xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision addee42a)
1 /*
2  * Based on arch/arm/kernel/ptrace.c
3  *
4  * By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/audit.h>
23 #include <linux/compat.h>
24 #include <linux/kernel.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/mm.h>
28 #include <linux/nospec.h>
29 #include <linux/smp.h>
30 #include <linux/ptrace.h>
31 #include <linux/user.h>
32 #include <linux/seccomp.h>
33 #include <linux/security.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/string.h>
37 #include <linux/uaccess.h>
38 #include <linux/perf_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/regset.h>
41 #include <linux/tracehook.h>
42 #include <linux/elf.h>
43 
44 #include <asm/compat.h>
45 #include <asm/cpufeature.h>
46 #include <asm/debug-monitors.h>
47 #include <asm/pgtable.h>
48 #include <asm/stacktrace.h>
49 #include <asm/syscall.h>
50 #include <asm/traps.h>
51 #include <asm/system_misc.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/syscalls.h>
55 
56 struct pt_regs_offset {
57 	const char *name;
58 	int offset;
59 };
60 
61 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
62 #define REG_OFFSET_END {.name = NULL, .offset = 0}
63 #define GPR_OFFSET_NAME(r) \
64 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
65 
66 static const struct pt_regs_offset regoffset_table[] = {
67 	GPR_OFFSET_NAME(0),
68 	GPR_OFFSET_NAME(1),
69 	GPR_OFFSET_NAME(2),
70 	GPR_OFFSET_NAME(3),
71 	GPR_OFFSET_NAME(4),
72 	GPR_OFFSET_NAME(5),
73 	GPR_OFFSET_NAME(6),
74 	GPR_OFFSET_NAME(7),
75 	GPR_OFFSET_NAME(8),
76 	GPR_OFFSET_NAME(9),
77 	GPR_OFFSET_NAME(10),
78 	GPR_OFFSET_NAME(11),
79 	GPR_OFFSET_NAME(12),
80 	GPR_OFFSET_NAME(13),
81 	GPR_OFFSET_NAME(14),
82 	GPR_OFFSET_NAME(15),
83 	GPR_OFFSET_NAME(16),
84 	GPR_OFFSET_NAME(17),
85 	GPR_OFFSET_NAME(18),
86 	GPR_OFFSET_NAME(19),
87 	GPR_OFFSET_NAME(20),
88 	GPR_OFFSET_NAME(21),
89 	GPR_OFFSET_NAME(22),
90 	GPR_OFFSET_NAME(23),
91 	GPR_OFFSET_NAME(24),
92 	GPR_OFFSET_NAME(25),
93 	GPR_OFFSET_NAME(26),
94 	GPR_OFFSET_NAME(27),
95 	GPR_OFFSET_NAME(28),
96 	GPR_OFFSET_NAME(29),
97 	GPR_OFFSET_NAME(30),
98 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
99 	REG_OFFSET_NAME(sp),
100 	REG_OFFSET_NAME(pc),
101 	REG_OFFSET_NAME(pstate),
102 	REG_OFFSET_END,
103 };
104 
105 /**
106  * regs_query_register_offset() - query register offset from its name
107  * @name:	the name of a register
108  *
109  * regs_query_register_offset() returns the offset of a register in struct
110  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
111  */
112 int regs_query_register_offset(const char *name)
113 {
114 	const struct pt_regs_offset *roff;
115 
116 	for (roff = regoffset_table; roff->name != NULL; roff++)
117 		if (!strcmp(roff->name, name))
118 			return roff->offset;
119 	return -EINVAL;
120 }
121 
122 /**
123  * regs_within_kernel_stack() - check the address in the stack
124  * @regs:      pt_regs which contains kernel stack pointer.
125  * @addr:      address which is checked.
126  *
127  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128  * If @addr is within the kernel stack, it returns true. If not, returns false.
129  */
130 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131 {
132 	return ((addr & ~(THREAD_SIZE - 1))  ==
133 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
134 		on_irq_stack(addr);
135 }
136 
137 /**
138  * regs_get_kernel_stack_nth() - get Nth entry of the stack
139  * @regs:	pt_regs which contains kernel stack pointer.
140  * @n:		stack entry number.
141  *
142  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
143  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
144  * this returns 0.
145  */
146 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
147 {
148 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
149 
150 	addr += n;
151 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
152 		return *addr;
153 	else
154 		return 0;
155 }
156 
157 /*
158  * TODO: does not yet catch signals sent when the child dies.
159  * in exit.c or in signal.c.
160  */
161 
162 /*
163  * Called by kernel/ptrace.c when detaching..
164  */
165 void ptrace_disable(struct task_struct *child)
166 {
167 	/*
168 	 * This would be better off in core code, but PTRACE_DETACH has
169 	 * grown its fair share of arch-specific worts and changing it
170 	 * is likely to cause regressions on obscure architectures.
171 	 */
172 	user_disable_single_step(child);
173 }
174 
175 #ifdef CONFIG_HAVE_HW_BREAKPOINT
176 /*
177  * Handle hitting a HW-breakpoint.
178  */
179 static void ptrace_hbptriggered(struct perf_event *bp,
180 				struct perf_sample_data *data,
181 				struct pt_regs *regs)
182 {
183 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
184 	siginfo_t info;
185 
186 	clear_siginfo(&info);
187 	info.si_signo	= SIGTRAP;
188 	info.si_errno	= 0;
189 	info.si_code	= TRAP_HWBKPT;
190 	info.si_addr	= (void __user *)(bkpt->trigger);
191 
192 #ifdef CONFIG_COMPAT
193 	if (is_compat_task()) {
194 		int si_errno = 0;
195 		int i;
196 
197 		for (i = 0; i < ARM_MAX_BRP; ++i) {
198 			if (current->thread.debug.hbp_break[i] == bp) {
199 				si_errno = (i << 1) + 1;
200 				break;
201 			}
202 		}
203 
204 		for (i = 0; i < ARM_MAX_WRP; ++i) {
205 			if (current->thread.debug.hbp_watch[i] == bp) {
206 				si_errno = -((i << 1) + 1);
207 				break;
208 			}
209 		}
210 		force_sig_ptrace_errno_trap(si_errno, (void __user *)bkpt->trigger);
211 	}
212 #endif
213 	arm64_force_sig_info(&info, "Hardware breakpoint trap (ptrace)", current);
214 }
215 
216 /*
217  * Unregister breakpoints from this task and reset the pointers in
218  * the thread_struct.
