xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision 4ce94eab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46 
47 struct pt_regs_offset {
48 	const char *name;
49 	int offset;
50 };
51 
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56 
57 static const struct pt_regs_offset regoffset_table[] = {
58 	GPR_OFFSET_NAME(0),
59 	GPR_OFFSET_NAME(1),
60 	GPR_OFFSET_NAME(2),
61 	GPR_OFFSET_NAME(3),
62 	GPR_OFFSET_NAME(4),
63 	GPR_OFFSET_NAME(5),
64 	GPR_OFFSET_NAME(6),
65 	GPR_OFFSET_NAME(7),
66 	GPR_OFFSET_NAME(8),
67 	GPR_OFFSET_NAME(9),
68 	GPR_OFFSET_NAME(10),
69 	GPR_OFFSET_NAME(11),
70 	GPR_OFFSET_NAME(12),
71 	GPR_OFFSET_NAME(13),
72 	GPR_OFFSET_NAME(14),
73 	GPR_OFFSET_NAME(15),
74 	GPR_OFFSET_NAME(16),
75 	GPR_OFFSET_NAME(17),
76 	GPR_OFFSET_NAME(18),
77 	GPR_OFFSET_NAME(19),
78 	GPR_OFFSET_NAME(20),
79 	GPR_OFFSET_NAME(21),
80 	GPR_OFFSET_NAME(22),
81 	GPR_OFFSET_NAME(23),
82 	GPR_OFFSET_NAME(24),
83 	GPR_OFFSET_NAME(25),
84 	GPR_OFFSET_NAME(26),
85 	GPR_OFFSET_NAME(27),
86 	GPR_OFFSET_NAME(28),
87 	GPR_OFFSET_NAME(29),
88 	GPR_OFFSET_NAME(30),
89 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 	REG_OFFSET_NAME(sp),
91 	REG_OFFSET_NAME(pc),
92 	REG_OFFSET_NAME(pstate),
93 	REG_OFFSET_END,
94 };
95 
96 /**
97  * regs_query_register_offset() - query register offset from its name
98  * @name:	the name of a register
99  *
100  * regs_query_register_offset() returns the offset of a register in struct
101  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102  */
103 int regs_query_register_offset(const char *name)
104 {
105 	const struct pt_regs_offset *roff;
106 
107 	for (roff = regoffset_table; roff->name != NULL; roff++)
108 		if (!strcmp(roff->name, name))
109 			return roff->offset;
110 	return -EINVAL;
111 }
112 
113 /**
114  * regs_within_kernel_stack() - check the address in the stack
115  * @regs:      pt_regs which contains kernel stack pointer.
116  * @addr:      address which is checked.
117  *
118  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119  * If @addr is within the kernel stack, it returns true. If not, returns false.
120  */
121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 	return ((addr & ~(THREAD_SIZE - 1))  ==
124 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 		on_irq_stack(addr, NULL);
126 }
127 
128 /**
129  * regs_get_kernel_stack_nth() - get Nth entry of the stack
130  * @regs:	pt_regs which contains kernel stack pointer.
131  * @n:		stack entry number.
132  *
133  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135  * this returns 0.
136  */
137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140 
141 	addr += n;
142 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 		return *addr;
144 	else
145 		return 0;
146 }
147 
148 /*
149  * TODO: does not yet catch signals sent when the child dies.
150  * in exit.c or in signal.c.
151  */
152 
153 /*
154  * Called by kernel/ptrace.c when detaching..
155  */
156 void ptrace_disable(struct task_struct *child)
157 {
158 	/*
159 	 * This would be better off in core code, but PTRACE_DETACH has
160 	 * grown its fair share of arch-specific worts and changing it
161 	 * is likely to cause regressions on obscure architectures.
162 	 */
163 	user_disable_single_step(child);
164 }
165 
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168  * Handle hitting a HW-breakpoint.
169  */
170 static void ptrace_hbptriggered(struct perf_event *bp,
171 				struct perf_sample_data *data,
172 				struct pt_regs *regs)
173 {
174 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 	const char *desc = "Hardware breakpoint trap (ptrace)";
176 
177 #ifdef CONFIG_COMPAT
178 	if (is_compat_task()) {
179 		int si_errno = 0;
180 		int i;
181 
182 		for (i = 0; i < ARM_MAX_BRP; ++i) {
183 			if (current->thread.debug.hbp_break[i] == bp) {
184 				si_errno = (i << 1) + 1;
185 				break;
186 			}
187 		}
188 
189 		for (i = 0; i < ARM_MAX_WRP; ++i) {
190 			if (current->thread.debug.hbp_watch[i] == bp) {
191 				si_errno = -((i << 1) + 1);
192 				break;
193 			}
194 		}
195 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 						  desc);
197 		return;
198 	}
199 #endif
200 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
201 }
202 
203 /*
204  * Unregister breakpoints from this task and reset the pointers in
205  * the thread_struct.
206  */
207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
208 {
209 	int i;
210 	struct thread_struct *t = &tsk->thread;
211 
212 	for (i = 0; i < ARM_MAX_BRP; i++) {
213 		if (t->debug.hbp_break[i]) {
214 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
215 			t->debug.hbp_break[i] = NULL;
216 		}
217 	}
218 
219 	for (i = 0; i < ARM_MAX_WRP; i++) {
220 		if (t->debug.hbp_watch[i]) {
221 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
222 			t->debug.hbp_watch[i] = NULL;
223 		}
224 	}
225 }
226 
227 void ptrace_hw_copy_thread(struct task_struct *tsk)
228 {
229 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
230 }
231 
232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
233 					       struct task_struct *tsk,
234 					       unsigned long idx)
235 {
236 	struct perf_event *bp = ERR_PTR(-EINVAL);
237 
238 	switch (note_type) {
239 	case NT_ARM_HW_BREAK:
240 		if (idx >= ARM_MAX_BRP)
241 			goto out;
242 		idx = array_index_nospec(idx, ARM_MAX_BRP);
243 		bp = tsk->thread.debug.hbp_break[idx];
244 		break;
245 	case NT_ARM_HW_WATCH:
246 		if (idx >= ARM_MAX_WRP)
247 			goto out;
248 		idx = array_index_nospec(idx, ARM_MAX_WRP);
249 		bp = tsk->thread.debug.hbp_watch[idx];
250 		break;
251 	}
252 
253 out:
254 	return bp;
255 }
256 
257 static int ptrace_hbp_set_event(unsigned int note_type,
258 				struct task_struct *tsk,
259 				unsigned long idx,
260 				struct perf_event *bp)
261 {
262 	int err = -EINVAL;
263 
264 	switch (note_type) {
265 	case NT_ARM_HW_BREAK:
266 		if (idx >= ARM_MAX_BRP)
267 			goto out;
268 		idx = array_index_nospec(idx, ARM_MAX_BRP);
269 		tsk->thread.debug.hbp_break[idx] = bp;
270 		err = 0;
271 		break;
272 	case NT_ARM_HW_WATCH:
273 		if (idx >= ARM_MAX_WRP)
274 			goto out;
275 		idx = array_index_nospec(idx, ARM_MAX_WRP);
276 		tsk->thread.debug.hbp_watch[idx] = bp;
277 		err = 0;
278 		break;
279 	}
280 
281 out:
282 	return err;
283 }
284 
285 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
286 					    struct task_struct *tsk,
287 					    unsigned long idx)
288 {
289 	struct perf_event *bp;
290 	struct perf_event_attr attr;
291 	int err, type;
292 
293 	switch (note_type) {
294 	case NT_ARM_HW_BREAK:
295 		type = HW_BREAKPOINT_X;
296 		break;
297 	case NT_ARM_HW_WATCH:
298 		type = HW_BREAKPOINT_RW;
299 		break;
300 	default:
301 		return ERR_PTR(-EINVAL);
302 	}
303 
304 	ptrace_breakpoint_init(&attr);
305 
306 	/*
307 	 * Initialise fields to sane defaults
308 	 * (i.e. values that will pass validation).
