xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision a61e365d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45 
46 struct pt_regs_offset {
47 	const char *name;
48 	int offset;
49 };
50 
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55 
56 static const struct pt_regs_offset regoffset_table[] = {
57 	GPR_OFFSET_NAME(0),
58 	GPR_OFFSET_NAME(1),
59 	GPR_OFFSET_NAME(2),
60 	GPR_OFFSET_NAME(3),
61 	GPR_OFFSET_NAME(4),
62 	GPR_OFFSET_NAME(5),
63 	GPR_OFFSET_NAME(6),
64 	GPR_OFFSET_NAME(7),
65 	GPR_OFFSET_NAME(8),
66 	GPR_OFFSET_NAME(9),
67 	GPR_OFFSET_NAME(10),
68 	GPR_OFFSET_NAME(11),
69 	GPR_OFFSET_NAME(12),
70 	GPR_OFFSET_NAME(13),
71 	GPR_OFFSET_NAME(14),
72 	GPR_OFFSET_NAME(15),
73 	GPR_OFFSET_NAME(16),
74 	GPR_OFFSET_NAME(17),
75 	GPR_OFFSET_NAME(18),
76 	GPR_OFFSET_NAME(19),
77 	GPR_OFFSET_NAME(20),
78 	GPR_OFFSET_NAME(21),
79 	GPR_OFFSET_NAME(22),
80 	GPR_OFFSET_NAME(23),
81 	GPR_OFFSET_NAME(24),
82 	GPR_OFFSET_NAME(25),
83 	GPR_OFFSET_NAME(26),
84 	GPR_OFFSET_NAME(27),
85 	GPR_OFFSET_NAME(28),
86 	GPR_OFFSET_NAME(29),
87 	GPR_OFFSET_NAME(30),
88 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 	REG_OFFSET_NAME(sp),
90 	REG_OFFSET_NAME(pc),
91 	REG_OFFSET_NAME(pstate),
92 	REG_OFFSET_END,
93 };
94 
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:	the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104 	const struct pt_regs_offset *roff;
105 
106 	for (roff = regoffset_table; roff->name != NULL; roff++)
107 		if (!strcmp(roff->name, name))
108 			return roff->offset;
109 	return -EINVAL;
110 }
111 
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 	return ((addr & ~(THREAD_SIZE - 1))  ==
123 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 		on_irq_stack(addr, NULL);
125 }
126 
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:	pt_regs which contains kernel stack pointer.
130  * @n:		stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139 
140 	addr += n;
141 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 		return *addr;
143 	else
144 		return 0;
145 }
146 
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151 
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157 	/*
158 	 * This would be better off in core code, but PTRACE_DETACH has
159 	 * grown its fair share of arch-specific worts and changing it
160 	 * is likely to cause regressions on obscure architectures.
161 	 */
162 	user_disable_single_step(child);
163 }
164 
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170 				struct perf_sample_data *data,
171 				struct pt_regs *regs)
172 {
173 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 	const char *desc = "Hardware breakpoint trap (ptrace)";
175 
176 #ifdef CONFIG_COMPAT
177 	if (is_compat_task()) {
178 		int si_errno = 0;
179 		int i;
180 
181 		for (i = 0; i < ARM_MAX_BRP; ++i) {
182 			if (current->thread.debug.hbp_break[i] == bp) {
183 				si_errno = (i << 1) + 1;
184 				break;
185 			}
186 		}
187 
188 		for (i = 0; i < ARM_MAX_WRP; ++i) {
189 			if (current->thread.debug.hbp_watch[i] == bp) {
190 				si_errno = -((i << 1) + 1);
191 				break;
192 			}
193 		}
194 		arm64_force_sig_ptrace_errno_trap(si_errno,
195 						  (void __user *)bkpt->trigger,
196 						  desc);
197 	}
198 #endif
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT,
200 			      (void __user *)(bkpt->trigger),
201 			      desc);
202 }
203 
204 /*
205  * Unregister breakpoints from this task and reset the pointers in
206  * the thread_struct.
207  */
208 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
209 {
210 	int i;
211 	struct thread_struct *t = &tsk->thread;
212 
213 	for (i = 0; i < ARM_MAX_BRP; i++) {
214 		if (t->debug.hbp_break[i]) {
215 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
216 			t->debug.hbp_break[i] = NULL;
217 		}
218 	}
219 
220 	for (i = 0; i < ARM_MAX_WRP; i++) {
221 		if (t->debug.hbp_watch[i]) {
222 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
223 			t->debug.hbp_watch[i] = NULL;
224 		}
225 	}
226 }
227 
228 void ptrace_hw_copy_thread(struct task_struct *tsk)
229 {
230 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
231 }
232 
233 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
234 					       struct task_struct *tsk,
235 					       unsigned long idx)
236 {
237 	struct perf_event *bp = ERR_PTR(-EINVAL);
238 
239 	switch (note_type) {
240 	case NT_ARM_HW_BREAK:
241 		if (idx >= ARM_MAX_BRP)
242 			goto out;
243 		idx = array_index_nospec(idx, ARM_MAX_BRP);
244 		bp = tsk->thread.debug.hbp_break[idx];
245 		break;
246 	case NT_ARM_HW_WATCH:
247 		if (idx >= ARM_MAX_WRP)
248 			goto out;
249 		idx = array_index_nospec(idx, ARM_MAX_WRP);
250 		bp = tsk->thread.debug.hbp_watch[idx];
251 		break;
252 	}
253 
254 out:
255 	return bp;
256 }
257 
258 static int ptrace_hbp_set_event(unsigned int note_type,
259 				struct task_struct *tsk,
260 				unsigned long idx,
261 				struct perf_event *bp)
262 {
263 	int err = -EINVAL;
264 
265 	switch (note_type) {
266 	case NT_ARM_HW_BREAK:
267 		if (idx >= ARM_MAX_BRP)
268 			goto out;
269 		idx = array_index_nospec(idx, ARM_MAX_BRP);
270 		tsk->thread.debug.hbp_break[idx] = bp;
271 		err = 0;
272 		break;
273 	case NT_ARM_HW_WATCH:
274 		if (idx >= ARM_MAX_WRP)
275 			goto out;
276 		idx = array_index_nospec(idx, ARM_MAX_WRP);
277 		tsk->thread.debug.hbp_watch[idx] = bp;
278 		err = 0;
279 		break;
280 	}
281 
282 out:
283 	return err;
284 }
285 
286 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
287 					    struct task_struct *tsk,
288 					    unsigned long idx)
289 {
290 	struct perf_event *bp;
291 	struct perf_event_attr attr;
292 	int err, type;
293 
294 	switch (note_type) {
295 	case NT_ARM_HW_BREAK:
296 		type = HW_BREAKPOINT_X;
297 		break;
298 	case NT_ARM_HW_WATCH:
299 		type = HW_BREAKPOINT_RW;
300 		break;
301 	default:
302 		return ERR_PTR(-EINVAL);
303 	}
304 
305 	ptrace_breakpoint_init(&attr);
306 
307 	/*
308 	 * Initialise fields to sane defaults
309 	 * (i.e. values that will pass validation).
