
289 		}
290 		break;
291 	}
292 
293 	return err;
294 }
295 
296 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
297 					    struct task_struct *tsk,
298 					    unsigned long idx)
299 {
300 	struct perf_event *bp;
301 	struct perf_event_attr attr;
302 	int err, type;
303 
304 	switch (note_type) {
305 	case NT_ARM_HW_BREAK:
306 		type = HW_BREAKPOINT_X;
307 		break;
308 	case NT_ARM_HW_WATCH:
309 		type = HW_BREAKPOINT_RW;
310 		break;
311 	default:
312 		return ERR_PTR(-EINVAL);
313 	}
314 
315 	ptrace_breakpoint_init(&attr);
316 
317 	/*
318 	 * Initialise fields to sane defaults
319 	 * (i.e. values that will pass validation).
320 	 */
321 	attr.bp_addr	= 0;
322 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
323 	attr.bp_type	= type;
324 	attr.disabled	= 1;
325 
326 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
327 	if (IS_ERR(bp))
328 		return bp;
329 
330 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
331 	if (err)
332 		return ERR_PTR(err);
333 
334 	return bp;
335 }
336 
337 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
338 				     struct arch_hw_breakpoint_ctrl ctrl,
339 				     struct perf_event_attr *attr)
340 {
341 	int err, len, type, offset, disabled = !ctrl.enabled;
342 
343 	attr->disabled = disabled;
344 	if (disabled)
345 		return 0;
346 
347 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
348 	if (err)
349 		return err;
350 
351 	switch (note_type) {
352 	case NT_ARM_HW_BREAK:
353 		if ((type & HW_BREAKPOINT_X) != type)
354 			return -EINVAL;
355 		break;
356 	case NT_ARM_HW_WATCH:
357 		if ((type & HW_BREAKPOINT_RW) != type)
358 			return -EINVAL;
359 		break;
360 	default:
361 		return -EINVAL;
362 	}
363 
364 	attr->bp_len	= len;
365 	attr->bp_type	= type;
366 	attr->bp_addr	+= offset;
367 
368 	return 0;
369 }
370 
371 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
372 {
373 	u8 num;
374 	u32 reg = 0;
375 
376 	switch (note_type) {
377 	case NT_ARM_HW_BREAK:
378 		num = hw_breakpoint_slots(TYPE_INST);
379 		break;
380 	case NT_ARM_HW_WATCH:
381 		num = hw_breakpoint_slots(TYPE_DATA);
382 		break;
383 	default:
384 		return -EINVAL;
385 	}
386 
387 	reg |= debug_monitors_arch();
388 	reg <<= 8;
389 	reg |= num;
390 
391 	*info = reg;
392 	return 0;
393 }
394 
395 static int ptrace_hbp_get_ctrl(unsigned int note_type,
396 			       struct task_struct *tsk,
397 			       unsigned long idx,
398 			       u32 *ctrl)
399 {
400 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
401 
402 	if (IS_ERR(bp))
403 		return PTR_ERR(bp);
404 
405 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
406 	return 0;
407 }
408 
409 static int ptrace_hbp_get_addr(unsigned int note_type,
410 			       struct task_struct *tsk,
411 			       unsigned long idx,
412 			       u64 *addr)
413 {
414 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
415 
416 	if (IS_ERR(bp))
417 		return PTR_ERR(bp);
418 
419 	*addr = bp ? counter_arch_bp(bp)->address : 0;
420 	return 0;
421 }
422 
423 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
424 							struct task_struct *tsk,
425 							unsigned long idx)
426 {
427 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
428 
429 	if (!bp)
430 		bp = ptrace_hbp_create(note_type, tsk, idx);
431 
432 	return bp;
433 }
434 
435 static int ptrace_hbp_set_ctrl(unsigned int note_type,
436 			       struct task_struct *tsk,
437 			       unsigned long idx,
438 			       u32 uctrl)
439 {
440 	int err;
441 	struct perf_event *bp;
442 	struct perf_event_attr attr;
443 	struct arch_hw_breakpoint_ctrl ctrl;
444 
445 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
446 	if (IS_ERR(bp)) {
447 		err = PTR_ERR(bp);
448 		return err;
449 	}
450 
451 	attr = bp->attr;
452 	decode_ctrl_reg(uctrl, &ctrl);
453 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
454 	if (err)
455 		return err;
456 
457 	return modify_user_hw_breakpoint(bp, &attr);
458 }
459 
460 static int ptrace_hbp_set_addr(unsigned int note_type,
461 			       struct task_struct *tsk,
462 			       unsigned long idx,
463 			       u64 addr)
464 {
465 	int err;
466 	struct perf_event *bp;
467 	struct perf_event_attr attr;
468 
469 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
470 	if (IS_ERR(bp)) {
471 		err = PTR_ERR(bp);
472 		return err;
473 	}
474 
475 	attr = bp->attr;
476 	attr.bp_addr = addr;
477 	err = modify_user_hw_breakpoint(bp, &attr);
478 	return err;
479 }
480 
481 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
482 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
483 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
484 
485 static int hw_break_get(struct task_struct *target,
486 			const struct user_regset *regset,
487 			unsigned int pos, unsigned int count,
488 			void *kbuf, void __user *ubuf)
489 {
490 	unsigned int note_type = regset->core_note_type;
491 	int ret, idx = 0, offset, limit;
492 	u32 info, ctrl;
493 	u64 addr;
494 
495 	/* Resource info */
496 	ret = ptrace_hbp_get_resource_info(note_type, &info);