309 	 */
310 	attr.bp_addr	= 0;
311 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
312 	attr.bp_type	= type;
313 	attr.disabled	= 1;
314 
315 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
316 	if (IS_ERR(bp))
317 		return bp;
318 
319 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
320 	if (err)
321 		return ERR_PTR(err);
322 
323 	return bp;
324 }
325 
326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
327 				     struct arch_hw_breakpoint_ctrl ctrl,
328 				     struct perf_event_attr *attr)
329 {
330 	int err, len, type, offset, disabled = !ctrl.enabled;
331 
332 	attr->disabled = disabled;
333 	if (disabled)
334 		return 0;
335 
336 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
337 	if (err)
338 		return err;
339 
340 	switch (note_type) {
341 	case NT_ARM_HW_BREAK:
342 		if ((type & HW_BREAKPOINT_X) != type)
343 			return -EINVAL;
344 		break;
345 	case NT_ARM_HW_WATCH:
346 		if ((type & HW_BREAKPOINT_RW) != type)
347 			return -EINVAL;
348 		break;
349 	default:
350 		return -EINVAL;
351 	}
352 
353 	attr->bp_len	= len;
354 	attr->bp_type	= type;
355 	attr->bp_addr	+= offset;
356 
357 	return 0;
358 }
359 
360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
361 {
362 	u8 num;
363 	u32 reg = 0;
364 
365 	switch (note_type) {
366 	case NT_ARM_HW_BREAK:
367 		num = hw_breakpoint_slots(TYPE_INST);
368 		break;
369 	case NT_ARM_HW_WATCH:
370 		num = hw_breakpoint_slots(TYPE_DATA);
371 		break;
372 	default:
373 		return -EINVAL;
374 	}
375 
376 	reg |= debug_monitors_arch();
377 	reg <<= 8;
378 	reg |= num;
379 
380 	*info = reg;
381 	return 0;
382 }
383 
384 static int ptrace_hbp_get_ctrl(unsigned int note_type,
385 			       struct task_struct *tsk,
386 			       unsigned long idx,
387 			       u32 *ctrl)
388 {
389 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
390 
391 	if (IS_ERR(bp))
392 		return PTR_ERR(bp);
393 
394 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
395 	return 0;
396 }
397 
398 static int ptrace_hbp_get_addr(unsigned int note_type,
399 			       struct task_struct *tsk,
400 			       unsigned long idx,
401 			       u64 *addr)
402 {
403 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
404 
405 	if (IS_ERR(bp))
406 		return PTR_ERR(bp);
407 
408 	*addr = bp ? counter_arch_bp(bp)->address : 0;
409 	return 0;
410 }
411 
412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
413 							struct task_struct *tsk,
414 							unsigned long idx)
415 {
416 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
417 
418 	if (!bp)
419 		bp = ptrace_hbp_create(note_type, tsk, idx);
420 
421 	return bp;
422 }
423 
424 static int ptrace_hbp_set_ctrl(unsigned int note_type,
425 			       struct task_struct *tsk,
426 			       unsigned long idx,
427 			       u32 uctrl)
428 {
429 	int err;
430 	struct perf_event *bp;
431 	struct perf_event_attr attr;
432 	struct arch_hw_breakpoint_ctrl ctrl;
433 
434 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
435 	if (IS_ERR(bp)) {
436 		err = PTR_ERR(bp);
437 		return err;
438 	}
439 
440 	attr = bp->attr;
441 	decode_ctrl_reg(uctrl, &ctrl);
442 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
443 	if (err)
444 		return err;
445 
446 	return modify_user_hw_breakpoint(bp, &attr);
447 }
448 
449 static int ptrace_hbp_set_addr(unsigned int note_type,
450 			       struct task_struct *tsk,
451 			       unsigned long idx,
452 			       u64 addr)
453 {
454 	int err;
455 	struct perf_event *bp;
456 	struct perf_event_attr attr;
457 
458 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
459 	if (IS_ERR(bp)) {
460 		err = PTR_ERR(bp);
461 		return err;
462 	}
463 
464 	attr = bp->attr;
465 	attr.bp_addr = addr;
466 	err = modify_user_hw_breakpoint(bp, &attr);
467 	return err;
468 }
469 
470 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
471 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
472 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
473 
474 static int hw_break_get(struct task_struct *target,
475 			const struct user_regset *regset,
476 			struct membuf to)
477 {
478 	unsigned int note_type = regset->core_note_type;
479 	int ret, idx = 0;
480 	u32 info, ctrl;
481 	u64 addr;
482 
483 	/* Resource info */
484 	ret = ptrace_hbp_get_resource_info(note_type, &info);
485 	if (ret)
486 		return ret;
487 
488 	membuf_write(&to, &info, sizeof(info));
489 	membuf_zero(&to, sizeof(u32));
490 	/* (address, ctrl) registers */
491 	while (to.left) {
492 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
493 		if (ret)
494 			return ret;
495 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
496 		if (ret)
497 			return ret;
498 		membuf_store(&to, addr);
499 		membuf_store(&to, ctrl);
500 		membuf_zero(&to, sizeof(u32));
501 		idx++;
502 	}
503 	return 0;
504 }
505 
506 static int hw_break_set(struct task_struct *target,
507 			const struct user_regset *regset,
508 			unsigned int pos, unsigned int count,
509 			const void *kbuf, const void __user *ubuf)
510 {
511 	unsigned int note_type = regset->core_note_type;
512 	int ret, idx = 0, offset, limit;
513 	u32 ctrl;
514 	u64 addr;
515 
516 	/* Resource info and pad */
517 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
518 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
519 	if (ret)
520 		return ret;
521 
522 	/* (address, ctrl) registers */
523 	limit = regset->n * regset->size;
524 	while (count && offset < limit) {
525 		if (count < PTRACE_HBP_ADDR_SZ)
526 			return -EINVAL;
527 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
528 					 offset, offset + PTRACE_HBP_ADDR_SZ);
529 		if (ret)
530 			return ret;
531 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
532 		if (ret)
533 			return ret;
534 		offset += PTRACE_HBP_ADDR_SZ;
535 
536 		if (!count)
537 			break;
538 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
539 					 offset, offset + PTRACE_HBP_CTRL_SZ);
540 		if (ret)
541 			return ret;
542 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
543 		if (ret)
544 			return ret;
545 		offset += PTRACE_HBP_CTRL_SZ;
546 
547 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
548 						offset,
549 						offset + PTRACE_HBP_PAD_SZ);
550 		if (ret)
551 			return ret;
552 		offset += PTRACE_HBP_PAD_SZ;
553 		idx++;
554 	}
555 
556 	return 0;
557 }
558 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
559 
560 static int gpr_get(struct task_struct *target,
561 		   const struct user_regset *regset,
562 		   struct membuf to)
563 {
564 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
565 	return membuf_write(&to, uregs, sizeof(*uregs));
566 }
567 
568 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
569 		   unsigned int pos, unsigned int count,
570 		   const void *kbuf, const void __user *ubuf)
571 {
572 	int ret;
573 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
574 
575 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
576 	if (ret)
577 		return ret;
578 
579 	if (!valid_user_regs(&newregs, target))
580 		return -EINVAL;
581 
582 	task_pt_regs(target)->user_regs = newregs;
583 	return 0;
584 }
585 
586 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
587 {
588 	if (!system_supports_fpsimd())