219  */
220 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
221 {
222 	int i;
223 	struct thread_struct *t = &tsk->thread;
224 
225 	for (i = 0; i < ARM_MAX_BRP; i++) {
226 		if (t->debug.hbp_break[i]) {
227 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
228 			t->debug.hbp_break[i] = NULL;
229 		}
230 	}
231 
232 	for (i = 0; i < ARM_MAX_WRP; i++) {
233 		if (t->debug.hbp_watch[i]) {
234 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
235 			t->debug.hbp_watch[i] = NULL;
236 		}
237 	}
238 }
239 
240 void ptrace_hw_copy_thread(struct task_struct *tsk)
241 {
242 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
243 }
244 
245 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
246 					       struct task_struct *tsk,
247 					       unsigned long idx)
248 {
249 	struct perf_event *bp = ERR_PTR(-EINVAL);
250 
251 	switch (note_type) {
252 	case NT_ARM_HW_BREAK:
253 		if (idx >= ARM_MAX_BRP)
254 			goto out;
255 		idx = array_index_nospec(idx, ARM_MAX_BRP);
256 		bp = tsk->thread.debug.hbp_break[idx];
257 		break;
258 	case NT_ARM_HW_WATCH:
259 		if (idx >= ARM_MAX_WRP)
260 			goto out;
261 		idx = array_index_nospec(idx, ARM_MAX_WRP);
262 		bp = tsk->thread.debug.hbp_watch[idx];
263 		break;
264 	}
265 
266 out:
267 	return bp;
268 }
269 
270 static int ptrace_hbp_set_event(unsigned int note_type,
271 				struct task_struct *tsk,
272 				unsigned long idx,
273 				struct perf_event *bp)
274 {
275 	int err = -EINVAL;
276 
277 	switch (note_type) {
278 	case NT_ARM_HW_BREAK:
279 		if (idx < ARM_MAX_BRP) {
280 			tsk->thread.debug.hbp_break[idx] = bp;
281 			err = 0;
282 		}
283 		break;
284 	case NT_ARM_HW_WATCH:
285 		if (idx < ARM_MAX_WRP) {
286 			tsk->thread.debug.hbp_watch[idx] = bp;
287 			err = 0;
288 		}
289 		break;
290 	}
291 
292 	return err;
293 }
294 
295 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
296 					    struct task_struct *tsk,
297 					    unsigned long idx)
298 {
299 	struct perf_event *bp;
300 	struct perf_event_attr attr;
301 	int err, type;
302 
303 	switch (note_type) {
304 	case NT_ARM_HW_BREAK:
305 		type = HW_BREAKPOINT_X;
306 		break;
307 	case NT_ARM_HW_WATCH:
308 		type = HW_BREAKPOINT_RW;
309 		break;
310 	default:
311 		return ERR_PTR(-EINVAL);
312 	}
313 
314 	ptrace_breakpoint_init(&attr);
315 
316 	/*
317 	 * Initialise fields to sane defaults
318 	 * (i.e. values that will pass validation).
319 	 */
320 	attr.bp_addr	= 0;
321 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
322 	attr.bp_type	= type;
323 	attr.disabled	= 1;
324 
325 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
326 	if (IS_ERR(bp))
327 		return bp;
328 
329 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
330 	if (err)
331 		return ERR_PTR(err);
332 
333 	return bp;
334 }
335 
336 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
337 				     struct arch_hw_breakpoint_ctrl ctrl,
338 				     struct perf_event_attr *attr)
339 {
340 	int err, len, type, offset, disabled = !ctrl.enabled;
341 
342 	attr->disabled = disabled;
343 	if (disabled)
344 		return 0;
345 
346 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
347 	if (err)
348 		return err;
349 
350 	switch (note_type) {
351 	case NT_ARM_HW_BREAK:
352 		if ((type & HW_BREAKPOINT_X) != type)
353 			return -EINVAL;
354 		break;
355 	case NT_ARM_HW_WATCH:
356 		if ((type & HW_BREAKPOINT_RW) != type)
357 			return -EINVAL;
358 		break;
359 	default:
360 		return -EINVAL;
361 	}
362 
363 	attr->bp_len	= len;
364 	attr->bp_type	= type;
365 	attr->bp_addr	+= offset;
366 
367 	return 0;
368 }
369 
370 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
371 {
372 	u8 num;
373 	u32 reg = 0;
374 
375 	switch (note_type) {
376 	case NT_ARM_HW_BREAK:
377 		num = hw_breakpoint_slots(TYPE_INST);
378 		break;
379 	case NT_ARM_HW_WATCH:
380 		num = hw_breakpoint_slots(TYPE_DATA);
381 		break;
382 	default:
383 		return -EINVAL;
384 	}
385 
386 	reg |= debug_monitors_arch();
387 	reg <<= 8;
388 	reg |= num;
389 
390 	*info = reg;
391 	return 0;
392 }
393 
394 static int ptrace_hbp_get_ctrl(unsigned int note_type,
395 			       struct task_struct *tsk,
396 			       unsigned long idx,
397 			       u32 *ctrl)
398 {
399 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
400 
401 	if (IS_ERR(bp))
402 		return PTR_ERR(bp);
403 
404 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
405 	return 0;
406 }
407 
408 static int ptrace_hbp_get_addr(unsigned int note_type,
409 			       struct task_struct *tsk,
410 			       unsigned long idx,
411 			       u64 *addr)
412 {
413 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
414 
415 	if (IS_ERR(bp))
416 		return PTR_ERR(bp);
417 
418 	*addr = bp ? counter_arch_bp(bp)->address : 0;
419 	return 0;
420 }
421 
422 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
423 							struct task_struct *tsk,
424 							unsigned long idx)
425 {
426 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
427 
428 	if (!bp)
429 		bp = ptrace_hbp_create(note_type, tsk, idx);
430 
431 	return bp;
432 }
433 
434 static int ptrace_hbp_set_ctrl(unsigned int note_type,
435 			       struct task_struct *tsk,
436 			       unsigned long idx,
437 			       u32 uctrl)
438 {
439 	int err;
440 	struct perf_event *bp;
441 	struct perf_event_attr attr;
442 	struct arch_hw_breakpoint_ctrl ctrl;
443 
444 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
445 	if (IS_ERR(bp)) {
446 		err = PTR_ERR(bp);
447 		return err;
448 	}
449 
450 	attr = bp->attr;
451 	decode_ctrl_reg(uctrl, &ctrl);
452 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
453 	if (err)
454 		return err;
455 
456 	return modify_user_hw_breakpoint(bp, &attr);
457 }
458 
459 static int ptrace_hbp_set_addr(unsigned int note_type,
460 			       struct task_struct *tsk,
461 			       unsigned long idx,
462 			       u64 addr)
463 {
464 	int err;
465 	struct perf_event *bp;
