xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision 3180b64a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46 
47 struct pt_regs_offset {
48 	const char *name;
49 	int offset;
50 };
51 
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56 
57 static const struct pt_regs_offset regoffset_table[] = {
58 	GPR_OFFSET_NAME(0),
59 	GPR_OFFSET_NAME(1),
60 	GPR_OFFSET_NAME(2),
61 	GPR_OFFSET_NAME(3),
62 	GPR_OFFSET_NAME(4),
63 	GPR_OFFSET_NAME(5),
64 	GPR_OFFSET_NAME(6),
65 	GPR_OFFSET_NAME(7),
66 	GPR_OFFSET_NAME(8),
67 	GPR_OFFSET_NAME(9),
68 	GPR_OFFSET_NAME(10),
69 	GPR_OFFSET_NAME(11),
70 	GPR_OFFSET_NAME(12),
71 	GPR_OFFSET_NAME(13),
72 	GPR_OFFSET_NAME(14),
73 	GPR_OFFSET_NAME(15),
74 	GPR_OFFSET_NAME(16),
75 	GPR_OFFSET_NAME(17),
76 	GPR_OFFSET_NAME(18),
77 	GPR_OFFSET_NAME(19),
78 	GPR_OFFSET_NAME(20),
79 	GPR_OFFSET_NAME(21),
80 	GPR_OFFSET_NAME(22),
81 	GPR_OFFSET_NAME(23),
82 	GPR_OFFSET_NAME(24),
83 	GPR_OFFSET_NAME(25),
84 	GPR_OFFSET_NAME(26),
85 	GPR_OFFSET_NAME(27),
86 	GPR_OFFSET_NAME(28),
87 	GPR_OFFSET_NAME(29),
88 	GPR_OFFSET_NAME(30),
89 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 	REG_OFFSET_NAME(sp),
91 	REG_OFFSET_NAME(pc),
92 	REG_OFFSET_NAME(pstate),
93 	REG_OFFSET_END,
94 };
95 
96 /**
97  * regs_query_register_offset() - query register offset from its name
98  * @name:	the name of a register
99  *
100  * regs_query_register_offset() returns the offset of a register in struct
101  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102  */
103 int regs_query_register_offset(const char *name)
104 {
105 	const struct pt_regs_offset *roff;
106 
107 	for (roff = regoffset_table; roff->name != NULL; roff++)
108 		if (!strcmp(roff->name, name))
109 			return roff->offset;
110 	return -EINVAL;
111 }
112 
113 /**
114  * regs_within_kernel_stack() - check the address in the stack
115  * @regs:      pt_regs which contains kernel stack pointer.
116  * @addr:      address which is checked.
117  *
118  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119  * If @addr is within the kernel stack, it returns true. If not, returns false.
120  */
121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 	return ((addr & ~(THREAD_SIZE - 1))  ==
124 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 		on_irq_stack(addr, NULL);
126 }
127 
128 /**
129  * regs_get_kernel_stack_nth() - get Nth entry of the stack
130  * @regs:	pt_regs which contains kernel stack pointer.
131  * @n:		stack entry number.
132  *
133  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135  * this returns 0.
136  */
137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140 
141 	addr += n;
142 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 		return *addr;
144 	else
145 		return 0;
146 }
147 
148 /*
149  * TODO: does not yet catch signals sent when the child dies.
150  * in exit.c or in signal.c.
151  */
152 
153 /*
154  * Called by kernel/ptrace.c when detaching..
155  */
156 void ptrace_disable(struct task_struct *child)
157 {
158 	/*
159 	 * This would be better off in core code, but PTRACE_DETACH has
160 	 * grown its fair share of arch-specific worts and changing it
161 	 * is likely to cause regressions on obscure architectures.
162 	 */
163 	user_disable_single_step(child);
164 }
165 
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168  * Handle hitting a HW-breakpoint.
169  */
170 static void ptrace_hbptriggered(struct perf_event *bp,
171 				struct perf_sample_data *data,
172 				struct pt_regs *regs)
173 {
174 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 	const char *desc = "Hardware breakpoint trap (ptrace)";
176 
177 #ifdef CONFIG_COMPAT
178 	if (is_compat_task()) {
179 		int si_errno = 0;
180 		int i;
181 
182 		for (i = 0; i < ARM_MAX_BRP; ++i) {
183 			if (current->thread.debug.hbp_break[i] == bp) {
184 				si_errno = (i << 1) + 1;
185 				break;
186 			}
187 		}
188 
189 		for (i = 0; i < ARM_MAX_WRP; ++i) {
190 			if (current->thread.debug.hbp_watch[i] == bp) {
191 				si_errno = -((i << 1) + 1);
192 				break;
193 			}
194 		}
195 		arm64_force_sig_ptrace_errno_trap(si_errno,
196 						  (void __user *)bkpt->trigger,
197 						  desc);
198 	}
199 #endif
200 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT,
201 			      (void __user *)(bkpt->trigger),
202 			      desc);
203 }
204 
205 /*
206  * Unregister breakpoints from this task and reset the pointers in
207  * the thread_struct.