310 	 */
311 	attr.bp_addr	= 0;
312 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
313 	attr.bp_type	= type;
314 	attr.disabled	= 1;
315 
316 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
317 	if (IS_ERR(bp))
318 		return bp;
319 
320 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
321 	if (err)
322 		return ERR_PTR(err);
323 
324 	return bp;
325 }
326 
327 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
328 				     struct arch_hw_breakpoint_ctrl ctrl,
329 				     struct perf_event_attr *attr)
330 {
331 	int err, len, type, offset, disabled = !ctrl.enabled;
332 
333 	attr->disabled = disabled;
334 	if (disabled)
335 		return 0;
336 
337 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
338 	if (err)
339 		return err;
340 
341 	switch (note_type) {
342 	case NT_ARM_HW_BREAK:
343 		if ((type & HW_BREAKPOINT_X) != type)
344 			return -EINVAL;
345 		break;
346 	case NT_ARM_HW_WATCH:
347 		if ((type & HW_BREAKPOINT_RW) != type)
348 			return -EINVAL;
349 		break;
350 	default:
351 		return -EINVAL;
352 	}
353 
354 	attr->bp_len	= len;
355 	attr->bp_type	= type;
356 	attr->bp_addr	+= offset;
357 
358 	return 0;
359 }
360 
361 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
362 {
363 	u8 num;
364 	u32 reg = 0;
365 
366 	switch (note_type) {
367 	case NT_ARM_HW_BREAK:
368 		num = hw_breakpoint_slots(TYPE_INST);
369 		break;
370 	case NT_ARM_HW_WATCH:
371 		num = hw_breakpoint_slots(TYPE_DATA);
372 		break;
373 	default:
374 		return -EINVAL;
375 	}
376 
377 	reg |= debug_monitors_arch();
378 	reg <<= 8;
379 	reg |= num;
380 
381 	*info = reg;
382 	return 0;
383 }
384 
385 static int ptrace_hbp_get_ctrl(unsigned int note_type,
386 			       struct task_struct *tsk,
387 			       unsigned long idx,
388 			       u32 *ctrl)
389 {
390 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
391 
392 	if (IS_ERR(bp))
393 		return PTR_ERR(bp);
394 
395 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
396 	return 0;
397 }
398 
399 static int ptrace_hbp_get_addr(unsigned int note_type,
400 			       struct task_struct *tsk,
401 			       unsigned long idx,
402 			       u64 *addr)
403 {
404 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
405 
406 	if (IS_ERR(bp))
407 		return PTR_ERR(bp);
408 
409 	*addr = bp ? counter_arch_bp(bp)->address : 0;
410 	return 0;
411 }
412 
413 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
414 							struct task_struct *tsk,
415 							unsigned long idx)
416 {
417 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
418 
419 	if (!bp)
420 		bp = ptrace_hbp_create(note_type, tsk, idx);
421 
422 	return bp;
423 }
424 
425 static int ptrace_hbp_set_ctrl(unsigned int note_type,
426 			       struct task_struct *tsk,
427 			       unsigned long idx,
428 			       u32 uctrl)
429 {
430 	int err;
431 	struct perf_event *bp;
432 	struct perf_event_attr attr;
433 	struct arch_hw_breakpoint_ctrl ctrl;
434 
435 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
436 	if (IS_ERR(bp)) {
437 		err = PTR_ERR(bp);
438 		return err;
439 	}
440 
441 	attr = bp->attr;
442 	decode_ctrl_reg(uctrl, &ctrl);
443 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
444 	if (err)
445 		return err;
446 
447 	return modify_user_hw_breakpoint(bp, &attr);
448 }
449 
450 static int ptrace_hbp_set_addr(unsigned int note_type,
451 			       struct task_struct *tsk,
452 			       unsigned long idx,
453 			       u64 addr)
454 {
455 	int err;
456 	struct perf_event *bp;
457 	struct perf_event_attr attr;
458 
459 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
460 	if (IS_ERR(bp)) {
461 		err = PTR_ERR(bp);
462 		return err;
463 	}
464 
465 	attr = bp->attr;
466 	attr.bp_addr = addr;
467 	err = modify_user_hw_breakpoint(bp, &attr);
468 	return err;
469 }
470 
471 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
472 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
473 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
474 
475 static int hw_break_get(struct task_struct *target,
476 			const struct user_regset *regset,
477 			struct membuf to)
478 {
479 	unsigned int note_type = regset->core_note_type;
480 	int ret, idx = 0;
481 	u32 info, ctrl;
482 	u64 addr;
483 
484 	/* Resource info */
485 	ret = ptrace_hbp_get_resource_info(note_type, &info);
486 	if (ret)
487 		return ret;
488 
489 	membuf_write(&to, &info, sizeof(info));
490 	membuf_zero(&to, sizeof(u32));
491 	/* (address, ctrl) registers */
492 	while (to.left) {
493 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
494 		if (ret)
495 			return ret;
496 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
497 		if (ret)
498 			return ret;
499 		membuf_store(&to, addr);
500 		membuf_store(&to, ctrl);
501 		membuf_zero(&to, sizeof(u32));
502 		idx++;
503 	}
504 	return 0;
505 }
506 
507 static int hw_break_set(struct task_struct *target,
508 			const struct user_regset *regset,
509 			unsigned int pos, unsigned int count,
510 			const void *kbuf, const void __user *ubuf)
511 {
512 	unsigned int note_type = regset->core_note_type;
513 	int ret, idx = 0, offset, limit;
514 	u32 ctrl;
515 	u64 addr;
516 
517 	/* Resource info and pad */
518 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
519 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
520 	if (ret)
521 		return ret;
522 
523 	/* (address, ctrl) registers */
524 	limit = regset->n * regset->size;
525 	while (count && offset < limit) {
526 		if (count < PTRACE_HBP_ADDR_SZ)
527 			return -EINVAL;
528 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
529 					 offset, offset + PTRACE_HBP_ADDR_SZ);
530 		if (ret)
531 			return ret;
532 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
533 		if (ret)
534 			return ret;
535 		offset += PTRACE_HBP_ADDR_SZ;
536 
537 		if (!count)
538 			break;
539 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
540 					 offset, offset + PTRACE_HBP_CTRL_SZ);
541 		if (ret)
542 			return ret;
543 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
544 		if (ret)
545 			return ret;
546 		offset += PTRACE_HBP_CTRL_SZ;
547 
548 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
549 						offset,
550 						offset + PTRACE_HBP_PAD_SZ);
551 		if (ret)
552 			return ret;
553 		offset += PTRACE_HBP_PAD_SZ;
554 		idx++;
555 	}
556 
557 	return 0;
558 }
559 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
560 
561 static int gpr_get(struct task_struct *target,
562 		   const struct user_regset *regset,
563 		   struct membuf to)
564 {
565 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
566 	return membuf_write(&to, uregs, sizeof(*uregs));
567 }
568 
569 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
570 		   unsigned int pos, unsigned int count,
571 		   const void *kbuf, const void __user *ubuf)
572 {
573 	int ret;
574 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
575 
576 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
577 	if (ret)
578 		return ret;
579 
580 	if (!valid_user_regs(&newregs, target))
581 		return -EINVAL;
582 
583 	task_pt_regs(target)->user_regs = newregs;
584 	return 0;
585 }
586 
587 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
588 {
589 	if (!system_supports_fpsimd())