497 	if (ret)
498 		return ret;
499 
500 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &info, 0,
501 				  sizeof(info));
502 	if (ret)
503 		return ret;
504 
505 	/* Pad */
506 	offset = offsetof(struct user_hwdebug_state, pad);
507 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, offset,
508 				       offset + PTRACE_HBP_PAD_SZ);
509 	if (ret)
510 		return ret;
511 
512 	/* (address, ctrl) registers */
513 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
514 	limit = regset->n * regset->size;
515 	while (count && offset < limit) {
516 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
517 		if (ret)
518 			return ret;
519 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &addr,
520 					  offset, offset + PTRACE_HBP_ADDR_SZ);
521 		if (ret)
522 			return ret;
523 		offset += PTRACE_HBP_ADDR_SZ;
524 
525 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
526 		if (ret)
527 			return ret;
528 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &ctrl,
529 					  offset, offset + PTRACE_HBP_CTRL_SZ);
530 		if (ret)
531 			return ret;
532 		offset += PTRACE_HBP_CTRL_SZ;
533 
534 		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
535 					       offset,
536 					       offset + PTRACE_HBP_PAD_SZ);
537 		if (ret)
538 			return ret;
539 		offset += PTRACE_HBP_PAD_SZ;
540 		idx++;
541 	}
542 
543 	return 0;
544 }
545 
546 static int hw_break_set(struct task_struct *target,
547 			const struct user_regset *regset,
548 			unsigned int pos, unsigned int count,
549 			const void *kbuf, const void __user *ubuf)
550 {
551 	unsigned int note_type = regset->core_note_type;
552 	int ret, idx = 0, offset, limit;
553 	u32 ctrl;
554 	u64 addr;
555 
556 	/* Resource info and pad */
557 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
558 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
559 	if (ret)
560 		return ret;
561 
562 	/* (address, ctrl) registers */
563 	limit = regset->n * regset->size;
564 	while (count && offset < limit) {
565 		if (count < PTRACE_HBP_ADDR_SZ)
566 			return -EINVAL;
567 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
568 					 offset, offset + PTRACE_HBP_ADDR_SZ);
569 		if (ret)
570 			return ret;
571 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
572 		if (ret)
573 			return ret;
574 		offset += PTRACE_HBP_ADDR_SZ;
575 
576 		if (!count)
577 			break;
578 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
579 					 offset, offset + PTRACE_HBP_CTRL_SZ);
580 		if (ret)
581 			return ret;
582 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
583 		if (ret)
584 			return ret;
585 		offset += PTRACE_HBP_CTRL_SZ;
586 
587 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
588 						offset,
589 						offset + PTRACE_HBP_PAD_SZ);
590 		if (ret)
591 			return ret;
592 		offset += PTRACE_HBP_PAD_SZ;
593 		idx++;
594 	}
595 
596 	return 0;
597 }
598 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
599 
600 static int gpr_get(struct task_struct *target,
601 		   const struct user_regset *regset,
602 		   unsigned int pos, unsigned int count,
603 		   void *kbuf, void __user *ubuf)
604 {
605 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
606 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0, -1);
607 }
608 
609 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
610 		   unsigned int pos, unsigned int count,
611 		   const void *kbuf, const void __user *ubuf)
612 {
613 	int ret;
614 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
615 
616 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
617 	if (ret)
618 		return ret;
619 
620 	if (!valid_user_regs(&newregs, target))
621 		return -EINVAL;
622 
623 	task_pt_regs(target)->user_regs = newregs;
624 	return 0;
625 }
626 
627 /*
628  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
629  */
630 static int __fpr_get(struct task_struct *target,
631 		     const struct user_regset *regset,
632 		     unsigned int pos, unsigned int count,
633 		     void *kbuf, void __user *ubuf, unsigned int start_pos)
634 {
635 	struct user_fpsimd_state *uregs;
636 
637 	sve_sync_to_fpsimd(target);
638 
639 	uregs = &target->thread.uw.fpsimd_state;
640 
641 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
642 				   start_pos, start_pos + sizeof(*uregs));
643 }
644 
645 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
646 		   unsigned int pos, unsigned int count,
647 		   void *kbuf, void __user *ubuf)
648 {
649 	if (target == current)
650 		fpsimd_preserve_current_state();
651 
652 	return __fpr_get(target, regset, pos, count, kbuf, ubuf, 0);
653 }
654 
655 static int __fpr_set(struct task_struct *target,
656 		     const struct user_regset *regset,
657 		     unsigned int pos, unsigned int count,
658 		     const void *kbuf, const void __user *ubuf,
659 		     unsigned int start_pos)
660 {
661 	int ret;
662 	struct user_fpsimd_state newstate;
663 
664 	/*
665 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
666 	 * short copyin can't resurrect stale data.
