xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/pgtable.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46 
47 struct pt_regs_offset {
48 	const char *name;
49 	int offset;
50 };
51 
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56 
57 static const struct pt_regs_offset regoffset_table[] = {
58 	GPR_OFFSET_NAME(0),
59 	GPR_OFFSET_NAME(1),
60 	GPR_OFFSET_NAME(2),
61 	GPR_OFFSET_NAME(3),
62 	GPR_OFFSET_NAME(4),
63 	GPR_OFFSET_NAME(5),
64 	GPR_OFFSET_NAME(6),
65 	GPR_OFFSET_NAME(7),
66 	GPR_OFFSET_NAME(8),
67 	GPR_OFFSET_NAME(9),
68 	GPR_OFFSET_NAME(10),
69 	GPR_OFFSET_NAME(11),
70 	GPR_OFFSET_NAME(12),
71 	GPR_OFFSET_NAME(13),
72 	GPR_OFFSET_NAME(14),
73 	GPR_OFFSET_NAME(15),
74 	GPR_OFFSET_NAME(16),
75 	GPR_OFFSET_NAME(17),
76 	GPR_OFFSET_NAME(18),
77 	GPR_OFFSET_NAME(19),
78 	GPR_OFFSET_NAME(20),
79 	GPR_OFFSET_NAME(21),
80 	GPR_OFFSET_NAME(22),
81 	GPR_OFFSET_NAME(23),
82 	GPR_OFFSET_NAME(24),
83 	GPR_OFFSET_NAME(25),
84 	GPR_OFFSET_NAME(26),
85 	GPR_OFFSET_NAME(27),
86 	GPR_OFFSET_NAME(28),
87 	GPR_OFFSET_NAME(29),
88 	GPR_OFFSET_NAME(30),
89 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 	REG_OFFSET_NAME(sp),
91 	REG_OFFSET_NAME(pc),
92 	REG_OFFSET_NAME(pstate),
93 	REG_OFFSET_END,
94 };
95 
96 /**
97  * regs_query_register_offset() - query register offset from its name
98  * @name:	the name of a register
99  *
100  * regs_query_register_offset() returns the offset of a register in struct
101  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102  */
103 int regs_query_register_offset(const char *name)
104 {
105 	const struct pt_regs_offset *roff;
106 
107 	for (roff = regoffset_table; roff->name != NULL; roff++)
108 		if (!strcmp(roff->name, name))
109 			return roff->offset;
110 	return -EINVAL;
111 }
112 
113 /**
114  * regs_within_kernel_stack() - check the address in the stack
115  * @regs:      pt_regs which contains kernel stack pointer.
116  * @addr:      address which is checked.
117  *
118  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119  * If @addr is within the kernel stack, it returns true. If not, returns false.
120  */
121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 	return ((addr & ~(THREAD_SIZE - 1))  ==
124 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 		on_irq_stack(addr, NULL);
126 }
127 
128 /**
129  * regs_get_kernel_stack_nth() - get Nth entry of the stack
130  * @regs:	pt_regs which contains kernel stack pointer.
131  * @n:		stack entry number.
132  *
133  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135  * this returns 0.
136  */
137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140 
141 	addr += n;
142 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 		return *addr;
144 	else
145 		return 0;
146 }
147 
148 /*
149  * TODO: does not yet catch signals sent when the child dies.
150  * in exit.c or in signal.c.
151  */
152 
153 /*
154  * Called by kernel/ptrace.c when detaching..
155  */
156 void ptrace_disable(struct task_struct *child)
157 {
158 	/*
159 	 * This would be better off in core code, but PTRACE_DETACH has
160 	 * grown its fair share of arch-specific worts and changing it
161 	 * is likely to cause regressions on obscure architectures.
162 	 */
163 	user_disable_single_step(child);
164 }
165 
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168  * Handle hitting a HW-breakpoint.
169  */
170 static void ptrace_hbptriggered(struct perf_event *bp,
171 				struct perf_sample_data *data,
172 				struct pt_regs *regs)
173 {
174 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 	const char *desc = "Hardware breakpoint trap (ptrace)";
176 
177 #ifdef CONFIG_COMPAT
178 	if (is_compat_task()) {
179 		int si_errno = 0;
180 		int i;
181 
182 		for (i = 0; i < ARM_MAX_BRP; ++i) {
183 			if (current->thread.debug.hbp_break[i] == bp) {
184 				si_errno = (i << 1) + 1;
185 				break;
186 			}
187 		}
188 
189 		for (i = 0; i < ARM_MAX_WRP; ++i) {
190 			if (current->thread.debug.hbp_watch[i] == bp) {
191 				si_errno = -((i << 1) + 1);
192 				break;
193 			}
194 		}
195 		arm64_force_sig_ptrace_errno_trap(si_errno,
196 						  (void __user *)bkpt->trigger,
197 						  desc);
198 	}
199 #endif
200 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT,
201 			      (void __user *)(bkpt->trigger),
202 			      desc);
203 }
204 
205 /*
206  * Unregister breakpoints from this task and reset the pointers in
207  * the thread_struct.
208  */
209 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
210 {
211 	int i;
212 	struct thread_struct *t = &tsk->thread;
213 
214 	for (i = 0; i < ARM_MAX_BRP; i++) {
215 		if (t->debug.hbp_break[i]) {
216 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
217 			t->debug.hbp_break[i] = NULL;
218 		}
219 	}
220 
221 	for (i = 0; i < ARM_MAX_WRP; i++) {
222 		if (t->debug.hbp_watch[i]) {
223 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
224 			t->debug.hbp_watch[i] = NULL;
225 		}
226 	}
227 }
228 
229 void ptrace_hw_copy_thread(struct task_struct *tsk)
230 {
231 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
232 }
233 
234 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
235 					       struct task_struct *tsk,
236 					       unsigned long idx)
237 {
238 	struct perf_event *bp = ERR_PTR(-EINVAL);
239 
240 	switch (note_type) {
241 	case NT_ARM_HW_BREAK:
242 		if (idx >= ARM_MAX_BRP)
243 			goto out;
244 		idx = array_index_nospec(idx, ARM_MAX_BRP);
245 		bp = tsk->thread.debug.hbp_break[idx];
246 		break;
247 	case NT_ARM_HW_WATCH:
248 		if (idx >= ARM_MAX_WRP)
249 			goto out;
250 		idx = array_index_nospec(idx, ARM_MAX_WRP);
251 		bp = tsk->thread.debug.hbp_watch[idx];
252 		break;
253 	}
254 
255 out:
256 	return bp;
257 }
258 
259 static int ptrace_hbp_set_event(unsigned int note_type,
260 				struct task_struct *tsk,
261 				unsigned long idx,
262 				struct perf_event *bp)
263 {
264 	int err = -EINVAL;
265 
266 	switch (note_type) {
267 	case NT_ARM_HW_BREAK:
268 		if (idx >= ARM_MAX_BRP)
269 			goto out;
270 		idx = array_index_nospec(idx, ARM_MAX_BRP);
271 		tsk->thread.debug.hbp_break[idx] = bp;
272 		err = 0;
273 		break;
274 	case NT_ARM_HW_WATCH:
275 		if (idx >= ARM_MAX_WRP)
276 			goto out;
277 		idx = array_index_nospec(idx, ARM_MAX_WRP);
278 		tsk->thread.debug.hbp_watch[idx] = bp;
279 		err = 0;
280 		break;
281 	}
282 
283 out:
284 	return err;
285 }
286 
287 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
288 					    struct task_struct *tsk,
289 					    unsigned long idx)
290 {
291 	struct perf_event *bp;
292 	struct perf_event_attr attr;
293 	int err, type;
294 
295 	switch (note_type) {
296 	case NT_ARM_HW_BREAK:
297 		type = HW_BREAKPOINT_X;
298 		break;
299 	case NT_ARM_HW_WATCH:
300 		type = HW_BREAKPOINT_RW;
301 		break;
302 	default:
303 		return ERR_PTR(-EINVAL);
304 	}
305 
306 	ptrace_breakpoint_init(&attr);
307 
308 	/*
309 	 * Initialise fields to sane defaults
310 	 * (i.e. values that will pass validation).