590 		return -ENODEV;
591 	return regset->n;
592 }
593 
594 /*
595  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
596  */
597 static int __fpr_get(struct task_struct *target,
598 		     const struct user_regset *regset,
599 		     struct membuf to)
600 {
601 	struct user_fpsimd_state *uregs;
602 
603 	sve_sync_to_fpsimd(target);
604 
605 	uregs = &target->thread.uw.fpsimd_state;
606 
607 	return membuf_write(&to, uregs, sizeof(*uregs));
608 }
609 
610 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
611 		   struct membuf to)
612 {
613 	if (!system_supports_fpsimd())
614 		return -EINVAL;
615 
616 	if (target == current)
617 		fpsimd_preserve_current_state();
618 
619 	return __fpr_get(target, regset, to);
620 }
621 
622 static int __fpr_set(struct task_struct *target,
623 		     const struct user_regset *regset,
624 		     unsigned int pos, unsigned int count,
625 		     const void *kbuf, const void __user *ubuf,
626 		     unsigned int start_pos)
627 {
628 	int ret;
629 	struct user_fpsimd_state newstate;
630 
631 	/*
632 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
633 	 * short copyin can't resurrect stale data.
634 	 */
635 	sve_sync_to_fpsimd(target);
636 
637 	newstate = target->thread.uw.fpsimd_state;
638 
639 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
640 				 start_pos, start_pos + sizeof(newstate));
641 	if (ret)
642 		return ret;
643 
644 	target->thread.uw.fpsimd_state = newstate;
645 
646 	return ret;
647 }
648 
649 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
650 		   unsigned int pos, unsigned int count,
651 		   const void *kbuf, const void __user *ubuf)
652 {
653 	int ret;
654 
655 	if (!system_supports_fpsimd())
656 		return -EINVAL;
657 
658 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
659 	if (ret)
660 		return ret;
661 
662 	sve_sync_from_fpsimd_zeropad(target);
663 	fpsimd_flush_task_state(target);
664 
665 	return ret;
666 }
667 
668 static int tls_get(struct task_struct *target, const struct user_regset *regset,
669 		   struct membuf to)
670 {
671 	if (target == current)
672 		tls_preserve_current_state();
673 
674 	return membuf_store(&to, target->thread.uw.tp_value);
675 }
676 
677 static int tls_set(struct task_struct *target, const struct user_regset *regset,
678 		   unsigned int pos, unsigned int count,
679 		   const void *kbuf, const void __user *ubuf)
680 {
681 	int ret;
682 	unsigned long tls = target->thread.uw.tp_value;
683 
684 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
685 	if (ret)
686 		return ret;
687 
688 	target->thread.uw.tp_value = tls;
689 	return ret;
690 }
691 
692 static int system_call_get(struct task_struct *target,
693 			   const struct user_regset *regset,
694 			   struct membuf to)
695 {
696 	return membuf_store(&to, task_pt_regs(target)->syscallno);
697 }
698 
699 static int system_call_set(struct task_struct *target,
700 			   const struct user_regset *regset,
701 			   unsigned int pos, unsigned int count,
702 			   const void *kbuf, const void __user *ubuf)
703 {
704 	int syscallno = task_pt_regs(target)->syscallno;
705 	int ret;
706 
707 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
708 	if (ret)
709 		return ret;
710 
711 	task_pt_regs(target)->syscallno = syscallno;
712 	return ret;
713 }
714 
715 #ifdef CONFIG_ARM64_SVE
716 
717 static void sve_init_header_from_task(struct user_sve_header *header,
718 				      struct task_struct *target)
719 {
720 	unsigned int vq;
721 
722 	memset(header, 0, sizeof(*header));
723 
724 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
725 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
726 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
727 		header->flags |= SVE_PT_VL_INHERIT;
728 
729 	header->vl = target->thread.sve_vl;
730 	vq = sve_vq_from_vl(header->vl);
731 
732 	header->max_vl = sve_max_vl;
733 	header->size = SVE_PT_SIZE(vq, header->flags);
734 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
735 				      SVE_PT_REGS_SVE);
736 }
737 
738 static unsigned int sve_size_from_header(struct user_sve_header const *header)
739 {
740 	return ALIGN(header->size, SVE_VQ_BYTES);
741 }
742 
743 static int sve_get(struct task_struct *target,
744 		   const struct user_regset *regset,
745 		   struct membuf to)
746 {
747 	struct user_sve_header header;
748 	unsigned int vq;
749 	unsigned long start, end;
750 
751 	if (!system_supports_sve())
752 		return -EINVAL;
753 
754 	/* Header */
755 	sve_init_header_from_task(&header, target);
756 	vq = sve_vq_from_vl(header.vl);
757 
758 	membuf_write(&to, &header, sizeof(header));
759 
760 	if (target == current)
761 		fpsimd_preserve_current_state();
762 
763 	/* Registers: FPSIMD-only case */
764 
765 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
766 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
767 		return __fpr_get(target, regset, to);
768 
769 	/* Otherwise: full SVE case */
770 
771 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
772 	start = SVE_PT_SVE_OFFSET;
773 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
774 	membuf_write(&to, target->thread.sve_state, end - start);
775 
776 	start = end;
777 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
778 	membuf_zero(&to, end - start);
779 
780 	/*
781 	 * Copy fpsr, and fpcr which must follow contiguously in
782 	 * struct fpsimd_state:
783 	 */
784 	start = end;
785 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
786 	membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, end - start);
787 
788 	start = end;
789 	end = sve_size_from_header(&header);
790 	return membuf_zero(&to, end - start);
791 }
792 
793 static int sve_set(struct task_struct *target,
794 		   const struct user_regset *regset,
795 		   unsigned int pos, unsigned int count,
796 		   const void *kbuf, const void __user *ubuf)
797 {
798 	int ret;
799 	struct user_sve_header header;
800 	unsigned int vq;
801 	unsigned long start, end;
802 
803 	if (!system_supports_sve())
804 		return -EINVAL;
805 
806 	/* Header */
807 	if (count < sizeof(header))
808 		return -EINVAL;
809 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
810 				 0, sizeof(header));
811 	if (ret)
812 		goto out;
813 
814 	/*
815 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
816 	 * sve_set_vector_length(), which will also validate them for us:
817 	 */
818 	ret = sve_set_vector_length(target, header.vl,
819 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
820 	if (ret)
821 		goto out;
822 
823 	/* Actual VL set may be less than the user asked for: */
824 	vq = sve_vq_from_vl(target->thread.sve_vl);
825 
826 	/* Registers: FPSIMD-only case */
827 
828 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
829 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
830 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
831 				SVE_PT_FPSIMD_OFFSET);
832 		clear_tsk_thread_flag(target, TIF_SVE);
833 		goto out;
834 	}
835 
836 	/* Otherwise: full SVE case */
837 
838 	/*
839 	 * If setting a different VL from the requested VL and there is
840 	 * register data, the data layout will be wrong: don't even
841 	 * try to set the registers in this case.