667 	 */
668 	sve_sync_to_fpsimd(target);
669 
670 	newstate = target->thread.uw.fpsimd_state;
671 
672 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
673 				 start_pos, start_pos + sizeof(newstate));
674 	if (ret)
675 		return ret;
676 
677 	target->thread.uw.fpsimd_state = newstate;
678 
679 	return ret;
680 }
681 
682 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
683 		   unsigned int pos, unsigned int count,
684 		   const void *kbuf, const void __user *ubuf)
685 {
686 	int ret;
687 
688 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
689 	if (ret)
690 		return ret;
691 
692 	sve_sync_from_fpsimd_zeropad(target);
693 	fpsimd_flush_task_state(target);
694 
695 	return ret;
696 }
697 
698 static int tls_get(struct task_struct *target, const struct user_regset *regset,
699 		   unsigned int pos, unsigned int count,
700 		   void *kbuf, void __user *ubuf)
701 {
702 	unsigned long *tls = &target->thread.uw.tp_value;
703 
704 	if (target == current)
705 		tls_preserve_current_state();
706 
707 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, tls, 0, -1);
708 }
709 
710 static int tls_set(struct task_struct *target, const struct user_regset *regset,
711 		   unsigned int pos, unsigned int count,
712 		   const void *kbuf, const void __user *ubuf)
713 {
714 	int ret;
715 	unsigned long tls = target->thread.uw.tp_value;
716 
717 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
718 	if (ret)
719 		return ret;
720 
721 	target->thread.uw.tp_value = tls;
722 	return ret;
723 }
724 
725 static int system_call_get(struct task_struct *target,
726 			   const struct user_regset *regset,
727 			   unsigned int pos, unsigned int count,
728 			   void *kbuf, void __user *ubuf)
729 {
730 	int syscallno = task_pt_regs(target)->syscallno;
731 
732 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
733 				   &syscallno, 0, -1);
734 }
735 
736 static int system_call_set(struct task_struct *target,
737 			   const struct user_regset *regset,
738 			   unsigned int pos, unsigned int count,
739 			   const void *kbuf, const void __user *ubuf)
740 {
741 	int syscallno = task_pt_regs(target)->syscallno;
742 	int ret;
743 
744 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
745 	if (ret)
746 		return ret;
747 
748 	task_pt_regs(target)->syscallno = syscallno;
749 	return ret;
750 }
751 
752 #ifdef CONFIG_ARM64_SVE
753 
754 static void sve_init_header_from_task(struct user_sve_header *header,
755 				      struct task_struct *target)
756 {
757 	unsigned int vq;
758 
759 	memset(header, 0, sizeof(*header));
760 
761 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
762 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
763 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
764 		header->flags |= SVE_PT_VL_INHERIT;
765 
766 	header->vl = target->thread.sve_vl;
767 	vq = sve_vq_from_vl(header->vl);
768 
769 	header->max_vl = sve_max_vl;
770 	header->size = SVE_PT_SIZE(vq, header->flags);
771 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
772 				      SVE_PT_REGS_SVE);
773 }
774 
775 static unsigned int sve_size_from_header(struct user_sve_header const *header)
776 {
777 	return ALIGN(header->size, SVE_VQ_BYTES);
778 }
779 
780 static unsigned int sve_get_size(struct task_struct *target,
781 				 const struct user_regset *regset)
782 {
783 	struct user_sve_header header;
784 
785 	if (!system_supports_sve())
786 		return 0;
787 
788 	sve_init_header_from_task(&header, target);
789 	return sve_size_from_header(&header);
790 }
791 
792 static int sve_get(struct task_struct *target,
793 		   const struct user_regset *regset,
794 		   unsigned int pos, unsigned int count,
795 		   void *kbuf, void __user *ubuf)
796 {
797 	int ret;
798 	struct user_sve_header header;
799 	unsigned int vq;
800 	unsigned long start, end;
801 
802 	if (!system_supports_sve())
803 		return -EINVAL;
804 
805 	/* Header */
806 	sve_init_header_from_task(&header, target);
807 	vq = sve_vq_from_vl(header.vl);
808 
809 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &header,
810 				  0, sizeof(header));
811 	if (ret)
812 		return ret;
813 
814 	if (target == current)
815 		fpsimd_preserve_current_state();
816 
817 	/* Registers: FPSIMD-only case */
818 
819 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
820 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
821 		return __fpr_get(target, regset, pos, count, kbuf, ubuf,
822 				 SVE_PT_FPSIMD_OFFSET);
823 
824 	/* Otherwise: full SVE case */
825 
826 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
827 	start = SVE_PT_SVE_OFFSET;
828 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
829 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
830 				  target->thread.sve_state,
831 				  start, end);
832 	if (ret)
833 		return ret;
834 
835 	start = end;
836 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
837 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
838 				       start, end);
839 	if (ret)
840 		return ret;
841 
842 	/*
843 	 * Copy fpsr, and fpcr which must follow contiguously in
844 	 * struct fpsimd_state:
845 	 */
846 	start = end;
847 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
848 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
849 				  &target->thread.uw.fpsimd_state.fpsr,
850 				  start, end);
851 	if (ret)
852 		return ret;
853 
854 	start = end;
855 	end = sve_size_from_header(&header);
856 	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
857 					start, end);
858 }
859 
860 static int sve_set(struct task_struct *target,
861 		   const struct user_regset *regset,
862 		   unsigned int pos, unsigned int count,
863 		   const void *kbuf, const void __user *ubuf)
864 {
865 	int ret;
866 	struct user_sve_header header;
867 	unsigned int vq;
868 	unsigned long start, end;
869 
870 	if (!system_supports_sve())
871 		return -EINVAL;
872 
873 	/* Header */
874 	if (count < sizeof(header))
875 		return -EINVAL;
876 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
877 				 0, sizeof(header));
878 	if (ret)
879 		goto out;
880 
881 	/*
882 	 * Apart from PT_SVE_REGS_MASK, all PT_SVE_* flags are consumed by
883 	 * sve_set_vector_length(), which will also validate them for us:
884 	 */
885 	ret = sve_set_vector_length(target, header.vl,
886 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
887 	if (ret)
888 		goto out;
889 
890 	/* Actual VL set may be less than the user asked for: */
891 	vq = sve_vq_from_vl(target->thread.sve_vl);
892 
893 	/* Registers: FPSIMD-only case */
894 
895 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
896 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
897 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
898 				SVE_PT_FPSIMD_OFFSET);
899 		clear_tsk_thread_flag(target, TIF_SVE);
900 		goto out;
901 	}
902 
903 	/* Otherwise: full SVE case */
904 
905 	/*
906 	 * If setting a different VL from the requested VL and there is
907 	 * register data, the data layout will be wrong: don't even
908 	 * try to set the registers in this case.