466 	struct perf_event_attr attr;
467 
468 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
469 	if (IS_ERR(bp)) {
470 		err = PTR_ERR(bp);
471 		return err;
472 	}
473 
474 	attr = bp->attr;
475 	attr.bp_addr = addr;
476 	err = modify_user_hw_breakpoint(bp, &attr);
477 	return err;
478 }
479 
480 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
481 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
482 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
483 
484 static int hw_break_get(struct task_struct *target,
485 			const struct user_regset *regset,
486 			unsigned int pos, unsigned int count,
487 			void *kbuf, void __user *ubuf)
488 {
489 	unsigned int note_type = regset->core_note_type;
490 	int ret, idx = 0, offset, limit;
491 	u32 info, ctrl;
492 	u64 addr;
493 
494 	/* Resource info */
495 	ret = ptrace_hbp_get_resource_info(note_type, &info);
496 	if (ret)
497 		return ret;
498 
499 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &info, 0,
500 				  sizeof(info));
501 	if (ret)
502 		return ret;
503 
504 	/* Pad */
505 	offset = offsetof(struct user_hwdebug_state, pad);
506 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, offset,
507 				       offset + PTRACE_HBP_PAD_SZ);
508 	if (ret)
509 		return ret;
510 
511 	/* (address, ctrl) registers */
512 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
513 	limit = regset->n * regset->size;
514 	while (count && offset < limit) {
515 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
516 		if (ret)
517 			return ret;
518 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &addr,
519 					  offset, offset + PTRACE_HBP_ADDR_SZ);
520 		if (ret)
521 			return ret;
522 		offset += PTRACE_HBP_ADDR_SZ;
523 
524 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
525 		if (ret)
526 			return ret;
527 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &ctrl,
528 					  offset, offset + PTRACE_HBP_CTRL_SZ);
529 		if (ret)
530 			return ret;
531 		offset += PTRACE_HBP_CTRL_SZ;
532 
533 		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
534 					       offset,
535 					       offset + PTRACE_HBP_PAD_SZ);
536 		if (ret)
537 			return ret;
538 		offset += PTRACE_HBP_PAD_SZ;
539 		idx++;
540 	}
541 
542 	return 0;
543 }
544 
545 static int hw_break_set(struct task_struct *target,
546 			const struct user_regset *regset,
547 			unsigned int pos, unsigned int count,
548 			const void *kbuf, const void __user *ubuf)
549 {
550 	unsigned int note_type = regset->core_note_type;
551 	int ret, idx = 0, offset, limit;
552 	u32 ctrl;
553 	u64 addr;
554 
555 	/* Resource info and pad */
556 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
557 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
558 	if (ret)
559 		return ret;
560 
561 	/* (address, ctrl) registers */
562 	limit = regset->n * regset->size;
563 	while (count && offset < limit) {
564 		if (count < PTRACE_HBP_ADDR_SZ)
565 			return -EINVAL;
566 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
567 					 offset, offset + PTRACE_HBP_ADDR_SZ);
568 		if (ret)
569 			return ret;
570 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
571 		if (ret)
572 			return ret;
573 		offset += PTRACE_HBP_ADDR_SZ;
574 
575 		if (!count)
576 			break;
577 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
578 					 offset, offset + PTRACE_HBP_CTRL_SZ);
579 		if (ret)
580 			return ret;
581 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
582 		if (ret)
583 			return ret;
584 		offset += PTRACE_HBP_CTRL_SZ;
585 
586 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
587 						offset,
588 						offset + PTRACE_HBP_PAD_SZ);
589 		if (ret)
590 			return ret;
591 		offset += PTRACE_HBP_PAD_SZ;
592 		idx++;
593 	}
594 
595 	return 0;
596 }
597 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
598 
599 static int gpr_get(struct task_struct *target,
600 		   const struct user_regset *regset,
601 		   unsigned int pos, unsigned int count,
602 		   void *kbuf, void __user *ubuf)
603 {
604 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
605 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0, -1);
606 }
607 
608 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
609 		   unsigned int pos, unsigned int count,
610 		   const void *kbuf, const void __user *ubuf)
611 {
612 	int ret;
613 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
614 
615 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
616 	if (ret)
617 		return ret;
618 
619 	if (!valid_user_regs(&newregs, target))
620 		return -EINVAL;
621 
622 	task_pt_regs(target)->user_regs = newregs;
623 	return 0;
624 }
625 
626 /*
627  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
628  */
629 static int __fpr_get(struct task_struct *target,
630 		     const struct user_regset *regset,
631 		     unsigned int pos, unsigned int count,
632 		     void *kbuf, void __user *ubuf, unsigned int start_pos)
633 {
634 	struct user_fpsimd_state *uregs;
635 
636 	sve_sync_to_fpsimd(target);
637 
638 	uregs = &target->thread.uw.fpsimd_state;
639 
640 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
641 				   start_pos, start_pos + sizeof(*uregs));
642 }
643 
644 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
645 		   unsigned int pos, unsigned int count,
646 		   void *kbuf, void __user *ubuf)
647 {
648 	if (target == current)
649 		fpsimd_preserve_current_state();
650 
651 	return __fpr_get(target, regset, pos, count, kbuf, ubuf, 0);
652 }
653 
654 static int __fpr_set(struct task_struct *target,
655 		     const struct user_regset *regset,
656 		     unsigned int pos, unsigned int count,
657 		     const void *kbuf, const void __user *ubuf,
658 		     unsigned int start_pos)
659 {
660 	int ret;
661 	struct user_fpsimd_state newstate;
662 
663 	/*
664 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
665 	 * short copyin can't resurrect stale data.