842 	 */
843 	if (count && vq != sve_vq_from_vl(header.vl)) {
844 		ret = -EIO;
845 		goto out;
846 	}
847 
848 	sve_alloc(target);
849 
850 	/*
851 	 * Ensure target->thread.sve_state is up to date with target's
852 	 * FPSIMD regs, so that a short copyin leaves trailing registers
853 	 * unmodified.
854 	 */
855 	fpsimd_sync_to_sve(target);
856 	set_tsk_thread_flag(target, TIF_SVE);
857 
858 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
859 	start = SVE_PT_SVE_OFFSET;
860 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
861 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
862 				 target->thread.sve_state,
863 				 start, end);
864 	if (ret)
865 		goto out;
866 
867 	start = end;
868 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
869 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
870 					start, end);
871 	if (ret)
872 		goto out;
873 
874 	/*
875 	 * Copy fpsr, and fpcr which must follow contiguously in
876 	 * struct fpsimd_state:
877 	 */
878 	start = end;
879 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
880 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
881 				 &target->thread.uw.fpsimd_state.fpsr,
882 				 start, end);
883 
884 out:
885 	fpsimd_flush_task_state(target);
886 	return ret;
887 }
888 
889 #endif /* CONFIG_ARM64_SVE */
890 
891 #ifdef CONFIG_ARM64_PTR_AUTH
892 static int pac_mask_get(struct task_struct *target,
893 			const struct user_regset *regset,
894 			struct membuf to)
895 {
896 	/*
897 	 * The PAC bits can differ across data and instruction pointers
898 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
899 	 * we expose separate masks.
900 	 */
901 	unsigned long mask = ptrauth_user_pac_mask();
902 	struct user_pac_mask uregs = {
903 		.data_mask = mask,
904 		.insn_mask = mask,
905 	};
906 
907 	if (!system_supports_address_auth())
908 		return -EINVAL;
909 
910 	return membuf_write(&to, &uregs, sizeof(uregs));
911 }
912 
913 #ifdef CONFIG_CHECKPOINT_RESTORE
914 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
915 {
916 	return (__uint128_t)key->hi << 64 | key->lo;
917 }
918 
919 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
920 {
921 	struct ptrauth_key key = {
922 		.lo = (unsigned long)ukey,
923 		.hi = (unsigned long)(ukey >> 64),
924 	};
925 
926 	return key;
927 }
928 
929 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
930 				     const struct ptrauth_keys_user *keys)
931 {
932 	ukeys->apiakey = pac_key_to_user(&keys->apia);
933 	ukeys->apibkey = pac_key_to_user(&keys->apib);
934 	ukeys->apdakey = pac_key_to_user(&keys->apda);
935 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
936 }
937 
938 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
939 				       const struct user_pac_address_keys *ukeys)
940 {
941 	keys->apia = pac_key_from_user(ukeys->apiakey);
942 	keys->apib = pac_key_from_user(ukeys->apibkey);
943 	keys->apda = pac_key_from_user(ukeys->apdakey);
944 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
945 }
946 
947 static int pac_address_keys_get(struct task_struct *target,
948 				const struct user_regset *regset,
949 				struct membuf to)
950 {
951 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
952 	struct user_pac_address_keys user_keys;
953 
954 	if (!system_supports_address_auth())
955 		return -EINVAL;
956 
957 	pac_address_keys_to_user(&user_keys, keys);
958 
959 	return membuf_write(&to, &user_keys, sizeof(user_keys));
960 }
961 
962 static int pac_address_keys_set(struct task_struct *target,
963 				const struct user_regset *regset,
964 				unsigned int pos, unsigned int count,
965 				const void *kbuf, const void __user *ubuf)
966 {
967 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
968 	struct user_pac_address_keys user_keys;
969 	int ret;
970 
971 	if (!system_supports_address_auth())
972 		return -EINVAL;
973 
974 	pac_address_keys_to_user(&user_keys, keys);
975 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
976 				 &user_keys, 0, -1);
977 	if (ret)
978 		return ret;
979 	pac_address_keys_from_user(keys, &user_keys);
980 
981 	return 0;
982 }
983 
984 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
985 				     const struct ptrauth_keys_user *keys)
986 {
987 	ukeys->apgakey = pac_key_to_user(&keys->apga);
988 }
989 
990 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
991 				       const struct user_pac_generic_keys *ukeys)
992 {
993 	keys->apga = pac_key_from_user(ukeys->apgakey);
994 }
995 
996 static int pac_generic_keys_get(struct task_struct *target,
997 				const struct user_regset *regset,
998 				struct membuf to)
999 {
1000 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1001 	struct user_pac_generic_keys user_keys;
1002 
1003 	if (!system_supports_generic_auth())
1004 		return -EINVAL;
1005 
1006 	pac_generic_keys_to_user(&user_keys, keys);
1007 
1008 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1009 }
1010 
1011 static int pac_generic_keys_set(struct task_struct *target,
1012 				const struct user_regset *regset,
1013 				unsigned int pos, unsigned int count,
1014 				const void *kbuf, const void __user *ubuf)
1015 {
1016 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1017 	struct user_pac_generic_keys user_keys;
1018 	int ret;
1019 
1020 	if (!system_supports_generic_auth())
1021 		return -EINVAL;
1022 
1023 	pac_generic_keys_to_user(&user_keys, keys);
1024 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1025 				 &user_keys, 0, -1);
1026 	if (ret)
1027 		return ret;
1028 	pac_generic_keys_from_user(keys, &user_keys);
1029 
1030 	return 0;
1031 }
1032 #endif /* CONFIG_CHECKPOINT_RESTORE */
1033 #endif /* CONFIG_ARM64_PTR_AUTH */
1034 
1035 enum aarch64_regset {
1036 	REGSET_GPR,
1037 	REGSET_FPR,
1038 	REGSET_TLS,
1039 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1040 	REGSET_HW_BREAK,
1041 	REGSET_HW_WATCH,
1042 #endif
1043 	REGSET_SYSTEM_CALL,
1044 #ifdef CONFIG_ARM64_SVE
1045 	REGSET_SVE,
1046 #endif
1047 #ifdef CONFIG_ARM64_PTR_AUTH
1048 	REGSET_PAC_MASK,
1049 #ifdef CONFIG_CHECKPOINT_RESTORE
1050 	REGSET_PACA_KEYS,
1051 	REGSET_PACG_KEYS,
1052 #endif
1053 #endif
1054 };
1055 
1056 static const struct user_regset aarch64_regsets[] = {
1057 	[REGSET_GPR] = {
1058 		.core_note_type = NT_PRSTATUS,
1059 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1060 		.size = sizeof(u64),
1061 		.align = sizeof(u64),
1062 		.regset_get = gpr_get,
1063 		.set = gpr_set
1064 	},
1065 	[REGSET_FPR] = {
1066 		.core_note_type = NT_PRFPREG,
1067 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1068 		/*
1069 		 * We pretend we have 32-bit registers because the fpsr and
1070 		 * fpcr are 32-bits wide.