909 	 */
910 	if (count && vq != sve_vq_from_vl(header.vl)) {
911 		ret = -EIO;
912 		goto out;
913 	}
914 
915 	sve_alloc(target);
916 
917 	/*
918 	 * Ensure target->thread.sve_state is up to date with target's
919 	 * FPSIMD regs, so that a short copyin leaves trailing registers
920 	 * unmodified.
921 	 */
922 	fpsimd_sync_to_sve(target);
923 	set_tsk_thread_flag(target, TIF_SVE);
924 
925 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
926 	start = SVE_PT_SVE_OFFSET;
927 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
928 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
929 				 target->thread.sve_state,
930 				 start, end);
931 	if (ret)
932 		goto out;
933 
934 	start = end;
935 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
936 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
937 					start, end);
938 	if (ret)
939 		goto out;
940 
941 	/*
942 	 * Copy fpsr, and fpcr which must follow contiguously in
943 	 * struct fpsimd_state:
944 	 */
945 	start = end;
946 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
947 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
948 				 &target->thread.uw.fpsimd_state.fpsr,
949 				 start, end);
950 
951 out:
952 	fpsimd_flush_task_state(target);
953 	return ret;
954 }
955 
956 #endif /* CONFIG_ARM64_SVE */
957 
958 enum aarch64_regset {
959 	REGSET_GPR,
960 	REGSET_FPR,
961 	REGSET_TLS,
962 #ifdef CONFIG_HAVE_HW_BREAKPOINT
963 	REGSET_HW_BREAK,
964 	REGSET_HW_WATCH,
965 #endif
966 	REGSET_SYSTEM_CALL,
967 #ifdef CONFIG_ARM64_SVE
968 	REGSET_SVE,
969 #endif
970 };
971 
972 static const struct user_regset aarch64_regsets[] = {
973 	[REGSET_GPR] = {
974 		.core_note_type = NT_PRSTATUS,
975 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
976 		.size = sizeof(u64),
977 		.align = sizeof(u64),
978 		.get = gpr_get,
979 		.set = gpr_set
980 	},
981 	[REGSET_FPR] = {
982 		.core_note_type = NT_PRFPREG,
983 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
984 		/*
985 		 * We pretend we have 32-bit registers because the fpsr and
986 		 * fpcr are 32-bits wide.
987 		 */
988 		.size = sizeof(u32),
989 		.align = sizeof(u32),
990 		.get = fpr_get,
991 		.set = fpr_set
992 	},
993 	[REGSET_TLS] = {
994 		.core_note_type = NT_ARM_TLS,
995 		.n = 1,
996 		.size = sizeof(void *),
997 		.align = sizeof(void *),
998 		.get = tls_get,
999 		.set = tls_set,
1000 	},
1001 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1002 	[REGSET_HW_BREAK] = {
1003 		.core_note_type = NT_ARM_HW_BREAK,
1004 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1005 		.size = sizeof(u32),
1006 		.align = sizeof(u32),
1007 		.get = hw_break_get,
1008 		.set = hw_break_set,
1009 	},
1010 	[REGSET_HW_WATCH] = {
1011 		.core_note_type = NT_ARM_HW_WATCH,
1012 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1013 		.size = sizeof(u32),
1014 		.align = sizeof(u32),
1015 		.get = hw_break_get,
1016 		.set = hw_break_set,
1017 	},
1018 #endif
1019 	[REGSET_SYSTEM_CALL] = {
1020 		.core_note_type = NT_ARM_SYSTEM_CALL,
1021 		.n = 1,
1022 		.size = sizeof(int),
1023 		.align = sizeof(int),
1024 		.get = system_call_get,
1025 		.set = system_call_set,
1026 	},
1027 #ifdef CONFIG_ARM64_SVE
1028 	[REGSET_SVE] = { /* Scalable Vector Extension */
1029 		.core_note_type = NT_ARM_SVE,
1030 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1031 				  SVE_VQ_BYTES),
1032 		.size = SVE_VQ_BYTES,
1033 		.align = SVE_VQ_BYTES,
1034 		.get = sve_get,
1035 		.set = sve_set,
1036 		.get_size = sve_get_size,
1037 	},
1038 #endif
1039 };
1040 
1041 static const struct user_regset_view user_aarch64_view = {