311 	 */
312 	attr.bp_addr	= 0;
313 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
314 	attr.bp_type	= type;
315 	attr.disabled	= 1;
316 
317 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
318 	if (IS_ERR(bp))
319 		return bp;
320 
321 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
322 	if (err)
323 		return ERR_PTR(err);
324 
325 	return bp;
326 }
327 
328 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
329 				     struct arch_hw_breakpoint_ctrl ctrl,
330 				     struct perf_event_attr *attr)
331 {
332 	int err, len, type, offset, disabled = !ctrl.enabled;
333 
334 	attr->disabled = disabled;
335 	if (disabled)
336 		return 0;
337 
338 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
339 	if (err)
340 		return err;
341 
342 	switch (note_type) {
343 	case NT_ARM_HW_BREAK:
344 		if ((type & HW_BREAKPOINT_X) != type)
345 			return -EINVAL;
346 		break;
347 	case NT_ARM_HW_WATCH:
348 		if ((type & HW_BREAKPOINT_RW) != type)
349 			return -EINVAL;
350 		break;
351 	default:
352 		return -EINVAL;
353 	}
354 
355 	attr->bp_len	= len;
356 	attr->bp_type	= type;
357 	attr->bp_addr	+= offset;
358 
359 	return 0;
360 }
361 
362 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
363 {
364 	u8 num;
365 	u32 reg = 0;
366 
367 	switch (note_type) {
368 	case NT_ARM_HW_BREAK:
369 		num = hw_breakpoint_slots(TYPE_INST);
370 		break;
371 	case NT_ARM_HW_WATCH:
372 		num = hw_breakpoint_slots(TYPE_DATA);
373 		break;
374 	default:
375 		return -EINVAL;
376 	}
377 
378 	reg |= debug_monitors_arch();
379 	reg <<= 8;
380 	reg |= num;
381 
382 	*info = reg;
383 	return 0;
384 }
385 
386 static int ptrace_hbp_get_ctrl(unsigned int note_type,
387 			       struct task_struct *tsk,
388 			       unsigned long idx,
389 			       u32 *ctrl)
390 {
391 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
392 
393 	if (IS_ERR(bp))
394 		return PTR_ERR(bp);
395 
396 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
397 	return 0;
398 }
399 
400 static int ptrace_hbp_get_addr(unsigned int note_type,
401 			       struct task_struct *tsk,
402 			       unsigned long idx,
403 			       u64 *addr)
404 {
405 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
406 
407 	if (IS_ERR(bp))
408 		return PTR_ERR(bp);
409 
410 	*addr = bp ? counter_arch_bp(bp)->address : 0;
411 	return 0;
412 }
413 
414 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
415 							struct task_struct *tsk,
416 							unsigned long idx)
417 {
418 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
419 
420 	if (!bp)
421 		bp = ptrace_hbp_create(note_type, tsk, idx);
422 
423 	return bp;
424 }
425 
426 static int ptrace_hbp_set_ctrl(unsigned int note_type,
427 			       struct task_struct *tsk,
428 			       unsigned long idx,
429 			       u32 uctrl)
430 {
431 	int err;
432 	struct perf_event *bp;
433 	struct perf_event_attr attr;
434 	struct arch_hw_breakpoint_ctrl ctrl;
435 
436 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
437 	if (IS_ERR(bp)) {
438 		err = PTR_ERR(bp);
439 		return err;
440 	}
441 
442 	attr = bp->attr;
443 	decode_ctrl_reg(uctrl, &ctrl);
444 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
445 	if (err)
446 		return err;
447 
448 	return modify_user_hw_breakpoint(bp, &attr);
449 }
450 
451 static int ptrace_hbp_set_addr(unsigned int note_type,
452 			       struct task_struct *tsk,
453 			       unsigned long idx,
454 			       u64 addr)
455 {
456 	int err;
457 	struct perf_event *bp;
458 	struct perf_event_attr attr;
459 
460 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
461 	if (IS_ERR(bp)) {
462 		err = PTR_ERR(bp);
463 		return err;
464 	}
465 
466 	attr = bp->attr;
467 	attr.bp_addr = addr;
468 	err = modify_user_hw_breakpoint(bp, &attr);
469 	return err;
470 }
471 
472 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
473 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
474 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
475 
476 static int hw_break_get(struct task_struct *target,
477 			const struct user_regset *regset,
478 			unsigned int pos, unsigned int count,
479 			void *kbuf, void __user *ubuf)
480 {
481 	unsigned int note_type = regset->core_note_type;
482 	int ret, idx = 0, offset, limit;
483 	u32 info, ctrl;
484 	u64 addr;
485 
486 	/* Resource info */
487 	ret = ptrace_hbp_get_resource_info(note_type, &info);
488 	if (ret)
489 		return ret;
490 
491 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &info, 0,
492 				  sizeof(info));
493 	if (ret)
494 		return ret;
495 
496 	/* Pad */
497 	offset = offsetof(struct user_hwdebug_state, pad);
498 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, offset,
499 				       offset + PTRACE_HBP_PAD_SZ);
500 	if (ret)
501 		return ret;
502 
503 	/* (address, ctrl) registers */
504 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
505 	limit = regset->n * regset->size;
506 	while (count && offset < limit) {
507 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
508 		if (ret)
509 			return ret;
510 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &addr,
511 					  offset, offset + PTRACE_HBP_ADDR_SZ);
512 		if (ret)
513 			return ret;
514 		offset += PTRACE_HBP_ADDR_SZ;
515 
516 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
517 		if (ret)
518 			return ret;
519 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &ctrl,
520 					  offset, offset + PTRACE_HBP_CTRL_SZ);
521 		if (ret)
522 			return ret;
523 		offset += PTRACE_HBP_CTRL_SZ;
524 
525 		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
526 					       offset,
527 					       offset + PTRACE_HBP_PAD_SZ);
528 		if (ret)
529 			return ret;
530 		offset += PTRACE_HBP_PAD_SZ;
531 		idx++;
532 	}
533 
534 	return 0;
535 }
536 
537 static int hw_break_set(struct task_struct *target,
538 			const struct user_regset *regset,
539 			unsigned int pos, unsigned int count,
540 			const void *kbuf, const void __user *ubuf)
541 {
542 	unsigned int note_type = regset->core_note_type;
543 	int ret, idx = 0, offset, limit;
544 	u32 ctrl;
545 	u64 addr;
546 
547 	/* Resource info and pad */
548 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
549 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
550 	if (ret)
551 		return ret;
552 
553 	/* (address, ctrl) registers */
554 	limit = regset->n * regset->size;
555 	while (count && offset < limit) {
556 		if (count < PTRACE_HBP_ADDR_SZ)
557 			return -EINVAL;
558 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
559 					 offset, offset + PTRACE_HBP_ADDR_SZ);
560 		if (ret)
561 			return ret;
562 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
563 		if (ret)
564 			return ret;
565 		offset += PTRACE_HBP_ADDR_SZ;
566 
567 		if (!count)
568 			break;
569 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
570 					 offset, offset + PTRACE_HBP_CTRL_SZ);
571 		if (ret)
572 			return ret;