666 	 */
667 	sve_sync_to_fpsimd(target);
668 
669 	newstate = target->thread.uw.fpsimd_state;
670 
671 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
672 				 start_pos, start_pos + sizeof(newstate));
673 	if (ret)
674 		return ret;
675 
676 	target->thread.uw.fpsimd_state = newstate;
677 
678 	return ret;
679 }
680 
681 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
682 		   unsigned int pos, unsigned int count,
683 		   const void *kbuf, const void __user *ubuf)
684 {
685 	int ret;
686 
687 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
688 	if (ret)
689 		return ret;
690 
691 	sve_sync_from_fpsimd_zeropad(target);
692 	fpsimd_flush_task_state(target);
693 
694 	return ret;
695 }
696 
697 static int tls_get(struct task_struct *target, const struct user_regset *regset,
698 		   unsigned int pos, unsigned int count,
699 		   void *kbuf, void __user *ubuf)
700 {
701 	unsigned long *tls = &target->thread.uw.tp_value;
702 
703 	if (target == current)
704 		tls_preserve_current_state();
705 
706 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, tls, 0, -1);
707 }
708 
709 static int tls_set(struct task_struct *target, const struct user_regset *regset,
710 		   unsigned int pos, unsigned int count,
711 		   const void *kbuf, const void __user *ubuf)
712 {
713 	int ret;
714 	unsigned long tls = target->thread.uw.tp_value;
715 
716 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
717 	if (ret)
718 		return ret;
719 
720 	target->thread.uw.tp_value = tls;
721 	return ret;
722 }
723 
724 static int system_call_get(struct task_struct *target,
725 			   const struct user_regset *regset,
726 			   unsigned int pos, unsigned int count,
727 			   void *kbuf, void __user *ubuf)
728 {
729 	int syscallno = task_pt_regs(target)->syscallno;
730 
731 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
732 				   &syscallno, 0, -1);
733 }
734 
735 static int system_call_set(struct task_struct *target,
736 			   const struct user_regset *regset,
737 			   unsigned int pos, unsigned int count,
738 			   const void *kbuf, const void __user *ubuf)
739 {
740 	int syscallno = task_pt_regs(target)->syscallno;
741 	int ret;
742 
743 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
744 	if (ret)
745 		return ret;
746 
747 	task_pt_regs(target)->syscallno = syscallno;
748 	return ret;
749 }
750 
751 #ifdef CONFIG_ARM64_SVE
752 
753 static void sve_init_header_from_task(struct user_sve_header *header,
754 				      struct task_struct *target)
755 {
756 	unsigned int vq;
757 
758 	memset(header, 0, sizeof(*header));
759 
760 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
761 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
762 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
763 		header->flags |= SVE_PT_VL_INHERIT;
764 
765 	header->vl = target->thread.sve_vl;
766 	vq = sve_vq_from_vl(header->vl);
767 
768 	header->max_vl = sve_max_vl;
769 	if (WARN_ON(!sve_vl_valid(sve_max_vl)))
770 		header->max_vl = header->vl;
771 
772 	header->size = SVE_PT_SIZE(vq, header->flags);
773 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
774 				      SVE_PT_REGS_SVE);
775 }
776 
777 static unsigned int sve_size_from_header(struct user_sve_header const *header)
778 {
779 	return ALIGN(header->size, SVE_VQ_BYTES);
780 }
781 
782 static unsigned int sve_get_size(struct task_struct *target,
783 				 const struct user_regset *regset)
784 {
785 	struct user_sve_header header;
786 
787 	if (!system_supports_sve())
788 		return 0;
789 
790 	sve_init_header_from_task(&header, target);
791 	return sve_size_from_header(&header);
792 }
793 
794 static int sve_get(struct task_struct *target,
795 		   const struct user_regset *regset,
796 		   unsigned int pos, unsigned int count,
797 		   void *kbuf, void __user *ubuf)
798 {
799 	int ret;
800 	struct user_sve_header header;
801 	unsigned int vq;
802 	unsigned long start, end;
803 
804 	if (!system_supports_sve())
805 		return -EINVAL;
806 
807 	/* Header */
808 	sve_init_header_from_task(&header, target);
809 	vq = sve_vq_from_vl(header.vl);
810 
811 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &header,
812 				  0, sizeof(header));
813 	if (ret)
814 		return ret;
815 
816 	if (target == current)
817 		fpsimd_preserve_current_state();
818 
819 	/* Registers: FPSIMD-only case */
820 
821 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
822 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
823 		return __fpr_get(target, regset, pos, count, kbuf, ubuf,
824 				 SVE_PT_FPSIMD_OFFSET);
825 
826 	/* Otherwise: full SVE case */
827 
828 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
829 	start = SVE_PT_SVE_OFFSET;
830 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
831 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
832 				  target->thread.sve_state,
833 				  start, end);
834 	if (ret)
835 		return ret;
836 
837 	start = end;
838 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
839 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
840 				       start, end);
841 	if (ret)
842 		return ret;
843 
844 	/*
845 	 * Copy fpsr, and fpcr which must follow contiguously in
846 	 * struct fpsimd_state:
847 	 */
848 	start = end;
849 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
850 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
851 				  &target->thread.uw.fpsimd_state.fpsr,
852 				  start, end);
853 	if (ret)
854 		return ret;
855 
856 	start = end;
857 	end = sve_size_from_header(&header);
858 	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
859 					start, end);
860 }
861 
862 static int sve_set(struct task_struct *target,
863 		   const struct user_regset *regset,
864 		   unsigned int pos, unsigned int count,
865 		   const void *kbuf, const void __user *ubuf)
866 {
867 	int ret;
868 	struct user_sve_header header;
869 	unsigned int vq;
870 	unsigned long start, end;
871 
872 	if (!system_supports_sve())
873 		return -EINVAL;
874 
875 	/* Header */
876 	if (count < sizeof(header))
877 		return -EINVAL;
878 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
879 				 0, sizeof(header));
880 	if (ret)
881 		goto out;
882 
883 	/*
884 	 * Apart from PT_SVE_REGS_MASK, all PT_SVE_* flags are consumed by
885 	 * sve_set_vector_length(), which will also validate them for us:
886 	 */
887 	ret = sve_set_vector_length(target, header.vl,
888 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
889 	if (ret)
890 		goto out;
891 
892 	/* Actual VL set may be less than the user asked for: */
893 	vq = sve_vq_from_vl(target->thread.sve_vl);
894 
895 	/* Registers: FPSIMD-only case */
896 
897 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
898 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
899 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
900 				SVE_PT_FPSIMD_OFFSET);
901 		clear_tsk_thread_flag(target, TIF_SVE);
902 		goto out;
903 	}
904 
905 	/* Otherwise: full SVE case */
906 
907 	/*
908 	 * If setting a different VL from the requested VL and there is
909 	 * register data, the data layout will be wrong: don't even
910 	 * try to set the registers in this case.
911 	 */
912 	if (count && vq != sve_vq_from_vl(header.vl)) {
913 		ret = -EIO;
914 		goto out;
915 	}
916 
917 	sve_alloc(target);
918 
919 	/*
920 	 * Ensure target->thread.sve_state is up to date with target's
921 	 * FPSIMD regs, so that a short copyin leaves trailing registers
922 	 * unmodified.