1042 	.name = "aarch64", .e_machine = EM_AARCH64,
1043 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1044 };
1045 
1046 #ifdef CONFIG_COMPAT
1047 enum compat_regset {
1048 	REGSET_COMPAT_GPR,
1049 	REGSET_COMPAT_VFP,
1050 };
1051 
1052 static int compat_gpr_get(struct task_struct *target,
1053 			  const struct user_regset *regset,
1054 			  unsigned int pos, unsigned int count,
1055 			  void *kbuf, void __user *ubuf)
1056 {
1057 	int ret = 0;
1058 	unsigned int i, start, num_regs;
1059 
1060 	/* Calculate the number of AArch32 registers contained in count */
1061 	num_regs = count / regset->size;
1062 
1063 	/* Convert pos into an register number */
1064 	start = pos / regset->size;
1065 
1066 	if (start + num_regs > regset->n)
1067 		return -EIO;
1068 
1069 	for (i = 0; i < num_regs; ++i) {
1070 		unsigned int idx = start + i;
1071 		compat_ulong_t reg;
1072 
1073 		switch (idx) {
1074 		case 15:
1075 			reg = task_pt_regs(target)->pc;
1076 			break;
1077 		case 16:
1078 			reg = task_pt_regs(target)->pstate;
1079 			break;
1080 		case 17:
1081 			reg = task_pt_regs(target)->orig_x0;
1082 			break;
1083 		default:
1084 			reg = task_pt_regs(target)->regs[idx];
1085 		}
1086 
1087 		if (kbuf) {
1088 			memcpy(kbuf, &reg, sizeof(reg));
1089 			kbuf += sizeof(reg);
1090 		} else {
1091 			ret = copy_to_user(ubuf, &reg, sizeof(reg));
1092 			if (ret) {
1093 				ret = -EFAULT;
1094 				break;
1095 			}
1096 
1097 			ubuf += sizeof(reg);
1098 		}
1099 	}
1100 
1101 	return ret;
1102 }
1103 
1104 static int compat_gpr_set(struct task_struct *target,
1105 			  const struct user_regset *regset,
1106 			  unsigned int pos, unsigned int count,
1107 			  const void *kbuf, const void __user *ubuf)
1108 {
1109 	struct pt_regs newregs;
1110 	int ret = 0;
1111 	unsigned int i, start, num_regs;
1112 
1113 	/* Calculate the number of AArch32 registers contained in count */
1114 	num_regs = count / regset->size;
1115 
1116 	/* Convert pos into an register number */
1117 	start = pos / regset->size;
1118 
1119 	if (start + num_regs > regset->n)
1120 		return -EIO;
1121 
1122 	newregs = *task_pt_regs(target);
1123 
1124 	for (i = 0; i < num_regs; ++i) {
1125 		unsigned int idx = start + i;
1126 		compat_ulong_t reg;
1127 
1128 		if (kbuf) {
1129 			memcpy(&reg, kbuf, sizeof(reg));
1130 			kbuf += sizeof(reg);
1131 		} else {
1132 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1133 			if (ret) {
1134 				ret = -EFAULT;
1135 				break;
1136 			}
1137 
1138 			ubuf += sizeof(reg);
1139 		}
1140 
1141 		switch (idx) {
1142 		case 15:
1143 			newregs.pc = reg;
1144 			break;
1145 		case 16:
1146 			newregs.pstate = reg;
1147 			break;
1148 		case 17:
1149 			newregs.orig_x0 = reg;
1150 			break;
1151 		default:
1152 			newregs.regs[idx] = reg;
1153 		}
1154 
1155 	}
1156 
1157 	if (valid_user_regs(&newregs.user_regs, target))
1158 		*task_pt_regs(target) = newregs;
1159 	else
1160 		ret = -EINVAL;
1161 
1162 	return ret;
1163 }
1164 
1165 static int compat_vfp_get(struct task_struct *target,
1166 			  const struct user_regset *regset,
1167 			  unsigned int pos, unsigned int count,
1168 			  void *kbuf, void __user *ubuf)
1169 {
1170 	struct user_fpsimd_state *uregs;
1171 	compat_ulong_t fpscr;
1172 	int ret, vregs_end_pos;
1173 
1174 	uregs = &target->thread.uw.fpsimd_state;
1175 
1176 	if (target == current)
1177 		fpsimd_preserve_current_state();
1178 
1179 	/*
1180 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1181 	 * nicely together for us. We just need to create the fpscr separately.