589 		return -ENODEV;
590 	return regset->n;
591 }
592 
593 /*
594  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
595  */
596 static int __fpr_get(struct task_struct *target,
597 		     const struct user_regset *regset,
598 		     struct membuf to)
599 {
600 	struct user_fpsimd_state *uregs;
601 
602 	sve_sync_to_fpsimd(target);
603 
604 	uregs = &target->thread.uw.fpsimd_state;
605 
606 	return membuf_write(&to, uregs, sizeof(*uregs));
607 }
608 
609 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
610 		   struct membuf to)
611 {
612 	if (!system_supports_fpsimd())
613 		return -EINVAL;
614 
615 	if (target == current)
616 		fpsimd_preserve_current_state();
617 
618 	return __fpr_get(target, regset, to);
619 }
620 
621 static int __fpr_set(struct task_struct *target,
622 		     const struct user_regset *regset,
623 		     unsigned int pos, unsigned int count,
624 		     const void *kbuf, const void __user *ubuf,
625 		     unsigned int start_pos)
626 {
627 	int ret;
628 	struct user_fpsimd_state newstate;
629 
630 	/*
631 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
632 	 * short copyin can't resurrect stale data.
633 	 */
634 	sve_sync_to_fpsimd(target);
635 
636 	newstate = target->thread.uw.fpsimd_state;
637 
638 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
639 				 start_pos, start_pos + sizeof(newstate));
640 	if (ret)
641 		return ret;
642 
643 	target->thread.uw.fpsimd_state = newstate;
644 
645 	return ret;
646 }
647 
648 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
649 		   unsigned int pos, unsigned int count,
650 		   const void *kbuf, const void __user *ubuf)
651 {
652 	int ret;
653 
654 	if (!system_supports_fpsimd())
655 		return -EINVAL;
656 
657 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
658 	if (ret)
659 		return ret;
660 
661 	sve_sync_from_fpsimd_zeropad(target);
662 	fpsimd_flush_task_state(target);
663 
664 	return ret;
665 }
666 
667 static int tls_get(struct task_struct *target, const struct user_regset *regset,
668 		   struct membuf to)
669 {
670 	if (target == current)
671 		tls_preserve_current_state();
672 
673 	return membuf_store(&to, target->thread.uw.tp_value);
674 }
675 
676 static int tls_set(struct task_struct *target, const struct user_regset *regset,
677 		   unsigned int pos, unsigned int count,
678 		   const void *kbuf, const void __user *ubuf)
679 {
680 	int ret;
681 	unsigned long tls = target->thread.uw.tp_value;
682 
683 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
684 	if (ret)
685 		return ret;
686 
687 	target->thread.uw.tp_value = tls;
688 	return ret;
689 }
690 
691 static int system_call_get(struct task_struct *target,
692 			   const struct user_regset *regset,
693 			   struct membuf to)
694 {
695 	return membuf_store(&to, task_pt_regs(target)->syscallno);
696 }
697 
698 static int system_call_set(struct task_struct *target,
699 			   const struct user_regset *regset,
700 			   unsigned int pos, unsigned int count,
701 			   const void *kbuf, const void __user *ubuf)
702 {
703 	int syscallno = task_pt_regs(target)->syscallno;
704 	int ret;
705 
706 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
707 	if (ret)
708 		return ret;
709 
710 	task_pt_regs(target)->syscallno = syscallno;
711 	return ret;
712 }
713 
714 #ifdef CONFIG_ARM64_SVE
715 
716 static void sve_init_header_from_task(struct user_sve_header *header,
717 				      struct task_struct *target)
718 {
719 	unsigned int vq;
720 
721 	memset(header, 0, sizeof(*header));
722 
723 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
724 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
725 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
726 		header->flags |= SVE_PT_VL_INHERIT;
727 
728 	header->vl = target->thread.sve_vl;
729 	vq = sve_vq_from_vl(header->vl);
730 
731 	header->max_vl = sve_max_vl;
732 	header->size = SVE_PT_SIZE(vq, header->flags);
733 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
734 				      SVE_PT_REGS_SVE);
735 }
736 
737 static unsigned int sve_size_from_header(struct user_sve_header const *header)
738 {
739 	return ALIGN(header->size, SVE_VQ_BYTES);
740 }
741 
742 static int sve_get(struct task_struct *target,
743 		   const struct user_regset *regset,
744 		   struct membuf to)
745 {
746 	struct user_sve_header header;
747 	unsigned int vq;
748 	unsigned long start, end;
749 
750 	if (!system_supports_sve())
751 		return -EINVAL;
752 
753 	/* Header */
754 	sve_init_header_from_task(&header, target);
755 	vq = sve_vq_from_vl(header.vl);
756 
757 	membuf_write(&to, &header, sizeof(header));
758 
759 	if (target == current)
760 		fpsimd_preserve_current_state();
761 
762 	/* Registers: FPSIMD-only case */
763 
764 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
765 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
766 		return __fpr_get(target, regset, to);
767 
768 	/* Otherwise: full SVE case */
769 
770 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
771 	start = SVE_PT_SVE_OFFSET;
772 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
773 	membuf_write(&to, target->thread.sve_state, end - start);
774 
775 	start = end;
776 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
777 	membuf_zero(&to, end - start);
778 
779 	/*
780 	 * Copy fpsr, and fpcr which must follow contiguously in
781 	 * struct fpsimd_state:
782 	 */
783 	start = end;
784 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
785 	membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, end - start);
786 
787 	start = end;
788 	end = sve_size_from_header(&header);
789 	return membuf_zero(&to, end - start);
790 }
791 
792 static int sve_set(struct task_struct *target,
793 		   const struct user_regset *regset,
794 		   unsigned int pos, unsigned int count,
795 		   const void *kbuf, const void __user *ubuf)
796 {
797 	int ret;
798 	struct user_sve_header header;
799 	unsigned int vq;
800 	unsigned long start, end;
801 
802 	if (!system_supports_sve())
803 		return -EINVAL;
804 
805 	/* Header */
806 	if (count < sizeof(header))
807 		return -EINVAL;
808 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
809 				 0, sizeof(header));
810 	if (ret)
811 		goto out;
812 
813 	/*
814 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
815 	 * sve_set_vector_length(), which will also validate them for us:
816 	 */
817 	ret = sve_set_vector_length(target, header.vl,
818 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
819 	if (ret)
820 		goto out;
821 
822 	/* Actual VL set may be less than the user asked for: */
823 	vq = sve_vq_from_vl(target->thread.sve_vl);
824 
825 	/* Registers: FPSIMD-only case */
826 
827 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
828 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
829 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
830 				SVE_PT_FPSIMD_OFFSET);
831 		clear_tsk_thread_flag(target, TIF_SVE);
832 		goto out;
833 	}
834 
835 	/* Otherwise: full SVE case */
836 
837 	/*
838 	 * If setting a different VL from the requested VL and there is
839 	 * register data, the data layout will be wrong: don't even
840 	 * try to set the registers in this case.