208  */
209 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
210 {
211 	int i;
212 	struct thread_struct *t = &tsk->thread;
213 
214 	for (i = 0; i < ARM_MAX_BRP; i++) {
215 		if (t->debug.hbp_break[i]) {
216 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
217 			t->debug.hbp_break[i] = NULL;
218 		}
219 	}
220 
221 	for (i = 0; i < ARM_MAX_WRP; i++) {
222 		if (t->debug.hbp_watch[i]) {
223 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
224 			t->debug.hbp_watch[i] = NULL;
225 		}
226 	}
227 }
228 
229 void ptrace_hw_copy_thread(struct task_struct *tsk)
230 {
231 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
232 }
233 
234 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
235 					       struct task_struct *tsk,
236 					       unsigned long idx)
237 {
238 	struct perf_event *bp = ERR_PTR(-EINVAL);
239 
240 	switch (note_type) {
241 	case NT_ARM_HW_BREAK:
242 		if (idx >= ARM_MAX_BRP)
243 			goto out;
244 		idx = array_index_nospec(idx, ARM_MAX_BRP);
245 		bp = tsk->thread.debug.hbp_break[idx];
246 		break;
247 	case NT_ARM_HW_WATCH:
248 		if (idx >= ARM_MAX_WRP)
249 			goto out;
250 		idx = array_index_nospec(idx, ARM_MAX_WRP);
251 		bp = tsk->thread.debug.hbp_watch[idx];
252 		break;
253 	}
254 
255 out:
256 	return bp;
257 }
258 
259 static int ptrace_hbp_set_event(unsigned int note_type,
260 				struct task_struct *tsk,
261 				unsigned long idx,
262 				struct perf_event *bp)
263 {
264 	int err = -EINVAL;
265 
266 	switch (note_type) {
267 	case NT_ARM_HW_BREAK:
268 		if (idx >= ARM_MAX_BRP)
269 			goto out;
270 		idx = array_index_nospec(idx, ARM_MAX_BRP);
271 		tsk->thread.debug.hbp_break[idx] = bp;
272 		err = 0;
273 		break;
274 	case NT_ARM_HW_WATCH:
275 		if (idx >= ARM_MAX_WRP)
276 			goto out;
277 		idx = array_index_nospec(idx, ARM_MAX_WRP);
278 		tsk->thread.debug.hbp_watch[idx] = bp;
279 		err = 0;
280 		break;
281 	}
282 
283 out:
284 	return err;
285 }
286 
287 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
288 					    struct task_struct *tsk,
289 					    unsigned long idx)
290 {
291 	struct perf_event *bp;
292 	struct perf_event_attr attr;
293 	int err, type;
294 
295 	switch (note_type) {
296 	case NT_ARM_HW_BREAK:
297 		type = HW_BREAKPOINT_X;
298 		break;
299 	case NT_ARM_HW_WATCH:
300 		type = HW_BREAKPOINT_RW;
301 		break;
302 	default:
303 		return ERR_PTR(-EINVAL);
304 	}
305 
306 	ptrace_breakpoint_init(&attr);
307 
308 	/*
309 	 * Initialise fields to sane defaults
310 	 * (i.e. values that will pass validation).
311 	 */
312 	attr.bp_addr	= 0;
313 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
314 	attr.bp_type	= type;
315 	attr.disabled	= 1;
316 
317 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
318 	if (IS_ERR(bp))
319 		return bp;
320 
321 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
322 	if (err)
323 		return ERR_PTR(err);
324 
325 	return bp;
326 }
327 
328 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
329 				     struct arch_hw_breakpoint_ctrl ctrl,
330 				     struct perf_event_attr *attr)
331 {
332 	int err, len, type, offset, disabled = !ctrl.enabled;
333 
334 	attr->disabled = disabled;
335 	if (disabled)
336 		return 0;
337 
338 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
339 	if (err)
340 		return err;
341 
342 	switch (note_type) {
343 	case NT_ARM_HW_BREAK:
344 		if ((type & HW_BREAKPOINT_X) != type)
345 			return -EINVAL;
346 		break;
347 	case NT_ARM_HW_WATCH:
348 		if ((type & HW_BREAKPOINT_RW) != type)
349 			return -EINVAL;
350 		break;
351 	default:
352 		return -EINVAL;
353 	}
354 
355 	attr->bp_len	= len;
356 	attr->bp_type	= type;
357 	attr->bp_addr	+= offset;
358 
359 	return 0;
360 }
361 
362 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
363 {
364 	u8 num;
365 	u32 reg = 0;
366 
367 	switch (note_type) {
368 	case NT_ARM_HW_BREAK:
369 		num = hw_breakpoint_slots(TYPE_INST);
370 		break;
371 	case NT_ARM_HW_WATCH:
372 		num = hw_breakpoint_slots(TYPE_DATA);
373 		break;
374 	default:
375 		return -EINVAL;
376 	}
377 
378 	reg |= debug_monitors_arch();
379 	reg <<= 8;
380 	reg |= num;
381 
382 	*info = reg;
383 	return 0;
384 }
385 
386 static int ptrace_hbp_get_ctrl(unsigned int note_type,
387 			       struct task_struct *tsk,
388 			       unsigned long idx,
389 			       u32 *ctrl)
390 {
391 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
392 
393 	if (IS_ERR(bp))
394 		return PTR_ERR(bp);
395 
396 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
397 	return 0;
398 }
399 
400 static int ptrace_hbp_get_addr(unsigned int note_type,
401 			       struct task_struct *tsk,
402 			       unsigned long idx,
403 			       u64 *addr)
404 {
405 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
406 
407 	if (IS_ERR(bp))
408 		return PTR_ERR(bp);
409 
410 	*addr = bp ? counter_arch_bp(bp)->address : 0;
411 	return 0;
412 }
413 
414 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
415 							struct task_struct *tsk,
416 							unsigned long idx)
417 {
418 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
419 
420 	if (!bp)
421 		bp = ptrace_hbp_create(note_type, tsk, idx);
422 
423 	return bp;
424 }
425 
426 static int ptrace_hbp_set_ctrl(unsigned int note_type,
427 			       struct task_struct *tsk,
428 			       unsigned long idx,
429 			       u32 uctrl)
430 {
431 	int err;
432 	struct perf_event *bp;
433 	struct perf_event_attr attr;
434 	struct arch_hw_breakpoint_ctrl ctrl;
435 
436 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
437 	if (IS_ERR(bp)) {
438 		err = PTR_ERR(bp);
439 		return err;
440 	}
441 
442 	attr = bp->attr;
443 	decode_ctrl_reg(uctrl, &ctrl);
444 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
445 	if (err)
446 		return err;
447 
448 	return modify_user_hw_breakpoint(bp, &attr);
449 }
450 
451 static int ptrace_hbp_set_addr(unsigned int note_type,
452 			       struct task_struct *tsk,
453 			       unsigned long idx,
454 			       u64 addr)
455 {
456 	int err;
457 	struct perf_event *bp;
458 	struct perf_event_attr attr;
459 
460 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
461 	if (IS_ERR(bp)) {
462 		err = PTR_ERR(bp);
463 		return err;