923 	 */
924 	fpsimd_sync_to_sve(target);
925 	set_tsk_thread_flag(target, TIF_SVE);
926 
927 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
928 	start = SVE_PT_SVE_OFFSET;
929 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
930 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
931 				 target->thread.sve_state,
932 				 start, end);
933 	if (ret)
934 		goto out;
935 
936 	start = end;
937 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
938 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
939 					start, end);
940 	if (ret)
941 		goto out;
942 
943 	/*
944 	 * Copy fpsr, and fpcr which must follow contiguously in
945 	 * struct fpsimd_state:
946 	 */
947 	start = end;
948 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
949 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
950 				 &target->thread.uw.fpsimd_state.fpsr,
951 				 start, end);
952 
953 out:
954 	fpsimd_flush_task_state(target);
955 	return ret;
956 }
957 
958 #endif /* CONFIG_ARM64_SVE */
959 
960 enum aarch64_regset {
961 	REGSET_GPR,
962 	REGSET_FPR,
963 	REGSET_TLS,
964 #ifdef CONFIG_HAVE_HW_BREAKPOINT
965 	REGSET_HW_BREAK,
966 	REGSET_HW_WATCH,
967 #endif
968 	REGSET_SYSTEM_CALL,
969 #ifdef CONFIG_ARM64_SVE
970 	REGSET_SVE,
971 #endif
972 };
973 
974 static const struct user_regset aarch64_regsets[] = {
975 	[REGSET_GPR] = {
976 		.core_note_type = NT_PRSTATUS,
977 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
978 		.size = sizeof(u64),
979 		.align = sizeof(u64),
980 		.get = gpr_get,
981 		.set = gpr_set
982 	},
983 	[REGSET_FPR] = {
984 		.core_note_type = NT_PRFPREG,
985 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
986 		/*
987 		 * We pretend we have 32-bit registers because the fpsr and
988 		 * fpcr are 32-bits wide.
989 		 */
990 		.size = sizeof(u32),
991 		.align = sizeof(u32),
992 		.get = fpr_get,
993 		.set = fpr_set
994 	},
995 	[REGSET_TLS] = {
996 		.core_note_type = NT_ARM_TLS,
997 		.n = 1,
998 		.size = sizeof(void *),
999 		.align = sizeof(void *),
1000 		.get = tls_get,
1001 		.set = tls_set,
1002 	},
1003 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1004 	[REGSET_HW_BREAK] = {
1005 		.core_note_type = NT_ARM_HW_BREAK,
1006 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1007 		.size = sizeof(u32),
1008 		.align = sizeof(u32),
1009 		.get = hw_break_get,
1010 		.set = hw_break_set,
1011 	},
1012 	[REGSET_HW_WATCH] = {
1013 		.core_note_type = NT_ARM_HW_WATCH,
1014 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1015 		.size = sizeof(u32),
1016 		.align = sizeof(u32),
1017 		.get = hw_break_get,
1018 		.set = hw_break_set,
1019 	},
1020 #endif
1021 	[REGSET_SYSTEM_CALL] = {
1022 		.core_note_type = NT_ARM_SYSTEM_CALL,
1023 		.n = 1,
1024 		.size = sizeof(int),
1025 		.align = sizeof(int),
1026 		.get = system_call_get,
1027 		.set = system_call_set,
1028 	},
1029 #ifdef CONFIG_ARM64_SVE
1030 	[REGSET_SVE] = { /* Scalable Vector Extension */
1031 		.core_note_type = NT_ARM_SVE,
1032 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1033 				  SVE_VQ_BYTES),
1034 		.size = SVE_VQ_BYTES,
1035 		.align = SVE_VQ_BYTES,
1036 		.get = sve_get,
1037 		.set = sve_set,
1038 		.get_size = sve_get_size,
1039 	},
1040 #endif
1041 };
1042 
1043 static const struct user_regset_view user_aarch64_view = {
1044 	.name = "aarch64", .e_machine = EM_AARCH64,
1045 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1046 };
1047 
1048 #ifdef CONFIG_COMPAT
1049 #include <linux/compat.h>
1050 
1051 enum compat_regset {
1052 	REGSET_COMPAT_GPR,
1053 	REGSET_COMPAT_VFP,
1054 };
1055 
1056 static int compat_gpr_get(struct task_struct *target,
1057 			  const struct user_regset *regset,
1058 			  unsigned int pos, unsigned int count,
1059 			  void *kbuf, void __user *ubuf)
1060 {
1061 	int ret = 0;
1062 	unsigned int i, start, num_regs;
1063 
1064 	/* Calculate the number of AArch32 registers contained in count */
1065 	num_regs = count / regset->size;
1066 
1067 	/* Convert pos into an register number */
1068 	start = pos / regset->size;
1069 
1070 	if (start + num_regs > regset->n)
1071 		return -EIO;
1072 
1073 	for (i = 0; i < num_regs; ++i) {
1074 		unsigned int idx = start + i;
1075 		compat_ulong_t reg;
1076 
1077 		switch (idx) {
1078 		case 15:
1079 			reg = task_pt_regs(target)->pc;
1080 			break;
1081 		case 16:
1082 			reg = task_pt_regs(target)->pstate;
1083 			break;
1084 		case 17:
1085 			reg = task_pt_regs(target)->orig_x0;
1086 			break;
1087 		default:
1088 			reg = task_pt_regs(target)->regs[idx];
1089 		}
1090 
1091 		if (kbuf) {
1092 			memcpy(kbuf, &reg, sizeof(reg));
1093 			kbuf += sizeof(reg);
1094 		} else {
1095 			ret = copy_to_user(ubuf, &reg, sizeof(reg));
1096 			if (ret) {
1097 				ret = -EFAULT;
1098 				break;
1099 			}
1100 
1101 			ubuf += sizeof(reg);
1102 		}
1103 	}
1104 
1105 	return ret;
1106 }
1107 
1108 static int compat_gpr_set(struct task_struct *target,
1109 			  const struct user_regset *regset,
1110 			  unsigned int pos, unsigned int count,
1111 			  const void *kbuf, const void __user *ubuf)
1112 {
1113 	struct pt_regs newregs;
1114 	int ret = 0;
1115 	unsigned int i, start, num_regs;
1116 
1117 	/* Calculate the number of AArch32 registers contained in count */
1118 	num_regs = count / regset->size;
1119 
1120 	/* Convert pos into an register number */
1121 	start = pos / regset->size;
1122 
1123 	if (start + num_regs > regset->n)
1124 		return -EIO;
1125 
1126 	newregs = *task_pt_regs(target);
1127 
1128 	for (i = 0; i < num_regs; ++i) {
1129 		unsigned int idx = start + i;
1130 		compat_ulong_t reg;
1131 
1132 		if (kbuf) {
1133 			memcpy(&reg, kbuf, sizeof(reg));
1134 			kbuf += sizeof(reg);
1135 		} else {
1136 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1137 			if (ret) {
1138 				ret = -EFAULT;
1139 				break;
1140 			}
1141 
1142 			ubuf += sizeof(reg);
1143 		}
1144 
1145 		switch (idx) {
1146 		case 15:
1147 			newregs.pc = reg;
1148 			break;
1149 		case 16:
1150 			newregs.pstate = reg;
1151 			break;
1152 		case 17:
1153 			newregs.orig_x0 = reg;
1154 			break;
1155 		default:
1156 			newregs.regs[idx] = reg;
1157 		}
1158 
1159 	}
1160 
1161 	if (valid_user_regs(&newregs.user_regs, target))
1162 		*task_pt_regs(target) = newregs;
1163 	else
1164 		ret = -EINVAL;
1165 
1166 	return ret;
1167 }
1168 
1169 static int compat_vfp_get(struct task_struct *target,
1170 			  const struct user_regset *regset,
1171 			  unsigned int pos, unsigned int count,
1172 			  void *kbuf, void __user *ubuf)
1173 {
1174 	struct user_fpsimd_state *uregs;
1175 	compat_ulong_t fpscr;
1176 	int ret, vregs_end_pos;
1177 
1178 	uregs = &target->thread.uw.fpsimd_state;
1179 
1180 	if (target == current)
1181 		fpsimd_preserve_current_state();
1182 
1183 	/*
1184 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1185 	 * nicely together for us. We just need to create the fpscr separately.