1071 		 */
1072 		.size = sizeof(u32),
1073 		.align = sizeof(u32),
1074 		.active = fpr_active,
1075 		.regset_get = fpr_get,
1076 		.set = fpr_set
1077 	},
1078 	[REGSET_TLS] = {
1079 		.core_note_type = NT_ARM_TLS,
1080 		.n = 1,
1081 		.size = sizeof(void *),
1082 		.align = sizeof(void *),
1083 		.regset_get = tls_get,
1084 		.set = tls_set,
1085 	},
1086 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1087 	[REGSET_HW_BREAK] = {
1088 		.core_note_type = NT_ARM_HW_BREAK,
1089 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1090 		.size = sizeof(u32),
1091 		.align = sizeof(u32),
1092 		.regset_get = hw_break_get,
1093 		.set = hw_break_set,
1094 	},
1095 	[REGSET_HW_WATCH] = {
1096 		.core_note_type = NT_ARM_HW_WATCH,
1097 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1098 		.size = sizeof(u32),
1099 		.align = sizeof(u32),
1100 		.regset_get = hw_break_get,
1101 		.set = hw_break_set,
1102 	},
1103 #endif
1104 	[REGSET_SYSTEM_CALL] = {
1105 		.core_note_type = NT_ARM_SYSTEM_CALL,
1106 		.n = 1,
1107 		.size = sizeof(int),
1108 		.align = sizeof(int),
1109 		.regset_get = system_call_get,
1110 		.set = system_call_set,
1111 	},
1112 #ifdef CONFIG_ARM64_SVE
1113 	[REGSET_SVE] = { /* Scalable Vector Extension */
1114 		.core_note_type = NT_ARM_SVE,
1115 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1116 				  SVE_VQ_BYTES),
1117 		.size = SVE_VQ_BYTES,
1118 		.align = SVE_VQ_BYTES,
1119 		.regset_get = sve_get,
1120 		.set = sve_set,
1121 	},
1122 #endif
1123 #ifdef CONFIG_ARM64_PTR_AUTH
1124 	[REGSET_PAC_MASK] = {
1125 		.core_note_type = NT_ARM_PAC_MASK,
1126 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1127 		.size = sizeof(u64),
1128 		.align = sizeof(u64),
1129 		.regset_get = pac_mask_get,
1130 		/* this cannot be set dynamically */
1131 	},
1132 #ifdef CONFIG_CHECKPOINT_RESTORE
1133 	[REGSET_PACA_KEYS] = {
1134 		.core_note_type = NT_ARM_PACA_KEYS,
1135 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1136 		.size = sizeof(__uint128_t),
1137 		.align = sizeof(__uint128_t),
1138 		.regset_get = pac_address_keys_get,
1139 		.set = pac_address_keys_set,
1140 	},
1141 	[REGSET_PACG_KEYS] = {
1142 		.core_note_type = NT_ARM_PACG_KEYS,
1143 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1144 		.size = sizeof(__uint128_t),
1145 		.align = sizeof(__uint128_t),
1146 		.regset_get = pac_generic_keys_get,
1147 		.set = pac_generic_keys_set,
1148 	},
1149 #endif
1150 #endif
1151 };
1152 
1153 static const struct user_regset_view user_aarch64_view = {
1154 	.name = "aarch64", .e_machine = EM_AARCH64,
1155 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1156 };
1157 
1158 #ifdef CONFIG_COMPAT
1159 enum compat_regset {
1160 	REGSET_COMPAT_GPR,
1161 	REGSET_COMPAT_VFP,
1162 };
1163 
1164 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1165 {
1166 	struct pt_regs *regs = task_pt_regs(task);
1167 
1168 	switch (idx) {
1169 	case 15:
1170 		return regs->pc;
1171 	case 16:
1172 		return pstate_to_compat_psr(regs->pstate);
1173 	case 17:
1174 		return regs->orig_x0;
1175 	default:
1176 		return regs->regs[idx];
1177 	}
1178 }
1179 
1180 static int compat_gpr_get(struct task_struct *target,
1181 			  const struct user_regset *regset,
1182 			  struct membuf to)
1183 {
1184 	int i = 0;
1185 
1186 	while (to.left)
1187 		membuf_store(&to, compat_get_user_reg(target, i++));
1188 	return 0;
1189 }
1190 
1191 static int compat_gpr_set(struct task_struct *target,
1192 			  const struct user_regset *regset,
1193 			  unsigned int pos, unsigned int count,
1194 			  const void *kbuf, const void __user *ubuf)
1195 {
1196 	struct pt_regs newregs;
1197 	int ret = 0;
1198 	unsigned int i, start, num_regs;
1199 
1200 	/* Calculate the number of AArch32 registers contained in count */
1201 	num_regs = count / regset->size;
1202 
1203 	/* Convert pos into an register number */
1204 	start = pos / regset->size;
1205 
1206 	if (start + num_regs > regset->n)
1207 		return -EIO;
1208 
1209 	newregs = *task_pt_regs(target);
1210 
1211 	for (i = 0; i < num_regs; ++i) {
1212 		unsigned int idx = start + i;
1213 		compat_ulong_t reg;
1214 
1215 		if (kbuf) {
1216 			memcpy(&reg, kbuf, sizeof(reg));
1217 			kbuf += sizeof(reg);
1218 		} else {
1219 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1220 			if (ret) {
1221 				ret = -EFAULT;
1222 				break;
1223 			}
1224 
1225 			ubuf += sizeof(reg);
1226 		}
1227 
1228 		switch (idx) {
1229 		case 15:
1230 			newregs.pc = reg;
1231 			break;
1232 		case 16:
1233 			reg = compat_psr_to_pstate(reg);
1234 			newregs.pstate = reg;
1235 			break;
1236 		case 17:
1237 			newregs.orig_x0 = reg;
1238 			break;
1239 		default:
1240 			newregs.regs[idx] = reg;
1241 		}
1242 
1243 	}
1244 
1245 	if (valid_user_regs(&newregs.user_regs, target))
1246 		*task_pt_regs(target) = newregs;
1247 	else
1248 		ret = -EINVAL;
1249 
1250 	return ret;
1251 }
1252 
1253 static int compat_vfp_get(struct task_struct *target,
1254 			  const struct user_regset *regset,
1255 			  struct membuf to)
1256 {
1257 	struct user_fpsimd_state *uregs;
1258 	compat_ulong_t fpscr;
1259 
1260 	if (!system_supports_fpsimd())
1261 		return -EINVAL;
1262 
1263 	uregs = &target->thread.uw.fpsimd_state;
1264 
1265 	if (target == current)
1266 		fpsimd_preserve_current_state();
1267 
1268 	/*
1269 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1270 	 * nicely together for us. We just need to create the fpscr separately.