573 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
574 		if (ret)
575 			return ret;
576 		offset += PTRACE_HBP_CTRL_SZ;
577 
578 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
579 						offset,
580 						offset + PTRACE_HBP_PAD_SZ);
581 		if (ret)
582 			return ret;
583 		offset += PTRACE_HBP_PAD_SZ;
584 		idx++;
585 	}
586 
587 	return 0;
588 }
589 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
590 
591 static int gpr_get(struct task_struct *target,
592 		   const struct user_regset *regset,
593 		   unsigned int pos, unsigned int count,
594 		   void *kbuf, void __user *ubuf)
595 {
596 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
597 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0, -1);
598 }
599 
600 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
601 		   unsigned int pos, unsigned int count,
602 		   const void *kbuf, const void __user *ubuf)
603 {
604 	int ret;
605 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
606 
607 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
608 	if (ret)
609 		return ret;
610 
611 	if (!valid_user_regs(&newregs, target))
612 		return -EINVAL;
613 
614 	task_pt_regs(target)->user_regs = newregs;
615 	return 0;
616 }
617 
618 /*
619  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
620  */
621 static int __fpr_get(struct task_struct *target,
622 		     const struct user_regset *regset,
623 		     unsigned int pos, unsigned int count,
624 		     void *kbuf, void __user *ubuf, unsigned int start_pos)
625 {
626 	struct user_fpsimd_state *uregs;
627 
628 	sve_sync_to_fpsimd(target);
629 
630 	uregs = &target->thread.uw.fpsimd_state;
631 
632 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
633 				   start_pos, start_pos + sizeof(*uregs));
634 }
635 
636 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
637 		   unsigned int pos, unsigned int count,
638 		   void *kbuf, void __user *ubuf)
639 {
640 	if (target == current)
641 		fpsimd_preserve_current_state();
642 
643 	return __fpr_get(target, regset, pos, count, kbuf, ubuf, 0);
644 }
645 
646 static int __fpr_set(struct task_struct *target,
647 		     const struct user_regset *regset,
648 		     unsigned int pos, unsigned int count,
649 		     const void *kbuf, const void __user *ubuf,
650 		     unsigned int start_pos)
651 {
652 	int ret;
653 	struct user_fpsimd_state newstate;
654 
655 	/*
656 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
657 	 * short copyin can't resurrect stale data.
658 	 */
659 	sve_sync_to_fpsimd(target);
660 
661 	newstate = target->thread.uw.fpsimd_state;
662 
663 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
664 				 start_pos, start_pos + sizeof(newstate));
665 	if (ret)
666 		return ret;
667 
668 	target->thread.uw.fpsimd_state = newstate;
669 
670 	return ret;
671 }
672 
673 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
674 		   unsigned int pos, unsigned int count,
675 		   const void *kbuf, const void __user *ubuf)
676 {
677 	int ret;
678 
679 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
680 	if (ret)
681 		return ret;
682 
683 	sve_sync_from_fpsimd_zeropad(target);
684 	fpsimd_flush_task_state(target);
685 
686 	return ret;
687 }
688 
689 static int tls_get(struct task_struct *target, const struct user_regset *regset,
690 		   unsigned int pos, unsigned int count,
691 		   void *kbuf, void __user *ubuf)
692 {
693 	unsigned long *tls = &target->thread.uw.tp_value;
694 
695 	if (target == current)
696 		tls_preserve_current_state();
697 
698 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, tls, 0, -1);
699 }
700 
701 static int tls_set(struct task_struct *target, const struct user_regset *regset,
702 		   unsigned int pos, unsigned int count,
703 		   const void *kbuf, const void __user *ubuf)
704 {
705 	int ret;
706 	unsigned long tls = target->thread.uw.tp_value;
707 
708 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
709 	if (ret)
710 		return ret;
711 
712 	target->thread.uw.tp_value = tls;
713 	return ret;
714 }
715 
716 static int system_call_get(struct task_struct *target,
717 			   const struct user_regset *regset,
718 			   unsigned int pos, unsigned int count,
719 			   void *kbuf, void __user *ubuf)
720 {
721 	int syscallno = task_pt_regs(target)->syscallno;
722 
723 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
724 				   &syscallno, 0, -1);
725 }
726 
727 static int system_call_set(struct task_struct *target,
728 			   const struct user_regset *regset,
729 			   unsigned int pos, unsigned int count,
730 			   const void *kbuf, const void __user *ubuf)
731 {
732 	int syscallno = task_pt_regs(target)->syscallno;
733 	int ret;
734 
735 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
736 	if (ret)
737 		return ret;
738 
739 	task_pt_regs(target)->syscallno = syscallno;
740 	return ret;
741 }
742 
743 #ifdef CONFIG_ARM64_SVE
744 
745 static void sve_init_header_from_task(struct user_sve_header *header,
746 				      struct task_struct *target)
747 {
748 	unsigned int vq;
749 
750 	memset(header, 0, sizeof(*header));
751 
752 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
753 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
754 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
755 		header->flags |= SVE_PT_VL_INHERIT;
756 
757 	header->vl = target->thread.sve_vl;
758 	vq = sve_vq_from_vl(header->vl);
759 
760 	header->max_vl = sve_max_vl;
761 	header->size = SVE_PT_SIZE(vq, header->flags);
762 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
763 				      SVE_PT_REGS_SVE);
764 }
765 
766 static unsigned int sve_size_from_header(struct user_sve_header const *header)
767 {
768 	return ALIGN(header->size, SVE_VQ_BYTES);
769 }
770 
771 static unsigned int sve_get_size(struct task_struct *target,
772 				 const struct user_regset *regset)
773 {
774 	struct user_sve_header header;
775 
776 	if (!system_supports_sve())
777 		return 0;
778 
779 	sve_init_header_from_task(&header, target);
780 	return sve_size_from_header(&header);
781 }
782 
783 static int sve_get(struct task_struct *target,
784 		   const struct user_regset *regset,
785 		   unsigned int pos, unsigned int count,
786 		   void *kbuf, void __user *ubuf)
787 {
788 	int ret;
789 	struct user_sve_header header;
790 	unsigned int vq;
791 	unsigned long start, end;
792 
793 	if (!system_supports_sve())
794 		return -EINVAL;
795 
796 	/* Header */
797 	sve_init_header_from_task(&header, target);
798 	vq = sve_vq_from_vl(header.vl);
799 
800 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &header,
801 				  0, sizeof(header));
802 	if (ret)
803 		return ret;
804 
805 	if (target == current)
806 		fpsimd_preserve_current_state();
807 
808 	/* Registers: FPSIMD-only case */
809 
810 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
811 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