464 	}
465 
466 	attr = bp->attr;
467 	attr.bp_addr = addr;
468 	err = modify_user_hw_breakpoint(bp, &attr);
469 	return err;
470 }
471 
472 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
473 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
474 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
475 
476 static int hw_break_get(struct task_struct *target,
477 			const struct user_regset *regset,
478 			struct membuf to)
479 {
480 	unsigned int note_type = regset->core_note_type;
481 	int ret, idx = 0;
482 	u32 info, ctrl;
483 	u64 addr;
484 
485 	/* Resource info */
486 	ret = ptrace_hbp_get_resource_info(note_type, &info);
487 	if (ret)
488 		return ret;
489 
490 	membuf_write(&to, &info, sizeof(info));
491 	membuf_zero(&to, sizeof(u32));
492 	/* (address, ctrl) registers */
493 	while (to.left) {
494 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
495 		if (ret)
496 			return ret;
497 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
498 		if (ret)
499 			return ret;
500 		membuf_store(&to, addr);
501 		membuf_store(&to, ctrl);
502 		membuf_zero(&to, sizeof(u32));
503 		idx++;
504 	}
505 	return 0;
506 }
507 
508 static int hw_break_set(struct task_struct *target,
509 			const struct user_regset *regset,
510 			unsigned int pos, unsigned int count,
511 			const void *kbuf, const void __user *ubuf)
512 {
513 	unsigned int note_type = regset->core_note_type;
514 	int ret, idx = 0, offset, limit;
515 	u32 ctrl;
516 	u64 addr;
517 
518 	/* Resource info and pad */
519 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
520 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
521 	if (ret)
522 		return ret;
523 
524 	/* (address, ctrl) registers */
525 	limit = regset->n * regset->size;
526 	while (count && offset < limit) {
527 		if (count < PTRACE_HBP_ADDR_SZ)
528 			return -EINVAL;
529 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
530 					 offset, offset + PTRACE_HBP_ADDR_SZ);
531 		if (ret)
532 			return ret;
533 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
534 		if (ret)
535 			return ret;
536 		offset += PTRACE_HBP_ADDR_SZ;
537 
538 		if (!count)
539 			break;
540 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
541 					 offset, offset + PTRACE_HBP_CTRL_SZ);
542 		if (ret)
543 			return ret;
544 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
545 		if (ret)
546 			return ret;
547 		offset += PTRACE_HBP_CTRL_SZ;
548 
549 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
550 						offset,
551 						offset + PTRACE_HBP_PAD_SZ);
552 		if (ret)
553 			return ret;
554 		offset += PTRACE_HBP_PAD_SZ;
555 		idx++;
556 	}
557 
558 	return 0;
559 }
560 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
561 
562 static int gpr_get(struct task_struct *target,
563 		   const struct user_regset *regset,
564 		   struct membuf to)
565 {
566 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
567 	return membuf_write(&to, uregs, sizeof(*uregs));
568 }
569 
570 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
571 		   unsigned int pos, unsigned int count,
572 		   const void *kbuf, const void __user *ubuf)
573 {
574 	int ret;
575 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
576 
577 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
578 	if (ret)
579 		return ret;
580 
581 	if (!valid_user_regs(&newregs, target))
582 		return -EINVAL;
583 
584 	task_pt_regs(target)->user_regs = newregs;
585 	return 0;
586 }
587 
588 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
589 {
590 	if (!system_supports_fpsimd())
591 		return -ENODEV;
592 	return regset->n;
593 }
594 
595 /*
596  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
597  */
598 static int __fpr_get(struct task_struct *target,
599 		     const struct user_regset *regset,
600 		     struct membuf to)
601 {
602 	struct user_fpsimd_state *uregs;
603 
604 	sve_sync_to_fpsimd(target);
605 
606 	uregs = &target->thread.uw.fpsimd_state;
607 
608 	return membuf_write(&to, uregs, sizeof(*uregs));
609 }
610 
611 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
612 		   struct membuf to)
613 {
614 	if (!system_supports_fpsimd())
615 		return -EINVAL;
616 
617 	if (target == current)
618 		fpsimd_preserve_current_state();
619 
620 	return __fpr_get(target, regset, to);
621 }
622 
623 static int __fpr_set(struct task_struct *target,
624 		     const struct user_regset *regset,
625 		     unsigned int pos, unsigned int count,
626 		     const void *kbuf, const void __user *ubuf,
627 		     unsigned int start_pos)
628 {
629 	int ret;
630 	struct user_fpsimd_state newstate;
631 
632 	/*
633 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
634 	 * short copyin can't resurrect stale data.
635 	 */
636 	sve_sync_to_fpsimd(target);
637 
638 	newstate = target->thread.uw.fpsimd_state;
639 
640 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
641 				 start_pos, start_pos + sizeof(newstate));
642 	if (ret)
643 		return ret;
644 
645 	target->thread.uw.fpsimd_state = newstate;
646 
647 	return ret;
648 }
649 
650 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
651 		   unsigned int pos, unsigned int count,
652 		   const void *kbuf, const void __user *ubuf)
653 {
654 	int ret;
655 
656 	if (!system_supports_fpsimd())
657 		return -EINVAL;
658 
659 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
660 	if (ret)
661 		return ret;
662 
663 	sve_sync_from_fpsimd_zeropad(target);
664 	fpsimd_flush_task_state(target);
665 
666 	return ret;
667 }
668 
669 static int tls_get(struct task_struct *target, const struct user_regset *regset,
670 		   struct membuf to)
671 {
672 	if (target == current)
673 		tls_preserve_current_state();
674 
675 	return membuf_store(&to, target->thread.uw.tp_value);
676 }
677 
678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 		   unsigned int pos, unsigned int count,
680 		   const void *kbuf, const void __user *ubuf)
681 {
682 	int ret;
683 	unsigned long tls = target->thread.uw.tp_value;
684 
685 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
686 	if (ret)
687 		return ret;
688 
689 	target->thread.uw.tp_value = tls;
690 	return ret;
691 }
692 