1271 	 */
1272 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1273 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1274 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1275 	return membuf_store(&to, fpscr);
1276 }
1277 
1278 static int compat_vfp_set(struct task_struct *target,
1279 			  const struct user_regset *regset,
1280 			  unsigned int pos, unsigned int count,
1281 			  const void *kbuf, const void __user *ubuf)
1282 {
1283 	struct user_fpsimd_state *uregs;
1284 	compat_ulong_t fpscr;
1285 	int ret, vregs_end_pos;
1286 
1287 	if (!system_supports_fpsimd())
1288 		return -EINVAL;
1289 
1290 	uregs = &target->thread.uw.fpsimd_state;
1291 
1292 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1293 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1294 				 vregs_end_pos);
1295 
1296 	if (count && !ret) {
1297 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1298 					 vregs_end_pos, VFP_STATE_SIZE);
1299 		if (!ret) {
1300 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1301 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1302 		}
1303 	}
1304 
1305 	fpsimd_flush_task_state(target);
1306 	return ret;
1307 }
1308 
1309 static int compat_tls_get(struct task_struct *target,
1310 			  const struct user_regset *regset,
1311 			  struct membuf to)
1312 {
1313 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1314 }
1315 
1316 static int compat_tls_set(struct task_struct *target,
1317 			  const struct user_regset *regset, unsigned int pos,
1318 			  unsigned int count, const void *kbuf,
1319 			  const void __user *ubuf)
1320 {
1321 	int ret;
1322 	compat_ulong_t tls = target->thread.uw.tp_value;
1323 
1324 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1325 	if (ret)
1326 		return ret;
1327 
1328 	target->thread.uw.tp_value = tls;
1329 	return ret;
1330 }
1331 
1332 static const struct user_regset aarch32_regsets[] = {
1333 	[REGSET_COMPAT_GPR] = {
1334 		.core_note_type = NT_PRSTATUS,
1335 		.n = COMPAT_ELF_NGREG,
1336 		.size = sizeof(compat_elf_greg_t),
1337 		.align = sizeof(compat_elf_greg_t),
1338 		.regset_get = compat_gpr_get,
1339 		.set = compat_gpr_set
1340 	},
1341 	[REGSET_COMPAT_VFP] = {
1342 		.core_note_type = NT_ARM_VFP,
1343 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1344 		.size = sizeof(compat_ulong_t),
1345 		.align = sizeof(compat_ulong_t),
1346 		.active = fpr_active,
1347 		.regset_get = compat_vfp_get,
1348 		.set = compat_vfp_set
1349 	},
1350 };
1351 
1352 static const struct user_regset_view user_aarch32_view = {
1353 	.name = "aarch32", .e_machine = EM_ARM,
1354 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1355 };
1356 
1357 static const struct user_regset aarch32_ptrace_regsets[] = {
1358 	[REGSET_GPR] = {
1359 		.core_note_type = NT_PRSTATUS,
1360 		.n = COMPAT_ELF_NGREG,
1361 		.size = sizeof(compat_elf_greg_t),
1362 		.align = sizeof(compat_elf_greg_t),
1363 		.regset_get = compat_gpr_get,
1364 		.set = compat_gpr_set
1365 	},
1366 	[REGSET_FPR] = {
1367 		.core_note_type = NT_ARM_VFP,
1368 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1369 		.size = sizeof(compat_ulong_t),
1370 		.align = sizeof(compat_ulong_t),
1371 		.regset_get = compat_vfp_get,
1372 		.set = compat_vfp_set
1373 	},
1374 	[REGSET_TLS] = {
1375 		.core_note_type = NT_ARM_TLS,
1376 		.n = 1,
1377 		.size = sizeof(compat_ulong_t),
1378 		.align = sizeof(compat_ulong_t),
1379 		.regset_get = compat_tls_get,
1380 		.set = compat_tls_set,
1381 	},
1382 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1383 	[REGSET_HW_BREAK] = {
1384 		.core_note_type = NT_ARM_HW_BREAK,
1385 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1386 		.size = sizeof(u32),
1387 		.align = sizeof(u32),
1388 		.regset_get = hw_break_get,
1389 		.set = hw_break_set,
1390 	},
1391 	[REGSET_HW_WATCH] = {
1392 		.core_note_type = NT_ARM_HW_WATCH,
1393 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1394 		.size = sizeof(u32),
1395 		.align = sizeof(u32),
1396 		.regset_get = hw_break_get,
1397 		.set = hw_break_set,
1398 	},
1399 #endif
1400 	[REGSET_SYSTEM_CALL] = {
1401 		.core_note_type = NT_ARM_SYSTEM_CALL,
1402 		.n = 1,
1403 		.size = sizeof(int),
1404 		.align = sizeof(int),
1405 		.regset_get = system_call_get,
1406 		.set = system_call_set,
1407 	},
1408 };
1409 
1410 static const struct user_regset_view user_aarch32_ptrace_view = {
1411 	.name = "aarch32", .e_machine = EM_ARM,
1412 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1413 };
1414 
1415 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1416 				   compat_ulong_t __user *ret)
1417 {
1418 	compat_ulong_t tmp;
1419 
1420 	if (off & 3)
1421 		return -EIO;
1422 
1423 	if (off == COMPAT_PT_TEXT_ADDR)
1424 		tmp = tsk->mm->start_code;
1425 	else if (off == COMPAT_PT_DATA_ADDR)
1426 		tmp = tsk->mm->start_data;
1427 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1428 		tmp = tsk->mm->end_code;
1429 	else if (off < sizeof(compat_elf_gregset_t))
1430 		tmp = compat_get_user_reg(tsk, off >> 2);
1431 	else if (off >= COMPAT_USER_SZ)
1432 		return -EIO;
1433 	else
1434 		tmp = 0;
1435 
1436 	return put_user(tmp, ret);
1437 }
1438 
1439 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1440 				    compat_ulong_t val)
1441 {
1442 	struct pt_regs newregs = *task_pt_regs(tsk);
1443 	unsigned int idx = off / 4;
1444 
1445 	if (off & 3 || off >= COMPAT_USER_SZ)
1446 		return -EIO;
1447 
1448 	if (off >= sizeof(compat_elf_gregset_t))
1449 		return 0;
1450 
1451 	switch (idx) {
1452 	case 15:
1453 		newregs.pc = val;
1454 		break;
1455 	case 16:
1456 		newregs.pstate = compat_psr_to_pstate(val);
1457 		break;
1458 	case 17:
1459 		newregs.orig_x0 = val;
1460 		break;
1461 	default:
1462 		newregs.regs[idx] = val;
1463 	}
1464 