841 	 */
842 	if (count && vq != sve_vq_from_vl(header.vl)) {
843 		ret = -EIO;
844 		goto out;
845 	}
846 
847 	sve_alloc(target);
848 
849 	/*
850 	 * Ensure target->thread.sve_state is up to date with target's
851 	 * FPSIMD regs, so that a short copyin leaves trailing registers
852 	 * unmodified.
853 	 */
854 	fpsimd_sync_to_sve(target);
855 	set_tsk_thread_flag(target, TIF_SVE);
856 
857 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
858 	start = SVE_PT_SVE_OFFSET;
859 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
860 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
861 				 target->thread.sve_state,
862 				 start, end);
863 	if (ret)
864 		goto out;
865 
866 	start = end;
867 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
868 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
869 					start, end);
870 	if (ret)
871 		goto out;
872 
873 	/*
874 	 * Copy fpsr, and fpcr which must follow contiguously in
875 	 * struct fpsimd_state:
876 	 */
877 	start = end;
878 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
879 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
880 				 &target->thread.uw.fpsimd_state.fpsr,
881 				 start, end);
882 
883 out:
884 	fpsimd_flush_task_state(target);
885 	return ret;
886 }
887 
888 #endif /* CONFIG_ARM64_SVE */
889 
890 #ifdef CONFIG_ARM64_PTR_AUTH
891 static int pac_mask_get(struct task_struct *target,
892 			const struct user_regset *regset,
893 			struct membuf to)
894 {
895 	/*
896 	 * The PAC bits can differ across data and instruction pointers
897 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
898 	 * we expose separate masks.
899 	 */
900 	unsigned long mask = ptrauth_user_pac_mask();
901 	struct user_pac_mask uregs = {
902 		.data_mask = mask,
903 		.insn_mask = mask,
904 	};
905 
906 	if (!system_supports_address_auth())
907 		return -EINVAL;
908 
909 	return membuf_write(&to, &uregs, sizeof(uregs));
910 }
911 
912 #ifdef CONFIG_CHECKPOINT_RESTORE
913 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
914 {
915 	return (__uint128_t)key->hi << 64 | key->lo;
916 }
917 
918 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
919 {
920 	struct ptrauth_key key = {
921 		.lo = (unsigned long)ukey,
922 		.hi = (unsigned long)(ukey >> 64),
923 	};
924 
925 	return key;
926 }
927 
928 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
929 				     const struct ptrauth_keys_user *keys)
930 {
931 	ukeys->apiakey = pac_key_to_user(&keys->apia);
932 	ukeys->apibkey = pac_key_to_user(&keys->apib);
933 	ukeys->apdakey = pac_key_to_user(&keys->apda);
934 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
935 }
936 
937 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
938 				       const struct user_pac_address_keys *ukeys)
939 {
940 	keys->apia = pac_key_from_user(ukeys->apiakey);
941 	keys->apib = pac_key_from_user(ukeys->apibkey);
942 	keys->apda = pac_key_from_user(ukeys->apdakey);
943 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
944 }
945 
946 static int pac_address_keys_get(struct task_struct *target,
947 				const struct user_regset *regset,
948 				struct membuf to)
949 {
950 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
951 	struct user_pac_address_keys user_keys;
952 
953 	if (!system_supports_address_auth())
954 		return -EINVAL;
955 
956 	pac_address_keys_to_user(&user_keys, keys);
957 
958 	return membuf_write(&to, &user_keys, sizeof(user_keys));
959 }
960 
961 static int pac_address_keys_set(struct task_struct *target,
962 				const struct user_regset *regset,
963 				unsigned int pos, unsigned int count,
964 				const void *kbuf, const void __user *ubuf)
965 {
966 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
967 	struct user_pac_address_keys user_keys;
968 	int ret;
969 
970 	if (!system_supports_address_auth())
971 		return -EINVAL;
972 
973 	pac_address_keys_to_user(&user_keys, keys);
974 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
975 				 &user_keys, 0, -1);
976 	if (ret)
977 		return ret;
978 	pac_address_keys_from_user(keys, &user_keys);
979 
980 	return 0;
981 }
982 
983 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
984 				     const struct ptrauth_keys_user *keys)
985 {
986 	ukeys->apgakey = pac_key_to_user(&keys->apga);
987 }
988 
989 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
990 				       const struct user_pac_generic_keys *ukeys)
991 {
992 	keys->apga = pac_key_from_user(ukeys->apgakey);
993 }
994 
995 static int pac_generic_keys_get(struct task_struct *target,
996 				const struct user_regset *regset,
997 				struct membuf to)
998 {
999 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1000 	struct user_pac_generic_keys user_keys;
1001 
1002 	if (!system_supports_generic_auth())
1003 		return -EINVAL;
1004 
1005 	pac_generic_keys_to_user(&user_keys, keys);
1006 
1007 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1008 }
1009 
1010 static int pac_generic_keys_set(struct task_struct *target,
1011 				const struct user_regset *regset,
1012 				unsigned int pos, unsigned int count,
1013 				const void *kbuf, const void __user *ubuf)
1014 {
1015 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1016 	struct user_pac_generic_keys user_keys;
1017 	int ret;
1018 
1019 	if (!system_supports_generic_auth())
1020 		return -EINVAL;
1021 
1022 	pac_generic_keys_to_user(&user_keys, keys);
1023 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1024 				 &user_keys, 0, -1);
1025 	if (ret)
1026 		return ret;
1027 	pac_generic_keys_from_user(keys, &user_keys);
1028 
1029 	return 0;
1030 }
1031 #endif /* CONFIG_CHECKPOINT_RESTORE */
1032 #endif /* CONFIG_ARM64_PTR_AUTH */
1033 
1034 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1035 static int tagged_addr_ctrl_get(struct task_struct *target,
1036 				const struct user_regset *regset,
1037 				struct membuf to)
1038 {
1039 	long ctrl = get_tagged_addr_ctrl(target);
1040 
1041 	if (IS_ERR_VALUE(ctrl))
1042 		return ctrl;
1043 
1044 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1045 }
1046 
1047 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1048 				user_regset *regset, unsigned int pos,
1049 				unsigned int count, const void *kbuf, const
1050 				void __user *ubuf)