693 static int system_call_get(struct task_struct *target,
694 			   const struct user_regset *regset,
695 			   struct membuf to)
696 {
697 	return membuf_store(&to, task_pt_regs(target)->syscallno);
698 }
699 
700 static int system_call_set(struct task_struct *target,
701 			   const struct user_regset *regset,
702 			   unsigned int pos, unsigned int count,
703 			   const void *kbuf, const void __user *ubuf)
704 {
705 	int syscallno = task_pt_regs(target)->syscallno;
706 	int ret;
707 
708 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
709 	if (ret)
710 		return ret;
711 
712 	task_pt_regs(target)->syscallno = syscallno;
713 	return ret;
714 }
715 
716 #ifdef CONFIG_ARM64_SVE
717 
718 static void sve_init_header_from_task(struct user_sve_header *header,
719 				      struct task_struct *target)
720 {
721 	unsigned int vq;
722 
723 	memset(header, 0, sizeof(*header));
724 
725 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
726 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
727 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
728 		header->flags |= SVE_PT_VL_INHERIT;
729 
730 	header->vl = target->thread.sve_vl;
731 	vq = sve_vq_from_vl(header->vl);
732 
733 	header->max_vl = sve_max_vl;
734 	header->size = SVE_PT_SIZE(vq, header->flags);
735 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
736 				      SVE_PT_REGS_SVE);
737 }
738 
739 static unsigned int sve_size_from_header(struct user_sve_header const *header)
740 {
741 	return ALIGN(header->size, SVE_VQ_BYTES);
742 }
743 
744 static int sve_get(struct task_struct *target,
745 		   const struct user_regset *regset,
746 		   struct membuf to)
747 {
748 	struct user_sve_header header;
749 	unsigned int vq;
750 	unsigned long start, end;
751 
752 	if (!system_supports_sve())
753 		return -EINVAL;
754 
755 	/* Header */
756 	sve_init_header_from_task(&header, target);
757 	vq = sve_vq_from_vl(header.vl);
758 
759 	membuf_write(&to, &header, sizeof(header));
760 
761 	if (target == current)
762 		fpsimd_preserve_current_state();
763 
764 	/* Registers: FPSIMD-only case */
765 
766 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
767 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
768 		return __fpr_get(target, regset, to);
769 
770 	/* Otherwise: full SVE case */
771 
772 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
773 	start = SVE_PT_SVE_OFFSET;
774 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
775 	membuf_write(&to, target->thread.sve_state, end - start);
776 
777 	start = end;
778 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
779 	membuf_zero(&to, end - start);
780 
781 	/*
782 	 * Copy fpsr, and fpcr which must follow contiguously in
783 	 * struct fpsimd_state:
784 	 */
785 	start = end;
786 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
787 	membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, end - start);
788 
789 	start = end;
790 	end = sve_size_from_header(&header);
791 	return membuf_zero(&to, end - start);
792 }
793 
794 static int sve_set(struct task_struct *target,
795 		   const struct user_regset *regset,
796 		   unsigned int pos, unsigned int count,
797 		   const void *kbuf, const void __user *ubuf)
798 {
799 	int ret;
800 	struct user_sve_header header;
801 	unsigned int vq;
802 	unsigned long start, end;
803 
804 	if (!system_supports_sve())
805 		return -EINVAL;
806 
807 	/* Header */
808 	if (count < sizeof(header))
809 		return -EINVAL;
810 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
811 				 0, sizeof(header));
812 	if (ret)
813 		goto out;
814 
815 	/*
816 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
817 	 * sve_set_vector_length(), which will also validate them for us:
818 	 */
819 	ret = sve_set_vector_length(target, header.vl,
820 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
821 	if (ret)
822 		goto out;
823 
824 	/* Actual VL set may be less than the user asked for: */
825 	vq = sve_vq_from_vl(target->thread.sve_vl);
826 
827 	/* Registers: FPSIMD-only case */
828 
829 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
830 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
831 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
832 				SVE_PT_FPSIMD_OFFSET);
833 		clear_tsk_thread_flag(target, TIF_SVE);
834 		goto out;
835 	}
836 
837 	/* Otherwise: full SVE case */
838 
839 	/*
840 	 * If setting a different VL from the requested VL and there is
841 	 * register data, the data layout will be wrong: don't even
842 	 * try to set the registers in this case.
843 	 */
844 	if (count && vq != sve_vq_from_vl(header.vl)) {
845 		ret = -EIO;
846 		goto out;
847 	}
848 
849 	sve_alloc(target);
850 
851 	/*
852 	 * Ensure target->thread.sve_state is up to date with target's
853 	 * FPSIMD regs, so that a short copyin leaves trailing registers
854 	 * unmodified.
855 	 */
856 	fpsimd_sync_to_sve(target);
857 	set_tsk_thread_flag(target, TIF_SVE);
858 
859 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
860 	start = SVE_PT_SVE_OFFSET;
861 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
862 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
863 				 target->thread.sve_state,
864 				 start, end);
865 	if (ret)
866 		goto out;
867 
868 	start = end;
869 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
870 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
871 					start, end);
872 	if (ret)
873 		goto out;
874 
875 	/*
876 	 * Copy fpsr, and fpcr which must follow contiguously in
877 	 * struct fpsimd_state:
878 	 */
879 	start = end;
880 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
881 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
882 				 &target->thread.uw.fpsimd_state.fpsr,
883 				 start, end);
884 
885 out:
886 	fpsimd_flush_task_state(target);
887 	return ret;
888 }
889 
890 #endif /* CONFIG_ARM64_SVE */
891 
892 #ifdef CONFIG_ARM64_PTR_AUTH
893 static int pac_mask_get(struct task_struct *target,
894 			const struct user_regset *regset,
895 			struct membuf to)
896 {
897 	/*
898 	 * The PAC bits can differ across data and instruction pointers
899 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
900 	 * we expose separate masks.