1465 	if (!valid_user_regs(&newregs.user_regs, tsk))
1466 		return -EINVAL;
1467 
1468 	*task_pt_regs(tsk) = newregs;
1469 	return 0;
1470 }
1471 
1472 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1473 
1474 /*
1475  * Convert a virtual register number into an index for a thread_info
1476  * breakpoint array. Breakpoints are identified using positive numbers
1477  * whilst watchpoints are negative. The registers are laid out as pairs
1478  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1479  * Register 0 is reserved for describing resource information.
1480  */
1481 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1482 {
1483 	return (abs(num) - 1) >> 1;
1484 }
1485 
1486 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1487 {
1488 	u8 num_brps, num_wrps, debug_arch, wp_len;
1489 	u32 reg = 0;
1490 
1491 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1492 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1493 
1494 	debug_arch	= debug_monitors_arch();
1495 	wp_len		= 8;
1496 	reg		|= debug_arch;
1497 	reg		<<= 8;
1498 	reg		|= wp_len;
1499 	reg		<<= 8;
1500 	reg		|= num_wrps;
1501 	reg		<<= 8;
1502 	reg		|= num_brps;
1503 
1504 	*kdata = reg;
1505 	return 0;
1506 }
1507 
1508 static int compat_ptrace_hbp_get(unsigned int note_type,
1509 				 struct task_struct *tsk,
1510 				 compat_long_t num,
1511 				 u32 *kdata)
1512 {
1513 	u64 addr = 0;
1514 	u32 ctrl = 0;
1515 
1516 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1517 
1518 	if (num & 1) {
1519 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1520 		*kdata = (u32)addr;
1521 	} else {
1522 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1523 		*kdata = ctrl;
1524 	}
1525 
1526 	return err;
1527 }
1528 
1529 static int compat_ptrace_hbp_set(unsigned int note_type,
1530 				 struct task_struct *tsk,
1531 				 compat_long_t num,
1532 				 u32 *kdata)
1533 {
1534 	u64 addr;
1535 	u32 ctrl;
1536 
1537 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1538 
1539 	if (num & 1) {
1540 		addr = *kdata;
1541 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1542 	} else {
1543 		ctrl = *kdata;
1544 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1545 	}
1546 
1547 	return err;
1548 }
1549 
1550 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1551 				    compat_ulong_t __user *data)
1552 {
1553 	int ret;
1554 	u32 kdata;
1555 
1556 	/* Watchpoint */
1557 	if (num < 0) {
1558 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1559 	/* Resource info */
1560 	} else if (num == 0) {
1561 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1562 	/* Breakpoint */
1563 	} else {
1564 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1565 	}
1566 
1567 	if (!ret)
1568 		ret = put_user(kdata, data);
1569 
1570 	return ret;
1571 }
1572 
1573 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1574 				    compat_ulong_t __user *data)
1575 {
1576 	int ret;
1577 	u32 kdata = 0;
1578 
1579 	if (num == 0)
1580 		return 0;
1581 
1582 	ret = get_user(kdata, data);
1583 	if (ret)
1584 		return ret;
1585 
1586 	if (num < 0)
1587 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1588 	else
1589 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1590 
1591 	return ret;
1592 }
1593 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1594 
1595 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1596 			compat_ulong_t caddr, compat_ulong_t cdata)
1597 {
1598 	unsigned long addr = caddr;
1599 	unsigned long data = cdata;
1600 	void __user *datap = compat_ptr(data);
1601 	int ret;
1602 
1603 	switch (request) {
1604 		case PTRACE_PEEKUSR:
1605 			ret = compat_ptrace_read_user(child, addr, datap);
1606 			break;
1607 
1608 		case PTRACE_POKEUSR:
1609 			ret = compat_ptrace_write_user(child, addr, data);
1610 			break;
1611 
1612 		case COMPAT_PTRACE_GETREGS:
1613 			ret = copy_regset_to_user(child,
1614 						  &user_aarch32_view,
1615 						  REGSET_COMPAT_GPR,
1616 						  0, sizeof(compat_elf_gregset_t),
1617 						  datap);
1618 			break;
1619 
1620 		case COMPAT_PTRACE_SETREGS:
1621 			ret = copy_regset_from_user(child,
1622 						    &user_aarch32_view,
1623 						    REGSET_COMPAT_GPR,
1624 						    0, sizeof(compat_elf_gregset_t),
1625 						    datap);
1626 			break;
1627 
1628 		case COMPAT_PTRACE_GET_THREAD_AREA:
1629 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1630 				       (compat_ulong_t __user *)datap);
1631 			break;
1632 
1633 		case COMPAT_PTRACE_SET_SYSCALL:
1634 			task_pt_regs(child)->syscallno = data;
1635 			ret = 0;
1636 			break;
1637 
1638 		case COMPAT_PTRACE_GETVFPREGS:
1639 			ret = copy_regset_to_user(child,
1640 						  &user_aarch32_view,
1641 						  REGSET_COMPAT_VFP,
1642 						  0, VFP_STATE_SIZE,
1643 						  datap);
1644 			break;
1645 
1646 		case COMPAT_PTRACE_SETVFPREGS:
1647 			ret = copy_regset_from_user(child,
1648 						    &user_aarch32_view,
1649 						    REGSET_COMPAT_VFP,
1650 						    0, VFP_STATE_SIZE,
1651 						    datap);
1652 			break;
1653 
1654 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1655 		case COMPAT_PTRACE_GETHBPREGS:
1656 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1657 			break;
1658 
1659 		case COMPAT_PTRACE_SETHBPREGS:
1660 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1661 			break;
1662 #endif
1663 
1664 		default:
1665 			ret = compat_ptrace_request(child, request, addr,
1666 						    data);
1667 			break;
1668 	}
1669 
1670 	return ret;
1671 }
1672 #endif /* CONFIG_COMPAT */
1673 
1674 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1675 {
1676 #ifdef CONFIG_COMPAT
1677 	/*
1678 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1679 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1680 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1681 	 * access to the TLS register.