812 		return __fpr_get(target, regset, pos, count, kbuf, ubuf,
813 				 SVE_PT_FPSIMD_OFFSET);
814 
815 	/* Otherwise: full SVE case */
816 
817 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
818 	start = SVE_PT_SVE_OFFSET;
819 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
820 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
821 				  target->thread.sve_state,
822 				  start, end);
823 	if (ret)
824 		return ret;
825 
826 	start = end;
827 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
828 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
829 				       start, end);
830 	if (ret)
831 		return ret;
832 
833 	/*
834 	 * Copy fpsr, and fpcr which must follow contiguously in
835 	 * struct fpsimd_state:
836 	 */
837 	start = end;
838 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
839 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
840 				  &target->thread.uw.fpsimd_state.fpsr,
841 				  start, end);
842 	if (ret)
843 		return ret;
844 
845 	start = end;
846 	end = sve_size_from_header(&header);
847 	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
848 					start, end);
849 }
850 
851 static int sve_set(struct task_struct *target,
852 		   const struct user_regset *regset,
853 		   unsigned int pos, unsigned int count,
854 		   const void *kbuf, const void __user *ubuf)
855 {
856 	int ret;
857 	struct user_sve_header header;
858 	unsigned int vq;
859 	unsigned long start, end;
860 
861 	if (!system_supports_sve())
862 		return -EINVAL;
863 
864 	/* Header */
865 	if (count < sizeof(header))
866 		return -EINVAL;
867 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
868 				 0, sizeof(header));
869 	if (ret)
870 		goto out;
871 
872 	/*
873 	 * Apart from PT_SVE_REGS_MASK, all PT_SVE_* flags are consumed by
874 	 * sve_set_vector_length(), which will also validate them for us:
875 	 */
876 	ret = sve_set_vector_length(target, header.vl,
877 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
878 	if (ret)
879 		goto out;
880 
881 	/* Actual VL set may be less than the user asked for: */
882 	vq = sve_vq_from_vl(target->thread.sve_vl);
883 
884 	/* Registers: FPSIMD-only case */
885 
886 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
887 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
888 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
889 				SVE_PT_FPSIMD_OFFSET);
890 		clear_tsk_thread_flag(target, TIF_SVE);
891 		goto out;
892 	}
893 
894 	/* Otherwise: full SVE case */
895 
896 	/*
897 	 * If setting a different VL from the requested VL and there is
898 	 * register data, the data layout will be wrong: don't even
899 	 * try to set the registers in this case.
900 	 */
901 	if (count && vq != sve_vq_from_vl(header.vl)) {
902 		ret = -EIO;
903 		goto out;
904 	}
905 
906 	sve_alloc(target);
907 
908 	/*
909 	 * Ensure target->thread.sve_state is up to date with target's
910 	 * FPSIMD regs, so that a short copyin leaves trailing registers
911 	 * unmodified.
912 	 */
913 	fpsimd_sync_to_sve(target);
914 	set_tsk_thread_flag(target, TIF_SVE);
915 
916 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
917 	start = SVE_PT_SVE_OFFSET;
918 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
919 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
920 				 target->thread.sve_state,
921 				 start, end);
922 	if (ret)
923 		goto out;
924 
925 	start = end;
926 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
927 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
928 					start, end);
929 	if (ret)
930 		goto out;
931 
932 	/*
933 	 * Copy fpsr, and fpcr which must follow contiguously in
934 	 * struct fpsimd_state:
935 	 */
936 	start = end;
937 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
938 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
939 				 &target->thread.uw.fpsimd_state.fpsr,
940 				 start, end);
941 
942 out:
943 	fpsimd_flush_task_state(target);
944 	return ret;
945 }
946 
947 #endif /* CONFIG_ARM64_SVE */
948 
949 #ifdef CONFIG_ARM64_PTR_AUTH
950 static int pac_mask_get(struct task_struct *target,
951 			const struct user_regset *regset,
952 			unsigned int pos, unsigned int count,
953 			void *kbuf, void __user *ubuf)
954 {
955 	/*
956 	 * The PAC bits can differ across data and instruction pointers
957 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
958 	 * we expose separate masks.
959 	 */
960 	unsigned long mask = ptrauth_user_pac_mask();
961 	struct user_pac_mask uregs = {
962 		.data_mask = mask,
963 		.insn_mask = mask,
964 	};
965 
966 	if (!system_supports_address_auth())
967 		return -EINVAL;
968 
969 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &uregs, 0, -1);
970 }
971 
972 #ifdef CONFIG_CHECKPOINT_RESTORE
973 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
974 {
975 	return (__uint128_t)key->hi << 64 | key->lo;
976 }
977 
978 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
979 {
980 	struct ptrauth_key key = {
981 		.lo = (unsigned long)ukey,
982 		.hi = (unsigned long)(ukey >> 64),
983 	};
984 
985 	return key;
986 }
987 
988 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
989 				     const struct ptrauth_keys *keys)
990 {
991 	ukeys->apiakey = pac_key_to_user(&keys->apia);
992 	ukeys->apibkey = pac_key_to_user(&keys->apib);
993 	ukeys->apdakey = pac_key_to_user(&keys->apda);
994 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
995 }
996 
997 static void pac_address_keys_from_user(struct ptrauth_keys *keys,
998 				       const struct user_pac_address_keys *ukeys)
999 {
1000 	keys->apia = pac_key_from_user(ukeys->apiakey);
1001 	keys->apib = pac_key_from_user(ukeys->apibkey);
1002 	keys->apda = pac_key_from_user(ukeys->apdakey);
1003 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1004 }
1005 
1006 static int pac_address_keys_get(struct task_struct *target,
1007 				const struct user_regset *regset,
1008 				unsigned int pos, unsigned int count,
1009 				void *kbuf, void __user *ubuf)
1010 {
1011 	struct ptrauth_keys *keys = &target->thread.keys_user;
1012 	struct user_pac_address_keys user_keys;
1013 
1014 	if (!system_supports_address_auth())
1015 		return -EINVAL;
1016 
1017 	pac_address_keys_to_user(&user_keys, keys);
1018 
1019 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1020 				   &user_keys, 0, -1);
1021 }
1022 
1023 static int pac_address_keys_set(struct task_struct *target,
1024 				const struct user_regset *regset,
1025 				unsigned int pos, unsigned int count,
1026 				const void *kbuf, const void __user *ubuf)
1027 {
1028 	struct ptrauth_keys *keys = &target->thread.keys_user;
1029 	struct user_pac_address_keys user_keys;
1030 	int ret;
1031 
1032 	if (!system_supports_address_auth())
1033 		return -EINVAL;
1034 
1035 	pac_address_keys_to_user(&user_keys, keys);
1036 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1037 				 &user_keys, 0, -1);