901 	 */
902 	unsigned long mask = ptrauth_user_pac_mask();
903 	struct user_pac_mask uregs = {
904 		.data_mask = mask,
905 		.insn_mask = mask,
906 	};
907 
908 	if (!system_supports_address_auth())
909 		return -EINVAL;
910 
911 	return membuf_write(&to, &uregs, sizeof(uregs));
912 }
913 
914 #ifdef CONFIG_CHECKPOINT_RESTORE
915 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
916 {
917 	return (__uint128_t)key->hi << 64 | key->lo;
918 }
919 
920 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
921 {
922 	struct ptrauth_key key = {
923 		.lo = (unsigned long)ukey,
924 		.hi = (unsigned long)(ukey >> 64),
925 	};
926 
927 	return key;
928 }
929 
930 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
931 				     const struct ptrauth_keys_user *keys)
932 {
933 	ukeys->apiakey = pac_key_to_user(&keys->apia);
934 	ukeys->apibkey = pac_key_to_user(&keys->apib);
935 	ukeys->apdakey = pac_key_to_user(&keys->apda);
936 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
937 }
938 
939 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
940 				       const struct user_pac_address_keys *ukeys)
941 {
942 	keys->apia = pac_key_from_user(ukeys->apiakey);
943 	keys->apib = pac_key_from_user(ukeys->apibkey);
944 	keys->apda = pac_key_from_user(ukeys->apdakey);
945 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
946 }
947 
948 static int pac_address_keys_get(struct task_struct *target,
949 				const struct user_regset *regset,
950 				struct membuf to)
951 {
952 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
953 	struct user_pac_address_keys user_keys;
954 
955 	if (!system_supports_address_auth())
956 		return -EINVAL;
957 
958 	pac_address_keys_to_user(&user_keys, keys);
959 
960 	return membuf_write(&to, &user_keys, sizeof(user_keys));
961 }
962 
963 static int pac_address_keys_set(struct task_struct *target,
964 				const struct user_regset *regset,
965 				unsigned int pos, unsigned int count,
966 				const void *kbuf, const void __user *ubuf)
967 {
968 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
969 	struct user_pac_address_keys user_keys;
970 	int ret;
971 
972 	if (!system_supports_address_auth())
973 		return -EINVAL;
974 
975 	pac_address_keys_to_user(&user_keys, keys);
976 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
977 				 &user_keys, 0, -1);
978 	if (ret)
979 		return ret;
980 	pac_address_keys_from_user(keys, &user_keys);
981 
982 	return 0;
983 }
984 
985 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
986 				     const struct ptrauth_keys_user *keys)
987 {
988 	ukeys->apgakey = pac_key_to_user(&keys->apga);
989 }
990 
991 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
992 				       const struct user_pac_generic_keys *ukeys)
993 {
994 	keys->apga = pac_key_from_user(ukeys->apgakey);
995 }
996 
997 static int pac_generic_keys_get(struct task_struct *target,
998 				const struct user_regset *regset,
999 				struct membuf to)
1000 {
1001 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1002 	struct user_pac_generic_keys user_keys;
1003 
1004 	if (!system_supports_generic_auth())
1005 		return -EINVAL;
1006 
1007 	pac_generic_keys_to_user(&user_keys, keys);
1008 
1009 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1010 }
1011 
1012 static int pac_generic_keys_set(struct task_struct *target,
1013 				const struct user_regset *regset,
1014 				unsigned int pos, unsigned int count,
1015 				const void *kbuf, const void __user *ubuf)
1016 {
1017 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1018 	struct user_pac_generic_keys user_keys;
1019 	int ret;
1020 
1021 	if (!system_supports_generic_auth())
1022 		return -EINVAL;
1023 
1024 	pac_generic_keys_to_user(&user_keys, keys);
1025 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1026 				 &user_keys, 0, -1);
1027 	if (ret)
1028 		return ret;
1029 	pac_generic_keys_from_user(keys, &user_keys);
1030 
1031 	return 0;
1032 }
1033 #endif /* CONFIG_CHECKPOINT_RESTORE */
1034 #endif /* CONFIG_ARM64_PTR_AUTH */
1035 
1036 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1037 static int tagged_addr_ctrl_get(struct task_struct *target,
1038 				const struct user_regset *regset,
1039 				struct membuf to)
1040 {
1041 	long ctrl = get_tagged_addr_ctrl(target);
1042 
1043 	if (IS_ERR_VALUE(ctrl))
1044 		return ctrl;
1045 
1046 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1047 }
1048 
1049 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1050 				user_regset *regset, unsigned int pos,
1051 				unsigned int count, const void *kbuf, const
1052 				void __user *ubuf)
1053 {
1054 	int ret;
1055 	long ctrl;
1056 
1057 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1058 	if (ret)
1059 		return ret;
1060 
1061 	return set_tagged_addr_ctrl(target, ctrl);
1062 }
1063 #endif
1064 
1065 enum aarch64_regset {
1066 	REGSET_GPR,
1067 	REGSET_FPR,
1068 	REGSET_TLS,
1069 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1070 	REGSET_HW_BREAK,
1071 	REGSET_HW_WATCH,
1072 #endif
1073 	REGSET_SYSTEM_CALL,
1074 #ifdef CONFIG_ARM64_SVE
1075 	REGSET_SVE,
1076 #endif
1077 #ifdef CONFIG_ARM64_PTR_AUTH
1078 	REGSET_PAC_MASK,
1079 #ifdef CONFIG_CHECKPOINT_RESTORE
1080 	REGSET_PACA_KEYS,
1081 	REGSET_PACG_KEYS,
1082 #endif
1083 #endif
1084 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1085 	REGSET_TAGGED_ADDR_CTRL,
1086 #endif
1087 };
1088 
1089 static const struct user_regset aarch64_regsets[] = {
1090 	[REGSET_GPR] = {
1091 		.core_note_type = NT_PRSTATUS,
1092 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1093 		.size = sizeof(u64),
1094 		.align = sizeof(u64),
1095 		.regset_get = gpr_get,
1096 		.set = gpr_set
1097 	},
1098 	[REGSET_FPR] = {
1099 		.core_note_type = NT_PRFPREG,
1100 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1101 		/*
1102 		 * We pretend we have 32-bit registers because the fpsr and
1103 		 * fpcr are 32-bits wide.