1682 	 */
1683 	if (is_compat_task())
1684 		return &user_aarch32_view;
1685 	else if (is_compat_thread(task_thread_info(task)))
1686 		return &user_aarch32_ptrace_view;
1687 #endif
1688 	return &user_aarch64_view;
1689 }
1690 
1691 long arch_ptrace(struct task_struct *child, long request,
1692 		 unsigned long addr, unsigned long data)
1693 {
1694 	return ptrace_request(child, request, addr, data);
1695 }
1696 
1697 enum ptrace_syscall_dir {
1698 	PTRACE_SYSCALL_ENTER = 0,
1699 	PTRACE_SYSCALL_EXIT,
1700 };
1701 
1702 static void tracehook_report_syscall(struct pt_regs *regs,
1703 				     enum ptrace_syscall_dir dir)
1704 {
1705 	int regno;
1706 	unsigned long saved_reg;
1707 
1708 	/*
1709 	 * We have some ABI weirdness here in the way that we handle syscall
1710 	 * exit stops because we indicate whether or not the stop has been
1711 	 * signalled from syscall entry or syscall exit by clobbering a general
1712 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
1713 	 * and restoring its old value after the stop. This means that:
1714 	 *
1715 	 * - Any writes by the tracer to this register during the stop are
1716 	 *   ignored/discarded.
1717 	 *
1718 	 * - The actual value of the register is not available during the stop,
1719 	 *   so the tracer cannot save it and restore it later.
1720 	 *
1721 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
1722 	 *   (the latter do not nobble any registers).
1723 	 */
1724 	regno = (is_compat_task() ? 12 : 7);
1725 	saved_reg = regs->regs[regno];
1726 	regs->regs[regno] = dir;
1727 
1728 	if (dir == PTRACE_SYSCALL_ENTER) {
1729 		if (tracehook_report_syscall_entry(regs))
1730 			forget_syscall(regs);
1731 		regs->regs[regno] = saved_reg;
1732 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
1733 		tracehook_report_syscall_exit(regs, 0);
1734 		regs->regs[regno] = saved_reg;
1735 	} else {
1736 		regs->regs[regno] = saved_reg;
1737 
1738 		/*
1739 		 * Signal a pseudo-step exception since we are stepping but
1740 		 * tracer modifications to the registers may have rewound the
1741 		 * state machine.
1742 		 */
1743 		tracehook_report_syscall_exit(regs, 1);
1744 	}
1745 }
1746 
1747 int syscall_trace_enter(struct pt_regs *regs)
1748 {
1749 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
1750 
1751 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
1752 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1753 		if (!in_syscall(regs) || (flags & _TIF_SYSCALL_EMU))
1754 			return NO_SYSCALL;
1755 	}
1756 
1757 	/* Do the secure computing after ptrace; failures should be fast. */
1758 	if (secure_computing() == -1)
1759 		return NO_SYSCALL;
1760 
1761 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1762 		trace_sys_enter(regs, regs->syscallno);
1763 
1764 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1765 			    regs->regs[2], regs->regs[3]);
1766 
1767 	return regs->syscallno;
1768 }
1769 
1770 void syscall_trace_exit(struct pt_regs *regs)
1771 {
1772 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
1773 
1774 	audit_syscall_exit(regs);
1775 
1776 	if (flags & _TIF_SYSCALL_TRACEPOINT)
1777 		trace_sys_exit(regs, regs_return_value(regs));
1778 
1779 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
1780 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1781 
1782 	rseq_syscall(regs);
1783 }
1784 
1785 /*
1786  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1787  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1788  * not described in ARM DDI 0487D.a.
1789  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1790  * be allocated an EL0 meaning in future.
1791  * Userspace cannot use these until they have an architectural meaning.
1792  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1793  * We also reserve IL for the kernel; SS is handled dynamically.
1794  */
1795 #define SPSR_EL1_AARCH64_RES0_BITS \
1796 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 25) | GENMASK_ULL(23, 22) | \
1797 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
1798 #define SPSR_EL1_AARCH32_RES0_BITS \
1799 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1800 
1801 static int valid_compat_regs(struct user_pt_regs *regs)
1802 {
1803 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1804 
1805 	if (!system_supports_mixed_endian_el0()) {
1806 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1807 			regs->pstate |= PSR_AA32_E_BIT;
1808 		else
1809 			regs->pstate &= ~PSR_AA32_E_BIT;
1810 	}
1811 
1812 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1813 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1814 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1815 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
1816 		return 1;
1817 	}
1818 
1819 	/*
1820 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1821 	 * arch/arm.
1822 	 */
1823 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1824 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1825 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1826 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1827 			PSR_AA32_T_BIT;
1828 	regs->pstate |= PSR_MODE32_BIT;
1829 
1830 	return 0;
1831 }
1832 
1833 static int valid_native_regs(struct user_pt_regs *regs)
1834 {
1835 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1836 
1837 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1838 	    (regs->pstate & PSR_D_BIT) == 0 &&
1839 	    (regs->pstate & PSR_A_BIT) == 0 &&
1840 	    (regs->pstate & PSR_I_BIT) == 0 &&
1841 	    (regs->pstate & PSR_F_BIT) == 0) {
1842 		return 1;
1843 	}
1844 
1845 	/* Force PSR to a valid 64-bit EL0t */
1846 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1847 
1848 	return 0;
1849 }
1850 
1851 /*
1852  * Are the current registers suitable for user mode? (used to maintain
1853  * security in signal handlers)
1854  */
1855 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1856 {
1857 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
1858 	user_regs_reset_single_step(regs, task);
1859 
1860 	if (is_compat_thread(task_thread_info(task)))
1861 		return valid_compat_regs(regs);
1862 	else
1863 		return valid_native_regs(regs);
1864 }
1865