1038 	if (ret)
1039 		return ret;
1040 	pac_address_keys_from_user(keys, &user_keys);
1041 
1042 	return 0;
1043 }
1044 
1045 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1046 				     const struct ptrauth_keys *keys)
1047 {
1048 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1049 }
1050 
1051 static void pac_generic_keys_from_user(struct ptrauth_keys *keys,
1052 				       const struct user_pac_generic_keys *ukeys)
1053 {
1054 	keys->apga = pac_key_from_user(ukeys->apgakey);
1055 }
1056 
1057 static int pac_generic_keys_get(struct task_struct *target,
1058 				const struct user_regset *regset,
1059 				unsigned int pos, unsigned int count,
1060 				void *kbuf, void __user *ubuf)
1061 {
1062 	struct ptrauth_keys *keys = &target->thread.keys_user;
1063 	struct user_pac_generic_keys user_keys;
1064 
1065 	if (!system_supports_generic_auth())
1066 		return -EINVAL;
1067 
1068 	pac_generic_keys_to_user(&user_keys, keys);
1069 
1070 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1071 				   &user_keys, 0, -1);
1072 }
1073 
1074 static int pac_generic_keys_set(struct task_struct *target,
1075 				const struct user_regset *regset,
1076 				unsigned int pos, unsigned int count,
1077 				const void *kbuf, const void __user *ubuf)
1078 {
1079 	struct ptrauth_keys *keys = &target->thread.keys_user;
1080 	struct user_pac_generic_keys user_keys;
1081 	int ret;
1082 
1083 	if (!system_supports_generic_auth())
1084 		return -EINVAL;
1085 
1086 	pac_generic_keys_to_user(&user_keys, keys);
1087 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1088 				 &user_keys, 0, -1);
1089 	if (ret)
1090 		return ret;
1091 	pac_generic_keys_from_user(keys, &user_keys);
1092 
1093 	return 0;
1094 }
1095 #endif /* CONFIG_CHECKPOINT_RESTORE */
1096 #endif /* CONFIG_ARM64_PTR_AUTH */
1097 
1098 enum aarch64_regset {
1099 	REGSET_GPR,
1100 	REGSET_FPR,
1101 	REGSET_TLS,
1102 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1103 	REGSET_HW_BREAK,
1104 	REGSET_HW_WATCH,
1105 #endif
1106 	REGSET_SYSTEM_CALL,
1107 #ifdef CONFIG_ARM64_SVE
1108 	REGSET_SVE,
1109 #endif
1110 #ifdef CONFIG_ARM64_PTR_AUTH
1111 	REGSET_PAC_MASK,
1112 #ifdef CONFIG_CHECKPOINT_RESTORE
1113 	REGSET_PACA_KEYS,
1114 	REGSET_PACG_KEYS,
1115 #endif
1116 #endif
1117 };
1118 
1119 static const struct user_regset aarch64_regsets[] = {
1120 	[REGSET_GPR] = {
1121 		.core_note_type = NT_PRSTATUS,
1122 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1123 		.size = sizeof(u64),
1124 		.align = sizeof(u64),
1125 		.get = gpr_get,
1126 		.set = gpr_set
1127 	},
1128 	[REGSET_FPR] = {
1129 		.core_note_type = NT_PRFPREG,
1130 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1131 		/*
1132 		 * We pretend we have 32-bit registers because the fpsr and
1133 		 * fpcr are 32-bits wide.
1134 		 */
1135 		.size = sizeof(u32),
1136 		.align = sizeof(u32),
1137 		.get = fpr_get,
1138 		.set = fpr_set
1139 	},
1140 	[REGSET_TLS] = {
1141 		.core_note_type = NT_ARM_TLS,
1142 		.n = 1,
1143 		.size = sizeof(void *),
1144 		.align = sizeof(void *),
1145 		.get = tls_get,
1146 		.set = tls_set,
1147 	},
1148 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1149 	[REGSET_HW_BREAK] = {
1150 		.core_note_type = NT_ARM_HW_BREAK,
1151 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1152 		.size = sizeof(u32),
1153 		.align = sizeof(u32),
1154 		.get = hw_break_get,
1155 		.set = hw_break_set,
1156 	},
1157 	[REGSET_HW_WATCH] = {
1158 		.core_note_type = NT_ARM_HW_WATCH,
1159 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1160 		.size = sizeof(u32),
1161 		.align = sizeof(u32),
1162 		.get = hw_break_get,
1163 		.set = hw_break_set,
1164 	},
1165 #endif
1166 	[REGSET_SYSTEM_CALL] = {
1167 		.core_note_type = NT_ARM_SYSTEM_CALL,
1168 		.n = 1,
1169 		.size = sizeof(int),
1170 		.align = sizeof(int),
1171 		.get = system_call_get,
1172 		.set = system_call_set,
1173 	},
1174 #ifdef CONFIG_ARM64_SVE
1175 	[REGSET_SVE] = { /* Scalable Vector Extension */
1176 		.core_note_type = NT_ARM_SVE,
1177 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1178 				  SVE_VQ_BYTES),
1179 		.size = SVE_VQ_BYTES,
1180 		.align = SVE_VQ_BYTES,
1181 		.get = sve_get,
1182 		.set = sve_set,
1183 		.get_size = sve_get_size,
1184 	},
1185 #endif
1186 #ifdef CONFIG_ARM64_PTR_AUTH
1187 	[REGSET_PAC_MASK] = {
1188 		.core_note_type = NT_ARM_PAC_MASK,
1189 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1190 		.size = sizeof(u64),
1191 		.align = sizeof(u64),
1192 		.get = pac_mask_get,
1193 		/* this cannot be set dynamically */
1194 	},
1195 #ifdef CONFIG_CHECKPOINT_RESTORE
1196 	[REGSET_PACA_KEYS] = {
1197 		.core_note_type = NT_ARM_PACA_KEYS,
1198 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1199 		.size = sizeof(__uint128_t),
1200 		.align = sizeof(__uint128_t),
1201 		.get = pac_address_keys_get,
1202 		.set = pac_address_keys_set,
1203 	},
1204 	[REGSET_PACG_KEYS] = {
1205 		.core_note_type = NT_ARM_PACG_KEYS,
1206 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1207 		.size = sizeof(__uint128_t),
1208 		.align = sizeof(__uint128_t),
1209 		.get = pac_generic_keys_get,
1210 		.set = pac_generic_keys_set,
1211 	},
1212 #endif
1213 #endif
1214 };
1215 
1216 static const struct user_regset_view user_aarch64_view = {
1217 	.name = "aarch64", .e_machine = EM_AARCH64,
1218 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1219 };
1220 
1221 #ifdef CONFIG_COMPAT
1222 enum compat_regset {
1223 	REGSET_COMPAT_GPR,
1224 	REGSET_COMPAT_VFP,
1225 };
1226 
1227 static int compat_gpr_get(struct task_struct *target,
1228 			  const struct user_regset *regset,
1229 			  unsigned int pos, unsigned int count,
1230 			  void *kbuf, void __user *ubuf)
1231 {
1232 	int ret = 0;
1233 	unsigned int i, start, num_regs;
1234 
1235 	/* Calculate the number of AArch32 registers contained in count */
1236 	num_regs = count / regset->size;
1237 
1238 	/* Convert pos into an register number */
1239 	start = pos / regset->size;
1240 
1241 	if (start + num_regs > regset->n)
1242 		return -EIO;
1243 
1244 	for (i = 0; i < num_regs; ++i) {
1245 		unsigned int idx = start + i;
1246 		compat_ulong_t reg;
1247 
1248 		switch (idx) {
1249 		case 15:
1250 			reg = task_pt_regs(target)->pc;
1251 			break;
1252 		case 16:
1253 			reg = task_pt_regs(target)->pstate;
1254 			reg = pstate_to_compat_psr(reg);
1255 			break;
1256 		case 17:
1257 			reg = task_pt_regs(target)->orig_x0;
1258 			break;
1259 		default:
1260 			reg = task_pt_regs(target)->regs[idx];
1261 		}
1262 
1263 		if (kbuf) {
1264 			memcpy(kbuf, &reg, sizeof(reg));
1265 			kbuf += sizeof(reg);
1266 		} else {
1267 			ret = copy_to_user(ubuf, &reg, sizeof(reg));
1268 			if (ret) {
1269 				ret = -EFAULT;
1270 				break;
1271 			}
1272 
1273 			ubuf += sizeof(reg);
1274 		}
1275 	}
1276 
1277 	return ret;
1278 }
1279 