1182 	 */
1183 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1184 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
1185 				  0, vregs_end_pos);
1186 
1187 	if (count && !ret) {
1188 		fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1189 			(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1190 
1191 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpscr,
1192 					  vregs_end_pos, VFP_STATE_SIZE);
1193 	}
1194 
1195 	return ret;
1196 }
1197 
1198 static int compat_vfp_set(struct task_struct *target,
1199 			  const struct user_regset *regset,
1200 			  unsigned int pos, unsigned int count,
1201 			  const void *kbuf, const void __user *ubuf)
1202 {
1203 	struct user_fpsimd_state *uregs;
1204 	compat_ulong_t fpscr;
1205 	int ret, vregs_end_pos;
1206 
1207 	uregs = &target->thread.uw.fpsimd_state;
1208 
1209 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1210 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1211 				 vregs_end_pos);
1212 
1213 	if (count && !ret) {
1214 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1215 					 vregs_end_pos, VFP_STATE_SIZE);
1216 		if (!ret) {
1217 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1218 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1219 		}
1220 	}
1221 
1222 	fpsimd_flush_task_state(target);
1223 	return ret;
1224 }
1225 
1226 static int compat_tls_get(struct task_struct *target,
1227 			  const struct user_regset *regset, unsigned int pos,
1228 			  unsigned int count, void *kbuf, void __user *ubuf)
1229 {
1230 	compat_ulong_t tls = (compat_ulong_t)target->thread.uw.tp_value;
1231 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1232 }
1233 
1234 static int compat_tls_set(struct task_struct *target,
1235 			  const struct user_regset *regset, unsigned int pos,
1236 			  unsigned int count, const void *kbuf,
1237 			  const void __user *ubuf)
1238 {
1239 	int ret;
1240 	compat_ulong_t tls = target->thread.uw.tp_value;
1241 
1242 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1243 	if (ret)
1244 		return ret;
1245 
1246 	target->thread.uw.tp_value = tls;
1247 	return ret;
1248 }
1249 
1250 static const struct user_regset aarch32_regsets[] = {
1251 	[REGSET_COMPAT_GPR] = {
1252 		.core_note_type = NT_PRSTATUS,
1253 		.n = COMPAT_ELF_NGREG,
1254 		.size = sizeof(compat_elf_greg_t),
1255 		.align = sizeof(compat_elf_greg_t),
1256 		.get = compat_gpr_get,
1257 		.set = compat_gpr_set
1258 	},
1259 	[REGSET_COMPAT_VFP] = {
1260 		.core_note_type = NT_ARM_VFP,
1261 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1262 		.size = sizeof(compat_ulong_t),
1263 		.align = sizeof(compat_ulong_t),
1264 		.get = compat_vfp_get,
1265 		.set = compat_vfp_set
1266 	},
1267 };
1268 
1269 static const struct user_regset_view user_aarch32_view = {
1270 	.name = "aarch32", .e_machine = EM_ARM,
1271 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1272 };
1273 
1274 static const struct user_regset aarch32_ptrace_regsets[] = {
1275 	[REGSET_GPR] = {
1276 		.core_note_type = NT_PRSTATUS,
1277 		.n = COMPAT_ELF_NGREG,
1278 		.size = sizeof(compat_elf_greg_t),
1279 		.align = sizeof(compat_elf_greg_t),
1280 		.get = compat_gpr_get,
1281 		.set = compat_gpr_set
1282 	},
1283 	[REGSET_FPR] = {
1284 		.core_note_type = NT_ARM_VFP,
1285 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1286 		.size = sizeof(compat_ulong_t),
1287 		.align = sizeof(compat_ulong_t),
1288 		.get = compat_vfp_get,
1289 		.set = compat_vfp_set
1290 	},
1291 	[REGSET_TLS] = {
1292 		.core_note_type = NT_ARM_TLS,
1293 		.n = 1,
1294 		.size = sizeof(compat_ulong_t),
1295 		.align = sizeof(compat_ulong_t),
1296 		.get = compat_tls_get,
1297 		.set = compat_tls_set,
1298 	},
1299 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1300 	[REGSET_HW_BREAK] = {
1301 		.core_note_type = NT_ARM_HW_BREAK,
1302 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1303 		.size = sizeof(u32),
1304 		.align = sizeof(u32),
1305 		.get = hw_break_get,
1306 		.set = hw_break_set,
1307 	},
1308 	[REGSET_HW_WATCH] = {
1309 		.core_note_type = NT_ARM_HW_WATCH,
1310 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1311 		.size = sizeof(u32),
1312 		.align = sizeof(u32),
1313 		.get = hw_break_get,
1314 		.set = hw_break_set,
1315 	},
1316 #endif
1317 	[REGSET_SYSTEM_CALL] = {
1318 		.core_note_type = NT_ARM_SYSTEM_CALL,
1319 		.n = 1,
1320 		.size = sizeof(int),
1321 		.align = sizeof(int),
1322 		.get = system_call_get,
1323 		.set = system_call_set,
1324 	},
1325 };
1326 
1327 static const struct user_regset_view user_aarch32_ptrace_view = {
1328 	.name = "aarch32", .e_machine = EM_ARM,
1329 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1330 };
1331 
1332 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1333 				   compat_ulong_t __user *ret)
1334 {
1335 	compat_ulong_t tmp;
1336 
1337 	if (off & 3)
1338 		return -EIO;
1339 
1340 	if (off == COMPAT_PT_TEXT_ADDR)
1341 		tmp = tsk->mm->start_code;
1342 	else if (off == COMPAT_PT_DATA_ADDR)
1343 		tmp = tsk->mm->start_data;
1344 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1345 		tmp = tsk->mm->end_code;
1346 	else if (off < sizeof(compat_elf_gregset_t))
1347 		return copy_regset_to_user(tsk, &user_aarch32_view,
1348 					   REGSET_COMPAT_GPR, off,
1349 					   sizeof(compat_ulong_t), ret);
1350 	else if (off >= COMPAT_USER_SZ)
1351 		return -EIO;
1352 	else
1353 		tmp = 0;
1354 
1355 	return put_user(tmp, ret);
1356 }
1357 
1358 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1359 				    compat_ulong_t val)
1360 {
1361 	int ret;
1362 	mm_segment_t old_fs = get_fs();
1363 
1364 	if (off & 3 || off >= COMPAT_USER_SZ)
1365 		return -EIO;
1366 
1367 	if (off >= sizeof(compat_elf_gregset_t))
1368 		return 0;
1369 
1370 	set_fs(KERNEL_DS);
1371 	ret = copy_regset_from_user(tsk, &user_aarch32_view,
1372 				    REGSET_COMPAT_GPR, off,
1373 				    sizeof(compat_ulong_t),
1374 				    &val);
1375 	set_fs(old_fs);
1376 
1377 	return ret;
1378 }
1379 
1380 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1381 
1382 /*
1383  * Convert a virtual register number into an index for a thread_info
1384  * breakpoint array. Breakpoints are identified using positive numbers
1385  * whilst watchpoints are negative. The registers are laid out as pairs
1386  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1387  * Register 0 is reserved for describing resource information.