1051 {
1052 	int ret;
1053 	long ctrl;
1054 
1055 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1056 	if (ret)
1057 		return ret;
1058 
1059 	return set_tagged_addr_ctrl(target, ctrl);
1060 }
1061 #endif
1062 
1063 enum aarch64_regset {
1064 	REGSET_GPR,
1065 	REGSET_FPR,
1066 	REGSET_TLS,
1067 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1068 	REGSET_HW_BREAK,
1069 	REGSET_HW_WATCH,
1070 #endif
1071 	REGSET_SYSTEM_CALL,
1072 #ifdef CONFIG_ARM64_SVE
1073 	REGSET_SVE,
1074 #endif
1075 #ifdef CONFIG_ARM64_PTR_AUTH
1076 	REGSET_PAC_MASK,
1077 #ifdef CONFIG_CHECKPOINT_RESTORE
1078 	REGSET_PACA_KEYS,
1079 	REGSET_PACG_KEYS,
1080 #endif
1081 #endif
1082 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1083 	REGSET_TAGGED_ADDR_CTRL,
1084 #endif
1085 };
1086 
1087 static const struct user_regset aarch64_regsets[] = {
1088 	[REGSET_GPR] = {
1089 		.core_note_type = NT_PRSTATUS,
1090 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1091 		.size = sizeof(u64),
1092 		.align = sizeof(u64),
1093 		.regset_get = gpr_get,
1094 		.set = gpr_set
1095 	},
1096 	[REGSET_FPR] = {
1097 		.core_note_type = NT_PRFPREG,
1098 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1099 		/*
1100 		 * We pretend we have 32-bit registers because the fpsr and
1101 		 * fpcr are 32-bits wide.
1102 		 */
1103 		.size = sizeof(u32),
1104 		.align = sizeof(u32),
1105 		.active = fpr_active,
1106 		.regset_get = fpr_get,
1107 		.set = fpr_set
1108 	},
1109 	[REGSET_TLS] = {
1110 		.core_note_type = NT_ARM_TLS,
1111 		.n = 1,
1112 		.size = sizeof(void *),
1113 		.align = sizeof(void *),
1114 		.regset_get = tls_get,
1115 		.set = tls_set,
1116 	},
1117 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1118 	[REGSET_HW_BREAK] = {
1119 		.core_note_type = NT_ARM_HW_BREAK,
1120 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1121 		.size = sizeof(u32),
1122 		.align = sizeof(u32),
1123 		.regset_get = hw_break_get,
1124 		.set = hw_break_set,
1125 	},
1126 	[REGSET_HW_WATCH] = {
1127 		.core_note_type = NT_ARM_HW_WATCH,
1128 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1129 		.size = sizeof(u32),
1130 		.align = sizeof(u32),
1131 		.regset_get = hw_break_get,
1132 		.set = hw_break_set,
1133 	},
1134 #endif
1135 	[REGSET_SYSTEM_CALL] = {
1136 		.core_note_type = NT_ARM_SYSTEM_CALL,
1137 		.n = 1,
1138 		.size = sizeof(int),
1139 		.align = sizeof(int),
1140 		.regset_get = system_call_get,
1141 		.set = system_call_set,
1142 	},
1143 #ifdef CONFIG_ARM64_SVE
1144 	[REGSET_SVE] = { /* Scalable Vector Extension */
1145 		.core_note_type = NT_ARM_SVE,
1146 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1147 				  SVE_VQ_BYTES),
1148 		.size = SVE_VQ_BYTES,
1149 		.align = SVE_VQ_BYTES,
1150 		.regset_get = sve_get,
1151 		.set = sve_set,
1152 	},
1153 #endif
1154 #ifdef CONFIG_ARM64_PTR_AUTH
1155 	[REGSET_PAC_MASK] = {
1156 		.core_note_type = NT_ARM_PAC_MASK,
1157 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1158 		.size = sizeof(u64),
1159 		.align = sizeof(u64),
1160 		.regset_get = pac_mask_get,
1161 		/* this cannot be set dynamically */
1162 	},
1163 #ifdef CONFIG_CHECKPOINT_RESTORE
1164 	[REGSET_PACA_KEYS] = {
1165 		.core_note_type = NT_ARM_PACA_KEYS,
1166 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1167 		.size = sizeof(__uint128_t),
1168 		.align = sizeof(__uint128_t),
1169 		.regset_get = pac_address_keys_get,
1170 		.set = pac_address_keys_set,
1171 	},
1172 	[REGSET_PACG_KEYS] = {
1173 		.core_note_type = NT_ARM_PACG_KEYS,
1174 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1175 		.size = sizeof(__uint128_t),
1176 		.align = sizeof(__uint128_t),
1177 		.regset_get = pac_generic_keys_get,
1178 		.set = pac_generic_keys_set,
1179 	},
1180 #endif
1181 #endif
1182 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1183 	[REGSET_TAGGED_ADDR_CTRL] = {
1184 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1185 		.n = 1,
1186 		.size = sizeof(long),
1187 		.align = sizeof(long),
1188 		.regset_get = tagged_addr_ctrl_get,
1189 		.set = tagged_addr_ctrl_set,
1190 	},
1191 #endif
1192 };
1193 
1194 static const struct user_regset_view user_aarch64_view = {
1195 	.name = "aarch64", .e_machine = EM_AARCH64,
1196 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1197 };
1198 
1199 #ifdef CONFIG_COMPAT
1200 enum compat_regset {
1201 	REGSET_COMPAT_GPR,
1202 	REGSET_COMPAT_VFP,
1203 };
1204 
1205 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1206 {
1207 	struct pt_regs *regs = task_pt_regs(task);
1208 
1209 	switch (idx) {
1210 	case 15:
1211 		return regs->pc;
1212 	case 16:
1213 		return pstate_to_compat_psr(regs->pstate);
1214 	case 17:
1215 		return regs->orig_x0;
1216 	default:
1217 		return regs->regs[idx];
1218 	}
1219 }
1220 
1221 static int compat_gpr_get(struct task_struct *target,
1222 			  const struct user_regset *regset,
1223 			  struct membuf to)
1224 {
1225 	int i = 0;
1226 
1227 	while (to.left)
1228 		membuf_store(&to, compat_get_user_reg(target, i++));
1229 	return 0;
1230 }
1231 
1232 static int compat_gpr_set(struct task_struct *target,
1233 			  const struct user_regset *regset,
1234 			  unsigned int pos, unsigned int count,
1235 			  const void *kbuf, const void __user *ubuf)
1236 {
1237 	struct pt_regs newregs;
1238 	int ret = 0;
1239 	unsigned int i, start, num_regs;
1240 
1241 	/* Calculate the number of AArch32 registers contained in count */
1242 	num_regs = count / regset->size;
1243 
1244 	/* Convert pos into an register number */
1245 	start = pos / regset->size;
1246 
1247 	if (start + num_regs > regset->n)
1248 		return -EIO;
1249 
1250 	newregs = *task_pt_regs(target);
1251 
1252 	for (i = 0; i < num_regs; ++i) {
1253 		unsigned int idx = start + i;
1254 		compat_ulong_t reg;
1255 
1256 		if (kbuf) {
1257 			memcpy(&reg, kbuf, sizeof(reg));
1258 			kbuf += sizeof(reg);
1259 		} else {
1260 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1261 			if (ret) {
1262 				ret = -EFAULT;
1263 				break;
1264 			}
1265 
1266 			ubuf += sizeof(reg);
1267 		}
1268 
1269 		switch (idx) {
1270 		case 15:
1271 			newregs.pc = reg;
1272 			break;
1273 		case 16:
1274 			reg = compat_psr_to_pstate(reg);
1275 			newregs.pstate = reg;