1280 static int compat_gpr_set(struct task_struct *target,
1281 			  const struct user_regset *regset,
1282 			  unsigned int pos, unsigned int count,
1283 			  const void *kbuf, const void __user *ubuf)
1284 {
1285 	struct pt_regs newregs;
1286 	int ret = 0;
1287 	unsigned int i, start, num_regs;
1288 
1289 	/* Calculate the number of AArch32 registers contained in count */
1290 	num_regs = count / regset->size;
1291 
1292 	/* Convert pos into an register number */
1293 	start = pos / regset->size;
1294 
1295 	if (start + num_regs > regset->n)
1296 		return -EIO;
1297 
1298 	newregs = *task_pt_regs(target);
1299 
1300 	for (i = 0; i < num_regs; ++i) {
1301 		unsigned int idx = start + i;
1302 		compat_ulong_t reg;
1303 
1304 		if (kbuf) {
1305 			memcpy(&reg, kbuf, sizeof(reg));
1306 			kbuf += sizeof(reg);
1307 		} else {
1308 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1309 			if (ret) {
1310 				ret = -EFAULT;
1311 				break;
1312 			}
1313 
1314 			ubuf += sizeof(reg);
1315 		}
1316 
1317 		switch (idx) {
1318 		case 15:
1319 			newregs.pc = reg;
1320 			break;
1321 		case 16:
1322 			reg = compat_psr_to_pstate(reg);
1323 			newregs.pstate = reg;
1324 			break;
1325 		case 17:
1326 			newregs.orig_x0 = reg;
1327 			break;
1328 		default:
1329 			newregs.regs[idx] = reg;
1330 		}
1331 
1332 	}
1333 
1334 	if (valid_user_regs(&newregs.user_regs, target))
1335 		*task_pt_regs(target) = newregs;
1336 	else
1337 		ret = -EINVAL;
1338 
1339 	return ret;
1340 }
1341 
1342 static int compat_vfp_get(struct task_struct *target,
1343 			  const struct user_regset *regset,
1344 			  unsigned int pos, unsigned int count,
1345 			  void *kbuf, void __user *ubuf)
1346 {
1347 	struct user_fpsimd_state *uregs;
1348 	compat_ulong_t fpscr;
1349 	int ret, vregs_end_pos;
1350 
1351 	uregs = &target->thread.uw.fpsimd_state;
1352 
1353 	if (target == current)
1354 		fpsimd_preserve_current_state();
1355 
1356 	/*
1357 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1358 	 * nicely together for us. We just need to create the fpscr separately.
1359 	 */
1360 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1361 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
1362 				  0, vregs_end_pos);
1363 
1364 	if (count && !ret) {
1365 		fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1366 			(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1367 
1368 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpscr,
1369 					  vregs_end_pos, VFP_STATE_SIZE);
1370 	}
1371 
1372 	return ret;
1373 }
1374 
1375 static int compat_vfp_set(struct task_struct *target,
1376 			  const struct user_regset *regset,
1377 			  unsigned int pos, unsigned int count,
1378 			  const void *kbuf, const void __user *ubuf)
1379 {
1380 	struct user_fpsimd_state *uregs;
1381 	compat_ulong_t fpscr;
1382 	int ret, vregs_end_pos;
1383 
1384 	uregs = &target->thread.uw.fpsimd_state;
1385 
1386 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1387 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1388 				 vregs_end_pos);
1389 
1390 	if (count && !ret) {
1391 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1392 					 vregs_end_pos, VFP_STATE_SIZE);
1393 		if (!ret) {
1394 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1395 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1396 		}
1397 	}
1398 
1399 	fpsimd_flush_task_state(target);
1400 	return ret;
1401 }
1402 
1403 static int compat_tls_get(struct task_struct *target,
1404 			  const struct user_regset *regset, unsigned int pos,
1405 			  unsigned int count, void *kbuf, void __user *ubuf)
1406 {
1407 	compat_ulong_t tls = (compat_ulong_t)target->thread.uw.tp_value;
1408 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1409 }
1410 
1411 static int compat_tls_set(struct task_struct *target,
1412 			  const struct user_regset *regset, unsigned int pos,
1413 			  unsigned int count, const void *kbuf,
1414 			  const void __user *ubuf)
1415 {
1416 	int ret;
1417 	compat_ulong_t tls = target->thread.uw.tp_value;
1418 
1419 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1420 	if (ret)
1421 		return ret;
1422 
1423 	target->thread.uw.tp_value = tls;
1424 	return ret;
1425 }
1426 
1427 static const struct user_regset aarch32_regsets[] = {
1428 	[REGSET_COMPAT_GPR] = {
1429 		.core_note_type = NT_PRSTATUS,
1430 		.n = COMPAT_ELF_NGREG,
1431 		.size = sizeof(compat_elf_greg_t),
1432 		.align = sizeof(compat_elf_greg_t),
1433 		.get = compat_gpr_get,
1434 		.set = compat_gpr_set
1435 	},
1436 	[REGSET_COMPAT_VFP] = {
1437 		.core_note_type = NT_ARM_VFP,
1438 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1439 		.size = sizeof(compat_ulong_t),
1440 		.align = sizeof(compat_ulong_t),
1441 		.get = compat_vfp_get,
1442 		.set = compat_vfp_set
1443 	},
1444 };
1445 
1446 static const struct user_regset_view user_aarch32_view = {
1447 	.name = "aarch32", .e_machine = EM_ARM,
1448 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1449 };
1450 
1451 static const struct user_regset aarch32_ptrace_regsets[] = {
1452 	[REGSET_GPR] = {
1453 		.core_note_type = NT_PRSTATUS,
1454 		.n = COMPAT_ELF_NGREG,
1455 		.size = sizeof(compat_elf_greg_t),
1456 		.align = sizeof(compat_elf_greg_t),
1457 		.get = compat_gpr_get,
1458 		.set = compat_gpr_set
1459 	},
1460 	[REGSET_FPR] = {
1461 		.core_note_type = NT_ARM_VFP,
1462 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1463 		.size = sizeof(compat_ulong_t),
1464 		.align = sizeof(compat_ulong_t),
1465 		.get = compat_vfp_get,
1466 		.set = compat_vfp_set
1467 	},
1468 	[REGSET_TLS] = {
1469 		.core_note_type = NT_ARM_TLS,
1470 		.n = 1,
1471 		.size = sizeof(compat_ulong_t),
1472 		.align = sizeof(compat_ulong_t),
1473 		.get = compat_tls_get,
1474 		.set = compat_tls_set,
1475 	},
1476 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1477 	[REGSET_HW_BREAK] = {
1478 		.core_note_type = NT_ARM_HW_BREAK,
1479 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1480 		.size = sizeof(u32),
1481 		.align = sizeof(u32),
1482 		.get = hw_break_get,
1483 		.set = hw_break_set,
1484 	},
1485 	[REGSET_HW_WATCH] = {
1486 		.core_note_type = NT_ARM_HW_WATCH,
1487 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1488 		.size = sizeof(u32),
1489 		.align = sizeof(u32),
1490 		.get = hw_break_get,
1491 		.set = hw_break_set,
1492 	},
1493 #endif
1494 	[REGSET_SYSTEM_CALL] = {
1495 		.core_note_type = NT_ARM_SYSTEM_CALL,
1496 		.n = 1,
1497 		.size = sizeof(int),
1498 		.align = sizeof(int),
1499 		.get = system_call_get,
1500 		.set = system_call_set,
1501 	},
1502 };
1503 
1504 static const struct user_regset_view user_aarch32_ptrace_view = {
1505 	.name = "aarch32", .e_machine = EM_ARM,
1506 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1507 };
1508 
1509 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1510 				   compat_ulong_t __user *ret)