1388  */
1389 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1390 {
1391 	return (abs(num) - 1) >> 1;
1392 }
1393 
1394 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1395 {
1396 	u8 num_brps, num_wrps, debug_arch, wp_len;
1397 	u32 reg = 0;
1398 
1399 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1400 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1401 
1402 	debug_arch	= debug_monitors_arch();
1403 	wp_len		= 8;
1404 	reg		|= debug_arch;
1405 	reg		<<= 8;
1406 	reg		|= wp_len;
1407 	reg		<<= 8;
1408 	reg		|= num_wrps;
1409 	reg		<<= 8;
1410 	reg		|= num_brps;
1411 
1412 	*kdata = reg;
1413 	return 0;
1414 }
1415 
1416 static int compat_ptrace_hbp_get(unsigned int note_type,
1417 				 struct task_struct *tsk,
1418 				 compat_long_t num,
1419 				 u32 *kdata)
1420 {
1421 	u64 addr = 0;
1422 	u32 ctrl = 0;
1423 
1424 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1425 
1426 	if (num & 1) {
1427 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1428 		*kdata = (u32)addr;
1429 	} else {
1430 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1431 		*kdata = ctrl;
1432 	}
1433 
1434 	return err;
1435 }
1436 
1437 static int compat_ptrace_hbp_set(unsigned int note_type,
1438 				 struct task_struct *tsk,
1439 				 compat_long_t num,
1440 				 u32 *kdata)
1441 {
1442 	u64 addr;
1443 	u32 ctrl;
1444 
1445 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1446 
1447 	if (num & 1) {
1448 		addr = *kdata;
1449 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1450 	} else {
1451 		ctrl = *kdata;
1452 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1453 	}
1454 
1455 	return err;
1456 }
1457 
1458 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1459 				    compat_ulong_t __user *data)
1460 {
1461 	int ret;
1462 	u32 kdata;
1463 
1464 	/* Watchpoint */
1465 	if (num < 0) {
1466 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1467 	/* Resource info */
1468 	} else if (num == 0) {
1469 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1470 	/* Breakpoint */
1471 	} else {
1472 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1473 	}
1474 
1475 	if (!ret)
1476 		ret = put_user(kdata, data);
1477 
1478 	return ret;
1479 }
1480 
1481 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1482 				    compat_ulong_t __user *data)
1483 {
1484 	int ret;
1485 	u32 kdata = 0;
1486 
1487 	if (num == 0)
1488 		return 0;
1489 
1490 	ret = get_user(kdata, data);
1491 	if (ret)
1492 		return ret;
1493 
1494 	if (num < 0)
1495 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1496 	else
1497 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1498 
1499 	return ret;
1500 }
1501 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1502 
1503 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1504 			compat_ulong_t caddr, compat_ulong_t cdata)
1505 {
1506 	unsigned long addr = caddr;
1507 	unsigned long data = cdata;
1508 	void __user *datap = compat_ptr(data);
1509 	int ret;
1510 
1511 	switch (request) {
1512 		case PTRACE_PEEKUSR:
1513 			ret = compat_ptrace_read_user(child, addr, datap);
1514 			break;
1515 
1516 		case PTRACE_POKEUSR:
1517 			ret = compat_ptrace_write_user(child, addr, data);
1518 			break;
1519 
1520 		case COMPAT_PTRACE_GETREGS:
1521 			ret = copy_regset_to_user(child,
1522 						  &user_aarch32_view,
1523 						  REGSET_COMPAT_GPR,
1524 						  0, sizeof(compat_elf_gregset_t),
1525 						  datap);
1526 			break;
1527 
1528 		case COMPAT_PTRACE_SETREGS:
1529 			ret = copy_regset_from_user(child,
1530 						    &user_aarch32_view,
1531 						    REGSET_COMPAT_GPR,
1532 						    0, sizeof(compat_elf_gregset_t),
1533 						    datap);
1534 			break;
1535 
1536 		case COMPAT_PTRACE_GET_THREAD_AREA:
1537 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1538 				       (compat_ulong_t __user *)datap);
1539 			break;
1540 
1541 		case COMPAT_PTRACE_SET_SYSCALL:
1542 			task_pt_regs(child)->syscallno = data;
1543 			ret = 0;
1544 			break;
1545 
1546 		case COMPAT_PTRACE_GETVFPREGS:
1547 			ret = copy_regset_to_user(child,
1548 						  &user_aarch32_view,
1549 						  REGSET_COMPAT_VFP,
1550 						  0, VFP_STATE_SIZE,
1551 						  datap);
1552 			break;
1553 
1554 		case COMPAT_PTRACE_SETVFPREGS:
1555 			ret = copy_regset_from_user(child,
1556 						    &user_aarch32_view,
1557 						    REGSET_COMPAT_VFP,
1558 						    0, VFP_STATE_SIZE,
1559 						    datap);
1560 			break;
1561 
1562 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1563 		case COMPAT_PTRACE_GETHBPREGS:
1564 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1565 			break;
1566 
1567 		case COMPAT_PTRACE_SETHBPREGS:
1568 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1569 			break;
1570 #endif
1571 
1572 		default:
1573 			ret = compat_ptrace_request(child, request, addr,
1574 						    data);
1575 			break;
1576 	}
1577 
1578 	return ret;
1579 }
1580 #endif /* CONFIG_COMPAT */
1581 
1582 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1583 {
1584 #ifdef CONFIG_COMPAT
1585 	/*
1586 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1587 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1588 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1589 	 * access to the TLS register.