1276 			break;
1277 		case 17:
1278 			newregs.orig_x0 = reg;
1279 			break;
1280 		default:
1281 			newregs.regs[idx] = reg;
1282 		}
1283 
1284 	}
1285 
1286 	if (valid_user_regs(&newregs.user_regs, target))
1287 		*task_pt_regs(target) = newregs;
1288 	else
1289 		ret = -EINVAL;
1290 
1291 	return ret;
1292 }
1293 
1294 static int compat_vfp_get(struct task_struct *target,
1295 			  const struct user_regset *regset,
1296 			  struct membuf to)
1297 {
1298 	struct user_fpsimd_state *uregs;
1299 	compat_ulong_t fpscr;
1300 
1301 	if (!system_supports_fpsimd())
1302 		return -EINVAL;
1303 
1304 	uregs = &target->thread.uw.fpsimd_state;
1305 
1306 	if (target == current)
1307 		fpsimd_preserve_current_state();
1308 
1309 	/*
1310 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1311 	 * nicely together for us. We just need to create the fpscr separately.
1312 	 */
1313 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1314 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1315 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1316 	return membuf_store(&to, fpscr);
1317 }
1318 
1319 static int compat_vfp_set(struct task_struct *target,
1320 			  const struct user_regset *regset,
1321 			  unsigned int pos, unsigned int count,
1322 			  const void *kbuf, const void __user *ubuf)
1323 {
1324 	struct user_fpsimd_state *uregs;
1325 	compat_ulong_t fpscr;
1326 	int ret, vregs_end_pos;
1327 
1328 	if (!system_supports_fpsimd())
1329 		return -EINVAL;
1330 
1331 	uregs = &target->thread.uw.fpsimd_state;
1332 
1333 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1334 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1335 				 vregs_end_pos);
1336 
1337 	if (count && !ret) {
1338 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1339 					 vregs_end_pos, VFP_STATE_SIZE);
1340 		if (!ret) {
1341 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1342 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1343 		}
1344 	}
1345 
1346 	fpsimd_flush_task_state(target);
1347 	return ret;
1348 }
1349 
1350 static int compat_tls_get(struct task_struct *target,
1351 			  const struct user_regset *regset,
1352 			  struct membuf to)
1353 {
1354 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1355 }
1356 
1357 static int compat_tls_set(struct task_struct *target,
1358 			  const struct user_regset *regset, unsigned int pos,
1359 			  unsigned int count, const void *kbuf,
1360 			  const void __user *ubuf)
1361 {
1362 	int ret;
1363 	compat_ulong_t tls = target->thread.uw.tp_value;
1364 
1365 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1366 	if (ret)
1367 		return ret;
1368 
1369 	target->thread.uw.tp_value = tls;
1370 	return ret;
1371 }
1372 
1373 static const struct user_regset aarch32_regsets[] = {
1374 	[REGSET_COMPAT_GPR] = {
1375 		.core_note_type = NT_PRSTATUS,
1376 		.n = COMPAT_ELF_NGREG,
1377 		.size = sizeof(compat_elf_greg_t),
1378 		.align = sizeof(compat_elf_greg_t),
1379 		.regset_get = compat_gpr_get,
1380 		.set = compat_gpr_set
1381 	},
1382 	[REGSET_COMPAT_VFP] = {
1383 		.core_note_type = NT_ARM_VFP,
1384 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1385 		.size = sizeof(compat_ulong_t),
1386 		.align = sizeof(compat_ulong_t),
1387 		.active = fpr_active,
1388 		.regset_get = compat_vfp_get,
1389 		.set = compat_vfp_set
1390 	},
1391 };
1392 
1393 static const struct user_regset_view user_aarch32_view = {
1394 	.name = "aarch32", .e_machine = EM_ARM,
1395 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1396 };
1397 
1398 static const struct user_regset aarch32_ptrace_regsets[] = {
1399 	[REGSET_GPR] = {
1400 		.core_note_type = NT_PRSTATUS,
1401 		.n = COMPAT_ELF_NGREG,
1402 		.size = sizeof(compat_elf_greg_t),
1403 		.align = sizeof(compat_elf_greg_t),
1404 		.regset_get = compat_gpr_get,
1405 		.set = compat_gpr_set
1406 	},
1407 	[REGSET_FPR] = {
1408 		.core_note_type = NT_ARM_VFP,
1409 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1410 		.size = sizeof(compat_ulong_t),
1411 		.align = sizeof(compat_ulong_t),
1412 		.regset_get = compat_vfp_get,
1413 		.set = compat_vfp_set
1414 	},
1415 	[REGSET_TLS] = {
1416 		.core_note_type = NT_ARM_TLS,
1417 		.n = 1,
1418 		.size = sizeof(compat_ulong_t),
1419 		.align = sizeof(compat_ulong_t),
1420 		.regset_get = compat_tls_get,
1421 		.set = compat_tls_set,
1422 	},
1423 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1424 	[REGSET_HW_BREAK] = {
1425 		.core_note_type = NT_ARM_HW_BREAK,
1426 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1427 		.size = sizeof(u32),
1428 		.align = sizeof(u32),
1429 		.regset_get = hw_break_get,
1430 		.set = hw_break_set,
1431 	},
1432 	[REGSET_HW_WATCH] = {
1433 		.core_note_type = NT_ARM_HW_WATCH,
1434 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1435 		.size = sizeof(u32),
1436 		.align = sizeof(u32),
1437 		.regset_get = hw_break_get,
1438 		.set = hw_break_set,
1439 	},
1440 #endif
1441 	[REGSET_SYSTEM_CALL] = {
1442 		.core_note_type = NT_ARM_SYSTEM_CALL,
1443 		.n = 1,
1444 		.size = sizeof(int),
1445 		.align = sizeof(int),
1446 		.regset_get = system_call_get,
1447 		.set = system_call_set,
1448 	},
1449 };
1450 
1451 static const struct user_regset_view user_aarch32_ptrace_view = {
1452 	.name = "aarch32", .e_machine = EM_ARM,
1453 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1454 };
1455 
1456 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1457 				   compat_ulong_t __user *ret)
1458 {
1459 	compat_ulong_t tmp;
1460 
1461 	if (off & 3)
1462 		return -EIO;
1463 
1464 	if (off == COMPAT_PT_TEXT_ADDR)
1465 		tmp = tsk->mm->start_code;
1466 	else if (off == COMPAT_PT_DATA_ADDR)
1467 		tmp = tsk->mm->start_data;
1468 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1469 		tmp = tsk->mm->end_code;
1470 	else if (off < sizeof(compat_elf_gregset_t))
1471 		tmp = compat_get_user_reg(tsk, off >> 2);
1472 	else if (off >= COMPAT_USER_SZ)
1473 		return -EIO;
1474 	else
1475 		tmp = 0;
1476 
1477 	return put_user(tmp, ret);
1478 }
1479 
1480 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1481 				    compat_ulong_t val)
1482 {
1483 	struct pt_regs newregs = *task_pt_regs(tsk);
1484 	unsigned int idx = off / 4;
1485 