1186 	 */
1187 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1188 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
1189 				  0, vregs_end_pos);
1190 
1191 	if (count && !ret) {
1192 		fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1193 			(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1194 
1195 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpscr,
1196 					  vregs_end_pos, VFP_STATE_SIZE);
1197 	}
1198 
1199 	return ret;
1200 }
1201 
1202 static int compat_vfp_set(struct task_struct *target,
1203 			  const struct user_regset *regset,
1204 			  unsigned int pos, unsigned int count,
1205 			  const void *kbuf, const void __user *ubuf)
1206 {
1207 	struct user_fpsimd_state *uregs;
1208 	compat_ulong_t fpscr;
1209 	int ret, vregs_end_pos;
1210 
1211 	uregs = &target->thread.uw.fpsimd_state;
1212 
1213 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1214 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1215 				 vregs_end_pos);
1216 
1217 	if (count && !ret) {
1218 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1219 					 vregs_end_pos, VFP_STATE_SIZE);
1220 		if (!ret) {
1221 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1222 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1223 		}
1224 	}
1225 
1226 	fpsimd_flush_task_state(target);
1227 	return ret;
1228 }
1229 
1230 static int compat_tls_get(struct task_struct *target,
1231 			  const struct user_regset *regset, unsigned int pos,
1232 			  unsigned int count, void *kbuf, void __user *ubuf)
1233 {
1234 	compat_ulong_t tls = (compat_ulong_t)target->thread.uw.tp_value;
1235 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1236 }
1237 
1238 static int compat_tls_set(struct task_struct *target,
1239 			  const struct user_regset *regset, unsigned int pos,
1240 			  unsigned int count, const void *kbuf,
1241 			  const void __user *ubuf)
1242 {
1243 	int ret;
1244 	compat_ulong_t tls = target->thread.uw.tp_value;
1245 
1246 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1247 	if (ret)
1248 		return ret;
1249 
1250 	target->thread.uw.tp_value = tls;
1251 	return ret;
1252 }
1253 
1254 static const struct user_regset aarch32_regsets[] = {
1255 	[REGSET_COMPAT_GPR] = {
1256 		.core_note_type = NT_PRSTATUS,
1257 		.n = COMPAT_ELF_NGREG,
1258 		.size = sizeof(compat_elf_greg_t),
1259 		.align = sizeof(compat_elf_greg_t),
1260 		.get = compat_gpr_get,
1261 		.set = compat_gpr_set
1262 	},
1263 	[REGSET_COMPAT_VFP] = {
1264 		.core_note_type = NT_ARM_VFP,
1265 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1266 		.size = sizeof(compat_ulong_t),
1267 		.align = sizeof(compat_ulong_t),
1268 		.get = compat_vfp_get,
1269 		.set = compat_vfp_set
1270 	},
1271 };
1272 
1273 static const struct user_regset_view user_aarch32_view = {
1274 	.name = "aarch32", .e_machine = EM_ARM,
1275 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1276 };
1277 
1278 static const struct user_regset aarch32_ptrace_regsets[] = {
1279 	[REGSET_GPR] = {
1280 		.core_note_type = NT_PRSTATUS,
1281 		.n = COMPAT_ELF_NGREG,
1282 		.size = sizeof(compat_elf_greg_t),
1283 		.align = sizeof(compat_elf_greg_t),
1284 		.get = compat_gpr_get,
1285 		.set = compat_gpr_set
1286 	},
1287 	[REGSET_FPR] = {
1288 		.core_note_type = NT_ARM_VFP,
1289 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1290 		.size = sizeof(compat_ulong_t),
1291 		.align = sizeof(compat_ulong_t),
1292 		.get = compat_vfp_get,
1293 		.set = compat_vfp_set
1294 	},
1295 	[REGSET_TLS] = {
1296 		.core_note_type = NT_ARM_TLS,
1297 		.n = 1,
1298 		.size = sizeof(compat_ulong_t),
1299 		.align = sizeof(compat_ulong_t),
1300 		.get = compat_tls_get,
1301 		.set = compat_tls_set,
1302 	},
1303 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1304 	[REGSET_HW_BREAK] = {
1305 		.core_note_type = NT_ARM_HW_BREAK,
1306 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1307 		.size = sizeof(u32),
1308 		.align = sizeof(u32),
1309 		.get = hw_break_get,
1310 		.set = hw_break_set,
1311 	},
1312 	[REGSET_HW_WATCH] = {
1313 		.core_note_type = NT_ARM_HW_WATCH,
1314 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1315 		.size = sizeof(u32),
1316 		.align = sizeof(u32),
1317 		.get = hw_break_get,
1318 		.set = hw_break_set,
1319 	},
1320 #endif
1321 	[REGSET_SYSTEM_CALL] = {
1322 		.core_note_type = NT_ARM_SYSTEM_CALL,
1323 		.n = 1,
1324 		.size = sizeof(int),
1325 		.align = sizeof(int),
1326 		.get = system_call_get,
1327 		.set = system_call_set,
1328 	},
1329 };
1330 
1331 static const struct user_regset_view user_aarch32_ptrace_view = {
1332 	.name = "aarch32", .e_machine = EM_ARM,
1333 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1334 };
1335 
1336 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1337 				   compat_ulong_t __user *ret)
1338 {
1339 	compat_ulong_t tmp;
1340 
1341 	if (off & 3)
1342 		return -EIO;
1343 
1344 	if (off == COMPAT_PT_TEXT_ADDR)
1345 		tmp = tsk->mm->start_code;
1346 	else if (off == COMPAT_PT_DATA_ADDR)
1347 		tmp = tsk->mm->start_data;
1348 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1349 		tmp = tsk->mm->end_code;
1350 	else if (off < sizeof(compat_elf_gregset_t))
1351 		return copy_regset_to_user(tsk, &user_aarch32_view,
1352 					   REGSET_COMPAT_GPR, off,
1353 					   sizeof(compat_ulong_t), ret);
1354 	else if (off >= COMPAT_USER_SZ)
1355 		return -EIO;
1356 	else
1357 		tmp = 0;
1358 
1359 	return put_user(tmp, ret);
1360 }
1361 
1362 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1363 				    compat_ulong_t val)
1364 {
1365 	int ret;
1366 	mm_segment_t old_fs = get_fs();
1367 
1368 	if (off & 3 || off >= COMPAT_USER_SZ)
1369 		return -EIO;
1370 
1371 	if (off >= sizeof(compat_elf_gregset_t))
1372 		return 0;
1373 
1374 	set_fs(KERNEL_DS);
1375 	ret = copy_regset_from_user(tsk, &user_aarch32_view,