1104 		 */
1105 		.size = sizeof(u32),
1106 		.align = sizeof(u32),
1107 		.active = fpr_active,
1108 		.regset_get = fpr_get,
1109 		.set = fpr_set
1110 	},
1111 	[REGSET_TLS] = {
1112 		.core_note_type = NT_ARM_TLS,
1113 		.n = 1,
1114 		.size = sizeof(void *),
1115 		.align = sizeof(void *),
1116 		.regset_get = tls_get,
1117 		.set = tls_set,
1118 	},
1119 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1120 	[REGSET_HW_BREAK] = {
1121 		.core_note_type = NT_ARM_HW_BREAK,
1122 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1123 		.size = sizeof(u32),
1124 		.align = sizeof(u32),
1125 		.regset_get = hw_break_get,
1126 		.set = hw_break_set,
1127 	},
1128 	[REGSET_HW_WATCH] = {
1129 		.core_note_type = NT_ARM_HW_WATCH,
1130 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1131 		.size = sizeof(u32),
1132 		.align = sizeof(u32),
1133 		.regset_get = hw_break_get,
1134 		.set = hw_break_set,
1135 	},
1136 #endif
1137 	[REGSET_SYSTEM_CALL] = {
1138 		.core_note_type = NT_ARM_SYSTEM_CALL,
1139 		.n = 1,
1140 		.size = sizeof(int),
1141 		.align = sizeof(int),
1142 		.regset_get = system_call_get,
1143 		.set = system_call_set,
1144 	},
1145 #ifdef CONFIG_ARM64_SVE
1146 	[REGSET_SVE] = { /* Scalable Vector Extension */
1147 		.core_note_type = NT_ARM_SVE,
1148 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1149 				  SVE_VQ_BYTES),
1150 		.size = SVE_VQ_BYTES,
1151 		.align = SVE_VQ_BYTES,
1152 		.regset_get = sve_get,
1153 		.set = sve_set,
1154 	},
1155 #endif
1156 #ifdef CONFIG_ARM64_PTR_AUTH
1157 	[REGSET_PAC_MASK] = {
1158 		.core_note_type = NT_ARM_PAC_MASK,
1159 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1160 		.size = sizeof(u64),
1161 		.align = sizeof(u64),
1162 		.regset_get = pac_mask_get,
1163 		/* this cannot be set dynamically */
1164 	},
1165 #ifdef CONFIG_CHECKPOINT_RESTORE
1166 	[REGSET_PACA_KEYS] = {
1167 		.core_note_type = NT_ARM_PACA_KEYS,
1168 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1169 		.size = sizeof(__uint128_t),
1170 		.align = sizeof(__uint128_t),
1171 		.regset_get = pac_address_keys_get,
1172 		.set = pac_address_keys_set,
1173 	},
1174 	[REGSET_PACG_KEYS] = {
1175 		.core_note_type = NT_ARM_PACG_KEYS,
1176 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1177 		.size = sizeof(__uint128_t),
1178 		.align = sizeof(__uint128_t),
1179 		.regset_get = pac_generic_keys_get,
1180 		.set = pac_generic_keys_set,
1181 	},
1182 #endif
1183 #endif
1184 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1185 	[REGSET_TAGGED_ADDR_CTRL] = {
1186 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1187 		.n = 1,
1188 		.size = sizeof(long),
1189 		.align = sizeof(long),
1190 		.regset_get = tagged_addr_ctrl_get,
1191 		.set = tagged_addr_ctrl_set,
1192 	},
1193 #endif
1194 };
1195 
1196 static const struct user_regset_view user_aarch64_view = {
1197 	.name = "aarch64", .e_machine = EM_AARCH64,
1198 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1199 };
1200 
1201 #ifdef CONFIG_COMPAT
1202 enum compat_regset {
1203 	REGSET_COMPAT_GPR,
1204 	REGSET_COMPAT_VFP,
1205 };
1206 
1207 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1208 {
1209 	struct pt_regs *regs = task_pt_regs(task);
1210 
1211 	switch (idx) {
1212 	case 15:
1213 		return regs->pc;
1214 	case 16:
1215 		return pstate_to_compat_psr(regs->pstate);
1216 	case 17:
1217 		return regs->orig_x0;
1218 	default:
1219 		return regs->regs[idx];
1220 	}
1221 }
1222 
1223 static int compat_gpr_get(struct task_struct *target,
1224 			  const struct user_regset *regset,
1225 			  struct membuf to)
1226 {
1227 	int i = 0;
1228 
1229 	while (to.left)
1230 		membuf_store(&to, compat_get_user_reg(target, i++));
1231 	return 0;
1232 }
1233 
1234 static int compat_gpr_set(struct task_struct *target,
1235 			  const struct user_regset *regset,
1236 			  unsigned int pos, unsigned int count,
1237 			  const void *kbuf, const void __user *ubuf)
1238 {
1239 	struct pt_regs newregs;
1240 	int ret = 0;
1241 	unsigned int i, start, num_regs;
1242 
1243 	/* Calculate the number of AArch32 registers contained in count */
1244 	num_regs = count / regset->size;
1245 
1246 	/* Convert pos into an register number */
1247 	start = pos / regset->size;
1248 
1249 	if (start + num_regs > regset->n)
1250 		return -EIO;
1251 
1252 	newregs = *task_pt_regs(target);
1253 
1254 	for (i = 0; i < num_regs; ++i) {
1255 		unsigned int idx = start + i;
1256 		compat_ulong_t reg;
1257 
1258 		if (kbuf) {
1259 			memcpy(&reg, kbuf, sizeof(reg));
1260 			kbuf += sizeof(reg);
1261 		} else {
1262 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1263 			if (ret) {
1264 				ret = -EFAULT;
1265 				break;
1266 			}
1267 
1268 			ubuf += sizeof(reg);
1269 		}
1270 
1271 		switch (idx) {
1272 		case 15:
1273 			newregs.pc = reg;
1274 			break;
1275 		case 16:
1276 			reg = compat_psr_to_pstate(reg);
1277 			newregs.pstate = reg;
1278 			break;
1279 		case 17:
1280 			newregs.orig_x0 = reg;
1281 			break;
1282 		default:
1283 			newregs.regs[idx] = reg;
1284 		}
1285 
1286 	}
1287 
1288 	if (valid_user_regs(&newregs.user_regs, target))
1289 		*task_pt_regs(target) = newregs;
1290 	else
1291 		ret = -EINVAL;
1292 
1293 	return ret;
1294 }
1295 
1296 static int compat_vfp_get(struct task_struct *target,
1297 			  const struct user_regset *regset,
1298 			  struct membuf to)
1299 {
1300 	struct user_fpsimd_state *uregs;
1301 	compat_ulong_t fpscr;
1302 
1303 	if (!system_supports_fpsimd())
1304 		return -EINVAL;
1305 
1306 	uregs = &target->thread.uw.fpsimd_state;
1307 
1308 	if (target == current)
1309 		fpsimd_preserve_current_state();
1310 
1311 	/*
1312 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1313 	 * nicely together for us. We just need to create the fpscr separately.