1590 	 */
1591 	if (is_compat_task())
1592 		return &user_aarch32_view;
1593 	else if (is_compat_thread(task_thread_info(task)))
1594 		return &user_aarch32_ptrace_view;
1595 #endif
1596 	return &user_aarch64_view;
1597 }
1598 
1599 long arch_ptrace(struct task_struct *child, long request,
1600 		 unsigned long addr, unsigned long data)
1601 {
1602 	return ptrace_request(child, request, addr, data);
1603 }
1604 
1605 enum ptrace_syscall_dir {
1606 	PTRACE_SYSCALL_ENTER = 0,
1607 	PTRACE_SYSCALL_EXIT,
1608 };
1609 
1610 static void tracehook_report_syscall(struct pt_regs *regs,
1611 				     enum ptrace_syscall_dir dir)
1612 {
1613 	int regno;
1614 	unsigned long saved_reg;
1615 
1616 	/*
1617 	 * A scratch register (ip(r12) on AArch32, x7 on AArch64) is
1618 	 * used to denote syscall entry/exit:
1619 	 */
1620 	regno = (is_compat_task() ? 12 : 7);
1621 	saved_reg = regs->regs[regno];
1622 	regs->regs[regno] = dir;
1623 
1624 	if (dir == PTRACE_SYSCALL_EXIT)
1625 		tracehook_report_syscall_exit(regs, 0);
1626 	else if (tracehook_report_syscall_entry(regs))
1627 		forget_syscall(regs);
1628 
1629 	regs->regs[regno] = saved_reg;
1630 }
1631 
1632 asmlinkage int syscall_trace_enter(struct pt_regs *regs)
1633 {
1634 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1635 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1636 
1637 	/* Do the secure computing after ptrace; failures should be fast. */
1638 	if (secure_computing(NULL) == -1)
1639 		return -1;
1640 
1641 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1642 		trace_sys_enter(regs, regs->syscallno);
1643 
1644 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1645 			    regs->regs[2], regs->regs[3]);
1646 
1647 	return regs->syscallno;
1648 }
1649 
1650 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
1651 {
1652 	audit_syscall_exit(regs);
1653 
1654 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1655 		trace_sys_exit(regs, regs_return_value(regs));
1656 
1657 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1658 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1659 }
1660 
1661 /*
1662  * Bits which are always architecturally RES0 per ARM DDI 0487A.h
1663  * Userspace cannot use these until they have an architectural meaning.
1664  * We also reserve IL for the kernel; SS is handled dynamically.
1665  */
1666 #define SPSR_EL1_AARCH64_RES0_BITS \
1667 	(GENMASK_ULL(63,32) | GENMASK_ULL(27, 22) | GENMASK_ULL(20, 10) | \
1668 	 GENMASK_ULL(5, 5))
1669 #define SPSR_EL1_AARCH32_RES0_BITS \
1670 	(GENMASK_ULL(63,32) | GENMASK_ULL(24, 22) | GENMASK_ULL(20,20))
1671 
1672 static int valid_compat_regs(struct user_pt_regs *regs)
1673 {
1674 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1675 
1676 	if (!system_supports_mixed_endian_el0()) {
1677 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1678 			regs->pstate |= COMPAT_PSR_E_BIT;
1679 		else
1680 			regs->pstate &= ~COMPAT_PSR_E_BIT;
1681 	}
1682 
1683 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1684 	    (regs->pstate & COMPAT_PSR_A_BIT) == 0 &&
1685 	    (regs->pstate & COMPAT_PSR_I_BIT) == 0 &&
1686 	    (regs->pstate & COMPAT_PSR_F_BIT) == 0) {
1687 		return 1;
1688 	}
1689 
1690 	/*
1691 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1692 	 * arch/arm.
1693 	 */
1694 	regs->pstate &= COMPAT_PSR_N_BIT | COMPAT_PSR_Z_BIT |
1695 			COMPAT_PSR_C_BIT | COMPAT_PSR_V_BIT |
1696 			COMPAT_PSR_Q_BIT | COMPAT_PSR_IT_MASK |
1697 			COMPAT_PSR_GE_MASK | COMPAT_PSR_E_BIT |
1698 			COMPAT_PSR_T_BIT;
1699 	regs->pstate |= PSR_MODE32_BIT;
1700 
1701 	return 0;
1702 }
1703 
1704 static int valid_native_regs(struct user_pt_regs *regs)
1705 {
1706 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1707 
1708 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1709 	    (regs->pstate & PSR_D_BIT) == 0 &&
1710 	    (regs->pstate & PSR_A_BIT) == 0 &&
1711 	    (regs->pstate & PSR_I_BIT) == 0 &&
1712 	    (regs->pstate & PSR_F_BIT) == 0) {
1713 		return 1;
1714 	}
1715 
1716 	/* Force PSR to a valid 64-bit EL0t */
1717 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1718 
1719 	return 0;
1720 }
1721 
1722 /*
1723  * Are the current registers suitable for user mode? (used to maintain
1724  * security in signal handlers)
1725  */
1726 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1727 {
1728 	if (!test_tsk_thread_flag(task, TIF_SINGLESTEP))
1729 		regs->pstate &= ~DBG_SPSR_SS;
1730 
1731 	if (is_compat_thread(task_thread_info(task)))
1732 		return valid_compat_regs(regs);
1733 	else
1734 		return valid_native_regs(regs);
1735 }
1736