1376 				    REGSET_COMPAT_GPR, off,
1377 				    sizeof(compat_ulong_t),
1378 				    &val);
1379 	set_fs(old_fs);
1380 
1381 	return ret;
1382 }
1383 
1384 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1385 
1386 /*
1387  * Convert a virtual register number into an index for a thread_info
1388  * breakpoint array. Breakpoints are identified using positive numbers
1389  * whilst watchpoints are negative. The registers are laid out as pairs
1390  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1391  * Register 0 is reserved for describing resource information.
1392  */
1393 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1394 {
1395 	return (abs(num) - 1) >> 1;
1396 }
1397 
1398 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1399 {
1400 	u8 num_brps, num_wrps, debug_arch, wp_len;
1401 	u32 reg = 0;
1402 
1403 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1404 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1405 
1406 	debug_arch	= debug_monitors_arch();
1407 	wp_len		= 8;
1408 	reg		|= debug_arch;
1409 	reg		<<= 8;
1410 	reg		|= wp_len;
1411 	reg		<<= 8;
1412 	reg		|= num_wrps;
1413 	reg		<<= 8;
1414 	reg		|= num_brps;
1415 
1416 	*kdata = reg;
1417 	return 0;
1418 }
1419 
1420 static int compat_ptrace_hbp_get(unsigned int note_type,
1421 				 struct task_struct *tsk,
1422 				 compat_long_t num,
1423 				 u32 *kdata)
1424 {
1425 	u64 addr = 0;
1426 	u32 ctrl = 0;
1427 
1428 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1429 
1430 	if (num & 1) {
1431 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1432 		*kdata = (u32)addr;
1433 	} else {
1434 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1435 		*kdata = ctrl;
1436 	}
1437 
1438 	return err;
1439 }
1440 
1441 static int compat_ptrace_hbp_set(unsigned int note_type,
1442 				 struct task_struct *tsk,
1443 				 compat_long_t num,
1444 				 u32 *kdata)
1445 {
1446 	u64 addr;
1447 	u32 ctrl;
1448 
1449 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1450 
1451 	if (num & 1) {
1452 		addr = *kdata;
1453 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1454 	} else {
1455 		ctrl = *kdata;
1456 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1457 	}
1458 
1459 	return err;
1460 }
1461 
1462 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1463 				    compat_ulong_t __user *data)
1464 {
1465 	int ret;
1466 	u32 kdata;
1467 
1468 	/* Watchpoint */
1469 	if (num < 0) {
1470 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1471 	/* Resource info */
1472 	} else if (num == 0) {
1473 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1474 	/* Breakpoint */
1475 	} else {
1476 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1477 	}
1478 
1479 	if (!ret)
1480 		ret = put_user(kdata, data);
1481 
1482 	return ret;
1483 }
1484 
1485 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1486 				    compat_ulong_t __user *data)
1487 {
1488 	int ret;
1489 	u32 kdata = 0;
1490 
1491 	if (num == 0)
1492 		return 0;
1493 
1494 	ret = get_user(kdata, data);
1495 	if (ret)
1496 		return ret;
1497 
1498 	if (num < 0)
1499 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1500 	else
1501 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1502 
1503 	return ret;
1504 }
1505 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1506 
1507 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1508 			compat_ulong_t caddr, compat_ulong_t cdata)
1509 {
1510 	unsigned long addr = caddr;
1511 	unsigned long data = cdata;
1512 	void __user *datap = compat_ptr(data);
1513 	int ret;
1514 
1515 	switch (request) {
1516 		case PTRACE_PEEKUSR:
1517 			ret = compat_ptrace_read_user(child, addr, datap);
1518 			break;
1519 
1520 		case PTRACE_POKEUSR:
1521 			ret = compat_ptrace_write_user(child, addr, data);
1522 			break;
1523 
1524 		case COMPAT_PTRACE_GETREGS:
1525 			ret = copy_regset_to_user(child,
1526 						  &user_aarch32_view,
1527 						  REGSET_COMPAT_GPR,
1528 						  0, sizeof(compat_elf_gregset_t),
1529 						  datap);
1530 			break;
1531 
1532 		case COMPAT_PTRACE_SETREGS:
1533 			ret = copy_regset_from_user(child,
1534 						    &user_aarch32_view,
1535 						    REGSET_COMPAT_GPR,
1536 						    0, sizeof(compat_elf_gregset_t),
1537 						    datap);
1538 			break;
1539 
1540 		case COMPAT_PTRACE_GET_THREAD_AREA:
1541 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1542 				       (compat_ulong_t __user *)datap);
1543 			break;
1544 
1545 		case COMPAT_PTRACE_SET_SYSCALL:
1546 			task_pt_regs(child)->syscallno = data;
1547 			ret = 0;
1548 			break;
1549 
1550 		case COMPAT_PTRACE_GETVFPREGS:
1551 			ret = copy_regset_to_user(child,
1552 						  &user_aarch32_view,
1553 						  REGSET_COMPAT_VFP,
1554 						  0, VFP_STATE_SIZE,
1555 						  datap);
1556 			break;
1557 
1558 		case COMPAT_PTRACE_SETVFPREGS:
1559 			ret = copy_regset_from_user(child,
1560 						    &user_aarch32_view,
1561 						    REGSET_COMPAT_VFP,
1562 						    0, VFP_STATE_SIZE,
1563 						    datap);
1564 			break;
1565 
1566 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1567 		case COMPAT_PTRACE_GETHBPREGS:
1568 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1569 			break;
1570 
1571 		case COMPAT_PTRACE_SETHBPREGS:
1572 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1573 			break;
1574 #endif
1575 
1576 		default:
1577 			ret = compat_ptrace_request(child, request, addr,
1578 						    data);
1579 			break;
1580 	}
1581 
1582 	return ret;
1583 }
1584 #endif /* CONFIG_COMPAT */
1585 
1586 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1587 {
1588 #ifdef CONFIG_COMPAT
1589 	/*
1590 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1591 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1592 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1593 	 * access to the TLS register.