1314 	 */
1315 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1316 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1317 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1318 	return membuf_store(&to, fpscr);
1319 }
1320 
1321 static int compat_vfp_set(struct task_struct *target,
1322 			  const struct user_regset *regset,
1323 			  unsigned int pos, unsigned int count,
1324 			  const void *kbuf, const void __user *ubuf)
1325 {
1326 	struct user_fpsimd_state *uregs;
1327 	compat_ulong_t fpscr;
1328 	int ret, vregs_end_pos;
1329 
1330 	if (!system_supports_fpsimd())
1331 		return -EINVAL;
1332 
1333 	uregs = &target->thread.uw.fpsimd_state;
1334 
1335 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1336 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1337 				 vregs_end_pos);
1338 
1339 	if (count && !ret) {
1340 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1341 					 vregs_end_pos, VFP_STATE_SIZE);
1342 		if (!ret) {
1343 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1344 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1345 		}
1346 	}
1347 
1348 	fpsimd_flush_task_state(target);
1349 	return ret;
1350 }
1351 
1352 static int compat_tls_get(struct task_struct *target,
1353 			  const struct user_regset *regset,
1354 			  struct membuf to)
1355 {
1356 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1357 }
1358 
1359 static int compat_tls_set(struct task_struct *target,
1360 			  const struct user_regset *regset, unsigned int pos,
1361 			  unsigned int count, const void *kbuf,
1362 			  const void __user *ubuf)
1363 {
1364 	int ret;
1365 	compat_ulong_t tls = target->thread.uw.tp_value;
1366 
1367 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1368 	if (ret)
1369 		return ret;
1370 
1371 	target->thread.uw.tp_value = tls;
1372 	return ret;
1373 }
1374 
1375 static const struct user_regset aarch32_regsets[] = {
1376 	[REGSET_COMPAT_GPR] = {
1377 		.core_note_type = NT_PRSTATUS,
1378 		.n = COMPAT_ELF_NGREG,
1379 		.size = sizeof(compat_elf_greg_t),
1380 		.align = sizeof(compat_elf_greg_t),
1381 		.regset_get = compat_gpr_get,
1382 		.set = compat_gpr_set
1383 	},
1384 	[REGSET_COMPAT_VFP] = {
1385 		.core_note_type = NT_ARM_VFP,
1386 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1387 		.size = sizeof(compat_ulong_t),
1388 		.align = sizeof(compat_ulong_t),
1389 		.active = fpr_active,
1390 		.regset_get = compat_vfp_get,
1391 		.set = compat_vfp_set
1392 	},
1393 };
1394 
1395 static const struct user_regset_view user_aarch32_view = {
1396 	.name = "aarch32", .e_machine = EM_ARM,
1397 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1398 };
1399 
1400 static const struct user_regset aarch32_ptrace_regsets[] = {
1401 	[REGSET_GPR] = {
1402 		.core_note_type = NT_PRSTATUS,
1403 		.n = COMPAT_ELF_NGREG,
1404 		.size = sizeof(compat_elf_greg_t),
1405 		.align = sizeof(compat_elf_greg_t),
1406 		.regset_get = compat_gpr_get,
1407 		.set = compat_gpr_set
1408 	},
1409 	[REGSET_FPR] = {
1410 		.core_note_type = NT_ARM_VFP,
1411 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1412 		.size = sizeof(compat_ulong_t),
1413 		.align = sizeof(compat_ulong_t),
1414 		.regset_get = compat_vfp_get,
1415 		.set = compat_vfp_set
1416 	},
1417 	[REGSET_TLS] = {
1418 		.core_note_type = NT_ARM_TLS,
1419 		.n = 1,
1420 		.size = sizeof(compat_ulong_t),
1421 		.align = sizeof(compat_ulong_t),
1422 		.regset_get = compat_tls_get,
1423 		.set = compat_tls_set,
1424 	},
1425 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1426 	[REGSET_HW_BREAK] = {
1427 		.core_note_type = NT_ARM_HW_BREAK,
1428 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1429 		.size = sizeof(u32),
1430 		.align = sizeof(u32),
1431 		.regset_get = hw_break_get,
1432 		.set = hw_break_set,
1433 	},
1434 	[REGSET_HW_WATCH] = {
1435 		.core_note_type = NT_ARM_HW_WATCH,
1436 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1437 		.size = sizeof(u32),
1438 		.align = sizeof(u32),
1439 		.regset_get = hw_break_get,
1440 		.set = hw_break_set,
1441 	},
1442 #endif
1443 	[REGSET_SYSTEM_CALL] = {
1444 		.core_note_type = NT_ARM_SYSTEM_CALL,
1445 		.n = 1,
1446 		.size = sizeof(int),
1447 		.align = sizeof(int),
1448 		.regset_get = system_call_get,
1449 		.set = system_call_set,
1450 	},
1451 };
1452 
1453 static const struct user_regset_view user_aarch32_ptrace_view = {
1454 	.name = "aarch32", .e_machine = EM_ARM,
1455 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1456 };
1457 
1458 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1459 				   compat_ulong_t __user *ret)
1460 {
1461 	compat_ulong_t tmp;
1462 
1463 	if (off & 3)
1464 		return -EIO;
1465 
1466 	if (off == COMPAT_PT_TEXT_ADDR)
1467 		tmp = tsk->mm->start_code;
1468 	else if (off == COMPAT_PT_DATA_ADDR)
1469 		tmp = tsk->mm->start_data;
1470 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1471 		tmp = tsk->mm->end_code;
1472 	else if (off < sizeof(compat_elf_gregset_t))
1473 		tmp = compat_get_user_reg(tsk, off >> 2);
1474 	else if (off >= COMPAT_USER_SZ)
1475 		return -EIO;
1476 	else
1477 		tmp = 0;
1478 
1479 	return put_user(tmp, ret);
1480 }
1481 
1482 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1483 				    compat_ulong_t val)
1484 {
1485 	struct pt_regs newregs = *task_pt_regs(tsk);
1486 	unsigned int idx = off / 4;
1487 
1488 	if (off & 3 || off >= COMPAT_USER_SZ)
1489 		return -EIO;
1490 
1491 	if (off >= sizeof(compat_elf_gregset_t))
1492 		return 0;
1493 
1494 	switch (idx) {
1495 	case 15:
1496 		newregs.pc = val;
1497 		break;
1498 	case 16:
1499 		newregs.pstate = compat_psr_to_pstate(val);
1500 		break;
1501 	case 17:
1502 		newregs.orig_x0 = val;
1503 		break;
1504 	default:
1505 		newregs.regs[idx] = val;
1506 	}
1507 
1508 	if (!valid_user_regs(&newregs.user_regs, tsk))
1509 		return -EINVAL;
1510 
1511 	*task_pt_regs(tsk) = newregs;
1512 	return 0;
1513 }
1514 
1515 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1516 
1517 /*
1518  * Convert a virtual register number into an index for a thread_info
1519  * breakpoint array. Breakpoints are identified using positive numbers
1520  * whilst watchpoints are negative. The registers are laid out as pairs
1521  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1522  * Register 0 is reserved for describing resource information.