1486 	if (off & 3 || off >= COMPAT_USER_SZ)
1487 		return -EIO;
1488 
1489 	if (off >= sizeof(compat_elf_gregset_t))
1490 		return 0;
1491 
1492 	switch (idx) {
1493 	case 15:
1494 		newregs.pc = val;
1495 		break;
1496 	case 16:
1497 		newregs.pstate = compat_psr_to_pstate(val);
1498 		break;
1499 	case 17:
1500 		newregs.orig_x0 = val;
1501 		break;
1502 	default:
1503 		newregs.regs[idx] = val;
1504 	}
1505 
1506 	if (!valid_user_regs(&newregs.user_regs, tsk))
1507 		return -EINVAL;
1508 
1509 	*task_pt_regs(tsk) = newregs;
1510 	return 0;
1511 }
1512 
1513 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1514 
1515 /*
1516  * Convert a virtual register number into an index for a thread_info
1517  * breakpoint array. Breakpoints are identified using positive numbers
1518  * whilst watchpoints are negative. The registers are laid out as pairs
1519  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1520  * Register 0 is reserved for describing resource information.
1521  */
1522 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1523 {
1524 	return (abs(num) - 1) >> 1;
1525 }
1526 
1527 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1528 {
1529 	u8 num_brps, num_wrps, debug_arch, wp_len;
1530 	u32 reg = 0;
1531 
1532 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1533 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1534 
1535 	debug_arch	= debug_monitors_arch();
1536 	wp_len		= 8;
1537 	reg		|= debug_arch;
1538 	reg		<<= 8;
1539 	reg		|= wp_len;
1540 	reg		<<= 8;
1541 	reg		|= num_wrps;
1542 	reg		<<= 8;
1543 	reg		|= num_brps;
1544 
1545 	*kdata = reg;
1546 	return 0;
1547 }
1548 
1549 static int compat_ptrace_hbp_get(unsigned int note_type,
1550 				 struct task_struct *tsk,
1551 				 compat_long_t num,
1552 				 u32 *kdata)
1553 {
1554 	u64 addr = 0;
1555 	u32 ctrl = 0;
1556 
1557 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1558 
1559 	if (num & 1) {
1560 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1561 		*kdata = (u32)addr;
1562 	} else {
1563 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1564 		*kdata = ctrl;
1565 	}
1566 
1567 	return err;
1568 }
1569 
1570 static int compat_ptrace_hbp_set(unsigned int note_type,
1571 				 struct task_struct *tsk,
1572 				 compat_long_t num,
1573 				 u32 *kdata)
1574 {
1575 	u64 addr;
1576 	u32 ctrl;
1577 
1578 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1579 
1580 	if (num & 1) {
1581 		addr = *kdata;
1582 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1583 	} else {
1584 		ctrl = *kdata;
1585 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1586 	}
1587 
1588 	return err;
1589 }
1590 
1591 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1592 				    compat_ulong_t __user *data)
1593 {
1594 	int ret;
1595 	u32 kdata;
1596 
1597 	/* Watchpoint */
1598 	if (num < 0) {
1599 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1600 	/* Resource info */
1601 	} else if (num == 0) {
1602 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1603 	/* Breakpoint */
1604 	} else {
1605 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1606 	}
1607 
1608 	if (!ret)
1609 		ret = put_user(kdata, data);
1610 
1611 	return ret;
1612 }
1613 
1614 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1615 				    compat_ulong_t __user *data)
1616 {
1617 	int ret;
1618 	u32 kdata = 0;
1619 
1620 	if (num == 0)
1621 		return 0;
1622 
1623 	ret = get_user(kdata, data);
1624 	if (ret)
1625 		return ret;
1626 
1627 	if (num < 0)
1628 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1629 	else
1630 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1631 
1632 	return ret;
1633 }
1634 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1635 
1636 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1637 			compat_ulong_t caddr, compat_ulong_t cdata)
1638 {
1639 	unsigned long addr = caddr;
1640 	unsigned long data = cdata;
1641 	void __user *datap = compat_ptr(data);
1642 	int ret;
1643 
1644 	switch (request) {
1645 		case PTRACE_PEEKUSR:
1646 			ret = compat_ptrace_read_user(child, addr, datap);
1647 			break;
1648 
1649 		case PTRACE_POKEUSR:
1650 			ret = compat_ptrace_write_user(child, addr, data);
1651 			break;
1652 
1653 		case COMPAT_PTRACE_GETREGS:
1654 			ret = copy_regset_to_user(child,
1655 						  &user_aarch32_view,
1656 						  REGSET_COMPAT_GPR,
1657 						  0, sizeof(compat_elf_gregset_t),
1658 						  datap);
1659 			break;
1660 
1661 		case COMPAT_PTRACE_SETREGS:
1662 			ret = copy_regset_from_user(child,
1663 						    &user_aarch32_view,
1664 						    REGSET_COMPAT_GPR,
1665 						    0, sizeof(compat_elf_gregset_t),
1666 						    datap);
1667 			break;
1668 
1669 		case COMPAT_PTRACE_GET_THREAD_AREA:
1670 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1671 				       (compat_ulong_t __user *)datap);
1672 			break;
1673 
1674 		case COMPAT_PTRACE_SET_SYSCALL:
1675 			task_pt_regs(child)->syscallno = data;
1676 			ret = 0;
1677 			break;
1678 
1679 		case COMPAT_PTRACE_GETVFPREGS:
1680 			ret = copy_regset_to_user(child,
1681 						  &user_aarch32_view,
1682 						  REGSET_COMPAT_VFP,
1683 						  0, VFP_STATE_SIZE,
1684 						  datap);
1685 			break;
1686 
1687 		case COMPAT_PTRACE_SETVFPREGS:
1688 			ret = copy_regset_from_user(child,
1689 						    &user_aarch32_view,
1690 						    REGSET_COMPAT_VFP,
1691 						    0, VFP_STATE_SIZE,
1692 						    datap);
1693 			break;
1694 
1695 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1696 		case COMPAT_PTRACE_GETHBPREGS:
1697 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1698 			break;
1699 
1700 		case COMPAT_PTRACE_SETHBPREGS:
1701 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1702 			break;
1703 #endif
1704 
1705 		default:
1706 			ret = compat_ptrace_request(child, request, addr,
1707 						    data);
1708 			break;
1709 	}
1710 
1711 	return ret;
1712 }
1713 #endif /* CONFIG_COMPAT */
1714 
1715 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1716 {
1717 #ifdef CONFIG_COMPAT
1718 	/*
1719 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1720 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1721 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1722 	 * access to the TLS register.