1511 {
1512 	compat_ulong_t tmp;
1513 
1514 	if (off & 3)
1515 		return -EIO;
1516 
1517 	if (off == COMPAT_PT_TEXT_ADDR)
1518 		tmp = tsk->mm->start_code;
1519 	else if (off == COMPAT_PT_DATA_ADDR)
1520 		tmp = tsk->mm->start_data;
1521 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1522 		tmp = tsk->mm->end_code;
1523 	else if (off < sizeof(compat_elf_gregset_t))
1524 		return copy_regset_to_user(tsk, &user_aarch32_view,
1525 					   REGSET_COMPAT_GPR, off,
1526 					   sizeof(compat_ulong_t), ret);
1527 	else if (off >= COMPAT_USER_SZ)
1528 		return -EIO;
1529 	else
1530 		tmp = 0;
1531 
1532 	return put_user(tmp, ret);
1533 }
1534 
1535 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1536 				    compat_ulong_t val)
1537 {
1538 	int ret;
1539 	mm_segment_t old_fs = get_fs();
1540 
1541 	if (off & 3 || off >= COMPAT_USER_SZ)
1542 		return -EIO;
1543 
1544 	if (off >= sizeof(compat_elf_gregset_t))
1545 		return 0;
1546 
1547 	set_fs(KERNEL_DS);
1548 	ret = copy_regset_from_user(tsk, &user_aarch32_view,
1549 				    REGSET_COMPAT_GPR, off,
1550 				    sizeof(compat_ulong_t),
1551 				    &val);
1552 	set_fs(old_fs);
1553 
1554 	return ret;
1555 }
1556 
1557 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1558 
1559 /*
1560  * Convert a virtual register number into an index for a thread_info
1561  * breakpoint array. Breakpoints are identified using positive numbers
1562  * whilst watchpoints are negative. The registers are laid out as pairs
1563  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1564  * Register 0 is reserved for describing resource information.
1565  */
1566 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1567 {
1568 	return (abs(num) - 1) >> 1;
1569 }
1570 
1571 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1572 {
1573 	u8 num_brps, num_wrps, debug_arch, wp_len;
1574 	u32 reg = 0;
1575 
1576 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1577 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1578 
1579 	debug_arch	= debug_monitors_arch();
1580 	wp_len		= 8;
1581 	reg		|= debug_arch;
1582 	reg		<<= 8;
1583 	reg		|= wp_len;
1584 	reg		<<= 8;
1585 	reg		|= num_wrps;
1586 	reg		<<= 8;
1587 	reg		|= num_brps;
1588 
1589 	*kdata = reg;
1590 	return 0;
1591 }
1592 
1593 static int compat_ptrace_hbp_get(unsigned int note_type,
1594 				 struct task_struct *tsk,
1595 				 compat_long_t num,
1596 				 u32 *kdata)
1597 {
1598 	u64 addr = 0;
1599 	u32 ctrl = 0;
1600 
1601 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1602 
1603 	if (num & 1) {
1604 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1605 		*kdata = (u32)addr;
1606 	} else {
1607 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1608 		*kdata = ctrl;
1609 	}
1610 
1611 	return err;
1612 }
1613 
1614 static int compat_ptrace_hbp_set(unsigned int note_type,
1615 				 struct task_struct *tsk,
1616 				 compat_long_t num,
1617 				 u32 *kdata)
1618 {
1619 	u64 addr;
1620 	u32 ctrl;
1621 
1622 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1623 
1624 	if (num & 1) {
1625 		addr = *kdata;
1626 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1627 	} else {
1628 		ctrl = *kdata;
1629 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1630 	}
1631 
1632 	return err;
1633 }
1634 
1635 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1636 				    compat_ulong_t __user *data)
1637 {
1638 	int ret;
1639 	u32 kdata;
1640 
1641 	/* Watchpoint */
1642 	if (num < 0) {
1643 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1644 	/* Resource info */
1645 	} else if (num == 0) {
1646 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1647 	/* Breakpoint */
1648 	} else {
1649 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1650 	}
1651 
1652 	if (!ret)
1653 		ret = put_user(kdata, data);
1654 
1655 	return ret;
1656 }
1657 
1658 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1659 				    compat_ulong_t __user *data)
1660 {
1661 	int ret;
1662 	u32 kdata = 0;
1663 
1664 	if (num == 0)
1665 		return 0;
1666 
1667 	ret = get_user(kdata, data);
1668 	if (ret)
1669 		return ret;
1670 
1671 	if (num < 0)
1672 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1673 	else
1674 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1675 
1676 	return ret;
1677 }
1678 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1679 
1680 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1681 			compat_ulong_t caddr, compat_ulong_t cdata)
1682 {
1683 	unsigned long addr = caddr;
1684 	unsigned long data = cdata;
1685 	void __user *datap = compat_ptr(data);
1686 	int ret;
1687 
1688 	switch (request) {
1689 		case PTRACE_PEEKUSR:
1690 			ret = compat_ptrace_read_user(child, addr, datap);
1691 			break;
1692 
1693 		case PTRACE_POKEUSR:
1694 			ret = compat_ptrace_write_user(child, addr, data);
1695 			break;
1696 
1697 		case COMPAT_PTRACE_GETREGS:
1698 			ret = copy_regset_to_user(child,
1699 						  &user_aarch32_view,
1700 						  REGSET_COMPAT_GPR,
1701 						  0, sizeof(compat_elf_gregset_t),
1702 						  datap);
1703 			break;
1704 
1705 		case COMPAT_PTRACE_SETREGS:
1706 			ret = copy_regset_from_user(child,
1707 						    &user_aarch32_view,
1708 						    REGSET_COMPAT_GPR,
1709 						    0, sizeof(compat_elf_gregset_t),
1710 						    datap);
1711 			break;
1712 
1713 		case COMPAT_PTRACE_GET_THREAD_AREA:
1714 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1715 				       (compat_ulong_t __user *)datap);
1716 			break;
1717 
1718 		case COMPAT_PTRACE_SET_SYSCALL:
1719 			task_pt_regs(child)->syscallno = data;
1720 			ret = 0;
1721 			break;
1722 
1723 		case COMPAT_PTRACE_GETVFPREGS:
1724 			ret = copy_regset_to_user(child,
1725 						  &user_aarch32_view,
1726 						  REGSET_COMPAT_VFP,
1727 						  0, VFP_STATE_SIZE,
1728 						  datap);
1729 			break;
1730 
1731 		case COMPAT_PTRACE_SETVFPREGS:
1732 			ret = copy_regset_from_user(child,
1733 						    &user_aarch32_view,
1734 						    REGSET_COMPAT_VFP,
1735 						    0, VFP_STATE_SIZE,
1736 						    datap);
1737 			break;
1738 
1739 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1740 		case COMPAT_PTRACE_GETHBPREGS:
1741 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1742 			break;
1743 
1744 		case COMPAT_PTRACE_SETHBPREGS:
1745 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1746 			break;
1747 #endif
1748 
1749 		default:
1750 			ret = compat_ptrace_request(child, request, addr,
1751 						    data);
1752 			break;
1753 	}
1754 
1755 	return ret;
1756 }
1757 #endif /* CONFIG_COMPAT */
1758 
1759 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1760 {
1761 #ifdef CONFIG_COMPAT
1762 	/*
1763 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1764 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1765 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1766 	 * access to the TLS register.