1594 	 */
1595 	if (is_compat_task())
1596 		return &user_aarch32_view;
1597 	else if (is_compat_thread(task_thread_info(task)))
1598 		return &user_aarch32_ptrace_view;
1599 #endif
1600 	return &user_aarch64_view;
1601 }
1602 
1603 long arch_ptrace(struct task_struct *child, long request,
1604 		 unsigned long addr, unsigned long data)
1605 {
1606 	return ptrace_request(child, request, addr, data);
1607 }
1608 
1609 enum ptrace_syscall_dir {
1610 	PTRACE_SYSCALL_ENTER = 0,
1611 	PTRACE_SYSCALL_EXIT,
1612 };
1613 
1614 static void tracehook_report_syscall(struct pt_regs *regs,
1615 				     enum ptrace_syscall_dir dir)
1616 {
1617 	int regno;
1618 	unsigned long saved_reg;
1619 
1620 	/*
1621 	 * A scratch register (ip(r12) on AArch32, x7 on AArch64) is
1622 	 * used to denote syscall entry/exit:
1623 	 */
1624 	regno = (is_compat_task() ? 12 : 7);
1625 	saved_reg = regs->regs[regno];
1626 	regs->regs[regno] = dir;
1627 
1628 	if (dir == PTRACE_SYSCALL_EXIT)
1629 		tracehook_report_syscall_exit(regs, 0);
1630 	else if (tracehook_report_syscall_entry(regs))
1631 		forget_syscall(regs);
1632 
1633 	regs->regs[regno] = saved_reg;
1634 }
1635 
1636 asmlinkage int syscall_trace_enter(struct pt_regs *regs)
1637 {
1638 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1639 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1640 
1641 	/* Do the secure computing after ptrace; failures should be fast. */
1642 	if (secure_computing(NULL) == -1)
1643 		return -1;
1644 
1645 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1646 		trace_sys_enter(regs, regs->syscallno);
1647 
1648 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1649 			    regs->regs[2], regs->regs[3]);
1650 
1651 	return regs->syscallno;
1652 }
1653 
1654 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
1655 {
1656 	audit_syscall_exit(regs);
1657 
1658 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1659 		trace_sys_exit(regs, regs_return_value(regs));
1660 
1661 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1662 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1663 }
1664 
1665 /*
1666  * Bits which are always architecturally RES0 per ARM DDI 0487A.h
1667  * Userspace cannot use these until they have an architectural meaning.
1668  * We also reserve IL for the kernel; SS is handled dynamically.
1669  */
1670 #define SPSR_EL1_AARCH64_RES0_BITS \
1671 	(GENMASK_ULL(63,32) | GENMASK_ULL(27, 22) | GENMASK_ULL(20, 10) | \
1672 	 GENMASK_ULL(5, 5))
1673 #define SPSR_EL1_AARCH32_RES0_BITS \
1674 	(GENMASK_ULL(63,32) | GENMASK_ULL(24, 22) | GENMASK_ULL(20,20))
1675 
1676 static int valid_compat_regs(struct user_pt_regs *regs)
1677 {
1678 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1679 
1680 	if (!system_supports_mixed_endian_el0()) {
1681 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1682 			regs->pstate |= COMPAT_PSR_E_BIT;
1683 		else
1684 			regs->pstate &= ~COMPAT_PSR_E_BIT;
1685 	}
1686 
1687 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1688 	    (regs->pstate & COMPAT_PSR_A_BIT) == 0 &&
1689 	    (regs->pstate & COMPAT_PSR_I_BIT) == 0 &&
1690 	    (regs->pstate & COMPAT_PSR_F_BIT) == 0) {
1691 		return 1;
1692 	}
1693 
1694 	/*
1695 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1696 	 * arch/arm.
1697 	 */
1698 	regs->pstate &= COMPAT_PSR_N_BIT | COMPAT_PSR_Z_BIT |
1699 			COMPAT_PSR_C_BIT | COMPAT_PSR_V_BIT |
1700 			COMPAT_PSR_Q_BIT | COMPAT_PSR_IT_MASK |
1701 			COMPAT_PSR_GE_MASK | COMPAT_PSR_E_BIT |
1702 			COMPAT_PSR_T_BIT;
1703 	regs->pstate |= PSR_MODE32_BIT;
1704 
1705 	return 0;
1706 }
1707 
1708 static int valid_native_regs(struct user_pt_regs *regs)
1709 {
1710 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1711 
1712 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1713 	    (regs->pstate & PSR_D_BIT) == 0 &&
1714 	    (regs->pstate & PSR_A_BIT) == 0 &&
1715 	    (regs->pstate & PSR_I_BIT) == 0 &&
1716 	    (regs->pstate & PSR_F_BIT) == 0) {
1717 		return 1;
1718 	}
1719 
1720 	/* Force PSR to a valid 64-bit EL0t */
1721 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1722 
1723 	return 0;
1724 }
1725 
1726 /*
1727  * Are the current registers suitable for user mode? (used to maintain
1728  * security in signal handlers)
1729  */
1730 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1731 {
1732 	if (!test_tsk_thread_flag(task, TIF_SINGLESTEP))
1733 		regs->pstate &= ~DBG_SPSR_SS;
1734 
1735 	if (is_compat_thread(task_thread_info(task)))
1736 		return valid_compat_regs(regs);
1737 	else
1738 		return valid_native_regs(regs);
1739 }
1740