1723 	 */
1724 	if (is_compat_task())
1725 		return &user_aarch32_view;
1726 	else if (is_compat_thread(task_thread_info(task)))
1727 		return &user_aarch32_ptrace_view;
1728 #endif
1729 	return &user_aarch64_view;
1730 }
1731 
1732 long arch_ptrace(struct task_struct *child, long request,
1733 		 unsigned long addr, unsigned long data)
1734 {
1735 	switch (request) {
1736 	case PTRACE_PEEKMTETAGS:
1737 	case PTRACE_POKEMTETAGS:
1738 		return mte_ptrace_copy_tags(child, request, addr, data);
1739 	}
1740 
1741 	return ptrace_request(child, request, addr, data);
1742 }
1743 
1744 enum ptrace_syscall_dir {
1745 	PTRACE_SYSCALL_ENTER = 0,
1746 	PTRACE_SYSCALL_EXIT,
1747 };
1748 
1749 static void tracehook_report_syscall(struct pt_regs *regs,
1750 				     enum ptrace_syscall_dir dir)
1751 {
1752 	int regno;
1753 	unsigned long saved_reg;
1754 
1755 	/*
1756 	 * We have some ABI weirdness here in the way that we handle syscall
1757 	 * exit stops because we indicate whether or not the stop has been
1758 	 * signalled from syscall entry or syscall exit by clobbering a general
1759 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
1760 	 * and restoring its old value after the stop. This means that:
1761 	 *
1762 	 * - Any writes by the tracer to this register during the stop are
1763 	 *   ignored/discarded.
1764 	 *
1765 	 * - The actual value of the register is not available during the stop,
1766 	 *   so the tracer cannot save it and restore it later.
1767 	 *
1768 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
1769 	 *   (the latter do not nobble any registers).
1770 	 */
1771 	regno = (is_compat_task() ? 12 : 7);
1772 	saved_reg = regs->regs[regno];
1773 	regs->regs[regno] = dir;
1774 
1775 	if (dir == PTRACE_SYSCALL_ENTER) {
1776 		if (tracehook_report_syscall_entry(regs))
1777 			forget_syscall(regs);
1778 		regs->regs[regno] = saved_reg;
1779 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
1780 		tracehook_report_syscall_exit(regs, 0);
1781 		regs->regs[regno] = saved_reg;
1782 	} else {
1783 		regs->regs[regno] = saved_reg;
1784 
1785 		/*
1786 		 * Signal a pseudo-step exception since we are stepping but
1787 		 * tracer modifications to the registers may have rewound the
1788 		 * state machine.
1789 		 */
1790 		tracehook_report_syscall_exit(regs, 1);
1791 	}
1792 }
1793 
1794 int syscall_trace_enter(struct pt_regs *regs)
1795 {
1796 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
1797 
1798 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
1799 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1800 		if (flags & _TIF_SYSCALL_EMU)
1801 			return NO_SYSCALL;
1802 	}
1803 
1804 	/* Do the secure computing after ptrace; failures should be fast. */
1805 	if (secure_computing() == -1)
1806 		return NO_SYSCALL;
1807 
1808 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1809 		trace_sys_enter(regs, regs->syscallno);
1810 
1811 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1812 			    regs->regs[2], regs->regs[3]);
1813 
1814 	return regs->syscallno;
1815 }
1816 
1817 void syscall_trace_exit(struct pt_regs *regs)
1818 {
1819 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
1820 
1821 	audit_syscall_exit(regs);
1822 
1823 	if (flags & _TIF_SYSCALL_TRACEPOINT)
1824 		trace_sys_exit(regs, regs_return_value(regs));
1825 
1826 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
1827 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1828 
1829 	rseq_syscall(regs);
1830 }
1831 
1832 /*
1833  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1834  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1835  * not described in ARM DDI 0487D.a.
1836  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1837  * be allocated an EL0 meaning in future.
1838  * Userspace cannot use these until they have an architectural meaning.
1839  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1840  * We also reserve IL for the kernel; SS is handled dynamically.
1841  */
1842 #define SPSR_EL1_AARCH64_RES0_BITS \
1843 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
1844 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
1845 #define SPSR_EL1_AARCH32_RES0_BITS \
1846 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1847 
1848 static int valid_compat_regs(struct user_pt_regs *regs)
1849 {
1850 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1851 
1852 	if (!system_supports_mixed_endian_el0()) {
1853 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1854 			regs->pstate |= PSR_AA32_E_BIT;
1855 		else
1856 			regs->pstate &= ~PSR_AA32_E_BIT;
1857 	}
1858 
1859 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1860 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1861 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1862 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
1863 		return 1;
1864 	}
1865 
1866 	/*
1867 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1868 	 * arch/arm.
1869 	 */
1870 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1871 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1872 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1873 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1874 			PSR_AA32_T_BIT;
1875 	regs->pstate |= PSR_MODE32_BIT;
1876 
1877 	return 0;
1878 }
1879 
1880 static int valid_native_regs(struct user_pt_regs *regs)
1881 {
1882 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1883 
1884 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1885 	    (regs->pstate & PSR_D_BIT) == 0 &&
1886 	    (regs->pstate & PSR_A_BIT) == 0 &&
1887 	    (regs->pstate & PSR_I_BIT) == 0 &&
1888 	    (regs->pstate & PSR_F_BIT) == 0) {
1889 		return 1;
1890 	}
1891 
1892 	/* Force PSR to a valid 64-bit EL0t */
1893 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1894 
1895 	return 0;
1896 }
1897 
1898 /*
1899  * Are the current registers suitable for user mode? (used to maintain
1900  * security in signal handlers)
1901  */
1902 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1903 {
1904 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
1905 	user_regs_reset_single_step(regs, task);
1906 
1907 	if (is_compat_thread(task_thread_info(task)))
1908 		return valid_compat_regs(regs);
1909 	else
1910 		return valid_native_regs(regs);
1911 }
1912