1767 	 */
1768 	if (is_compat_task())
1769 		return &user_aarch32_view;
1770 	else if (is_compat_thread(task_thread_info(task)))
1771 		return &user_aarch32_ptrace_view;
1772 #endif
1773 	return &user_aarch64_view;
1774 }
1775 
1776 long arch_ptrace(struct task_struct *child, long request,
1777 		 unsigned long addr, unsigned long data)
1778 {
1779 	return ptrace_request(child, request, addr, data);
1780 }
1781 
1782 enum ptrace_syscall_dir {
1783 	PTRACE_SYSCALL_ENTER = 0,
1784 	PTRACE_SYSCALL_EXIT,
1785 };
1786 
1787 static void tracehook_report_syscall(struct pt_regs *regs,
1788 				     enum ptrace_syscall_dir dir)
1789 {
1790 	int regno;
1791 	unsigned long saved_reg;
1792 
1793 	/*
1794 	 * A scratch register (ip(r12) on AArch32, x7 on AArch64) is
1795 	 * used to denote syscall entry/exit:
1796 	 */
1797 	regno = (is_compat_task() ? 12 : 7);
1798 	saved_reg = regs->regs[regno];
1799 	regs->regs[regno] = dir;
1800 
1801 	if (dir == PTRACE_SYSCALL_EXIT)
1802 		tracehook_report_syscall_exit(regs, 0);
1803 	else if (tracehook_report_syscall_entry(regs))
1804 		forget_syscall(regs);
1805 
1806 	regs->regs[regno] = saved_reg;
1807 }
1808 
1809 int syscall_trace_enter(struct pt_regs *regs)
1810 {
1811 	if (test_thread_flag(TIF_SYSCALL_TRACE) ||
1812 		test_thread_flag(TIF_SYSCALL_EMU)) {
1813 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1814 		if (!in_syscall(regs) || test_thread_flag(TIF_SYSCALL_EMU))
1815 			return -1;
1816 	}
1817 
1818 	/* Do the secure computing after ptrace; failures should be fast. */
1819 	if (secure_computing(NULL) == -1)
1820 		return -1;
1821 
1822 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1823 		trace_sys_enter(regs, regs->syscallno);
1824 
1825 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1826 			    regs->regs[2], regs->regs[3]);
1827 
1828 	return regs->syscallno;
1829 }
1830 
1831 void syscall_trace_exit(struct pt_regs *regs)
1832 {
1833 	audit_syscall_exit(regs);
1834 
1835 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1836 		trace_sys_exit(regs, regs_return_value(regs));
1837 
1838 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1839 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1840 
1841 	rseq_syscall(regs);
1842 }
1843 
1844 /*
1845  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1846  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1847  * not described in ARM DDI 0487D.a.
1848  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1849  * be allocated an EL0 meaning in future.
1850  * Userspace cannot use these until they have an architectural meaning.
1851  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1852  * We also reserve IL for the kernel; SS is handled dynamically.
1853  */
1854 #define SPSR_EL1_AARCH64_RES0_BITS \
1855 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 25) | GENMASK_ULL(23, 22) | \
1856 	 GENMASK_ULL(20, 13) | GENMASK_ULL(11, 10) | GENMASK_ULL(5, 5))
1857 #define SPSR_EL1_AARCH32_RES0_BITS \
1858 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1859 
1860 static int valid_compat_regs(struct user_pt_regs *regs)
1861 {
1862 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1863 
1864 	if (!system_supports_mixed_endian_el0()) {
1865 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1866 			regs->pstate |= PSR_AA32_E_BIT;
1867 		else
1868 			regs->pstate &= ~PSR_AA32_E_BIT;
1869 	}
1870 
1871 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1872 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1873 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1874 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
1875 		return 1;
1876 	}
1877 
1878 	/*
1879 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1880 	 * arch/arm.
1881 	 */
1882 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1883 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1884 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1885 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1886 			PSR_AA32_T_BIT;
1887 	regs->pstate |= PSR_MODE32_BIT;
1888 
1889 	return 0;
1890 }
1891 
1892 static int valid_native_regs(struct user_pt_regs *regs)
1893 {
1894 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1895 
1896 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1897 	    (regs->pstate & PSR_D_BIT) == 0 &&
1898 	    (regs->pstate & PSR_A_BIT) == 0 &&
1899 	    (regs->pstate & PSR_I_BIT) == 0 &&
1900 	    (regs->pstate & PSR_F_BIT) == 0) {
1901 		return 1;
1902 	}
1903 
1904 	/* Force PSR to a valid 64-bit EL0t */
1905 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1906 
1907 	return 0;
1908 }
1909 
1910 /*
1911  * Are the current registers suitable for user mode? (used to maintain
1912  * security in signal handlers)
1913  */
1914 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1915 {
1916 	if (!test_tsk_thread_flag(task, TIF_SINGLESTEP))
1917 		regs->pstate &= ~DBG_SPSR_SS;
1918 
1919 	if (is_compat_thread(task_thread_info(task)))
1920 		return valid_compat_regs(regs);
1921 	else
1922 		return valid_native_regs(regs);
1923 }
1924