1523  */
1524 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1525 {
1526 	return (abs(num) - 1) >> 1;
1527 }
1528 
1529 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1530 {
1531 	u8 num_brps, num_wrps, debug_arch, wp_len;
1532 	u32 reg = 0;
1533 
1534 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1535 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1536 
1537 	debug_arch	= debug_monitors_arch();
1538 	wp_len		= 8;
1539 	reg		|= debug_arch;
1540 	reg		<<= 8;
1541 	reg		|= wp_len;
1542 	reg		<<= 8;
1543 	reg		|= num_wrps;
1544 	reg		<<= 8;
1545 	reg		|= num_brps;
1546 
1547 	*kdata = reg;
1548 	return 0;
1549 }
1550 
1551 static int compat_ptrace_hbp_get(unsigned int note_type,
1552 				 struct task_struct *tsk,
1553 				 compat_long_t num,
1554 				 u32 *kdata)
1555 {
1556 	u64 addr = 0;
1557 	u32 ctrl = 0;
1558 
1559 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1560 
1561 	if (num & 1) {
1562 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1563 		*kdata = (u32)addr;
1564 	} else {
1565 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1566 		*kdata = ctrl;
1567 	}
1568 
1569 	return err;
1570 }
1571 
1572 static int compat_ptrace_hbp_set(unsigned int note_type,
1573 				 struct task_struct *tsk,
1574 				 compat_long_t num,
1575 				 u32 *kdata)
1576 {
1577 	u64 addr;
1578 	u32 ctrl;
1579 
1580 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1581 
1582 	if (num & 1) {
1583 		addr = *kdata;
1584 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1585 	} else {
1586 		ctrl = *kdata;
1587 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1588 	}
1589 
1590 	return err;
1591 }
1592 
1593 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1594 				    compat_ulong_t __user *data)
1595 {
1596 	int ret;
1597 	u32 kdata;
1598 
1599 	/* Watchpoint */
1600 	if (num < 0) {
1601 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1602 	/* Resource info */
1603 	} else if (num == 0) {
1604 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1605 	/* Breakpoint */
1606 	} else {
1607 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1608 	}
1609 
1610 	if (!ret)
1611 		ret = put_user(kdata, data);
1612 
1613 	return ret;
1614 }
1615 
1616 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1617 				    compat_ulong_t __user *data)
1618 {
1619 	int ret;
1620 	u32 kdata = 0;
1621 
1622 	if (num == 0)
1623 		return 0;
1624 
1625 	ret = get_user(kdata, data);
1626 	if (ret)
1627 		return ret;
1628 
1629 	if (num < 0)
1630 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1631 	else
1632 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1633 
1634 	return ret;
1635 }
1636 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1637 
1638 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1639 			compat_ulong_t caddr, compat_ulong_t cdata)
1640 {
1641 	unsigned long addr = caddr;
1642 	unsigned long data = cdata;
1643 	void __user *datap = compat_ptr(data);
1644 	int ret;
1645 
1646 	switch (request) {
1647 		case PTRACE_PEEKUSR:
1648 			ret = compat_ptrace_read_user(child, addr, datap);
1649 			break;
1650 
1651 		case PTRACE_POKEUSR:
1652 			ret = compat_ptrace_write_user(child, addr, data);
1653 			break;
1654 
1655 		case COMPAT_PTRACE_GETREGS:
1656 			ret = copy_regset_to_user(child,
1657 						  &user_aarch32_view,
1658 						  REGSET_COMPAT_GPR,
1659 						  0, sizeof(compat_elf_gregset_t),
1660 						  datap);
1661 			break;
1662 
1663 		case COMPAT_PTRACE_SETREGS:
1664 			ret = copy_regset_from_user(child,
1665 						    &user_aarch32_view,
1666 						    REGSET_COMPAT_GPR,
1667 						    0, sizeof(compat_elf_gregset_t),
1668 						    datap);
1669 			break;
1670 
1671 		case COMPAT_PTRACE_GET_THREAD_AREA:
1672 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1673 				       (compat_ulong_t __user *)datap);
1674 			break;
1675 
1676 		case COMPAT_PTRACE_SET_SYSCALL:
1677 			task_pt_regs(child)->syscallno = data;
1678 			ret = 0;
1679 			break;
1680 
1681 		case COMPAT_PTRACE_GETVFPREGS:
1682 			ret = copy_regset_to_user(child,
1683 						  &user_aarch32_view,
1684 						  REGSET_COMPAT_VFP,
1685 						  0, VFP_STATE_SIZE,
1686 						  datap);
1687 			break;
1688 
1689 		case COMPAT_PTRACE_SETVFPREGS:
1690 			ret = copy_regset_from_user(child,
1691 						    &user_aarch32_view,
1692 						    REGSET_COMPAT_VFP,
1693 						    0, VFP_STATE_SIZE,
1694 						    datap);
1695 			break;
1696 
1697 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1698 		case COMPAT_PTRACE_GETHBPREGS:
1699 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1700 			break;
1701 
1702 		case COMPAT_PTRACE_SETHBPREGS:
1703 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1704 			break;
1705 #endif
1706 
1707 		default:
1708 			ret = compat_ptrace_request(child, request, addr,
1709 						    data);
1710 			break;
1711 	}
1712 
1713 	return ret;
1714 }
1715 #endif /* CONFIG_COMPAT */
1716 
1717 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1718 {
1719 #ifdef CONFIG_COMPAT
1720 	/*
1721 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1722 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1723 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1724 	 * access to the TLS register.
1725 	 */
1726 	if (is_compat_task())
1727 		return &user_aarch32_view;
1728 	else if (is_compat_thread(task_thread_info(task)))
1729 		return &user_aarch32_ptrace_view;
1730 #endif
1731 	return &user_aarch64_view;
1732 }
1733 
1734 long arch_ptrace(struct task_struct *child, long request,
1735 		 unsigned long addr, unsigned long data)
1736 {
1737 	switch (request) {
1738 	case PTRACE_PEEKMTETAGS:
1739 	case PTRACE_POKEMTETAGS:
1740 		return mte_ptrace_copy_tags(child, request, addr, data);
1741 	}
1742 
1743 	return ptrace_request(child, request, addr, data);
1744 }
1745 
1746 enum ptrace_syscall_dir {
1747 	PTRACE_SYSCALL_ENTER = 0,
1748 	PTRACE_SYSCALL_EXIT,
1749 };
1750 
1751 static void tracehook_report_syscall(struct pt_regs *regs,
1752 				     enum ptrace_syscall_dir dir)
1753 {
1754 	int regno;
1755 	unsigned long saved_reg;
1756 
1757 	/*
1758 	 * We have some ABI weirdness here in the way that we handle syscall
1759 	 * exit stops because we indicate whether or not the stop has been
1760 	 * signalled from syscall entry or syscall exit by clobbering a general
1761 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
1762 	 * and restoring its old value after the stop. This means that:
1763 	 *
1764 	 * - Any writes by the tracer to this register during the stop are
1765 	 *   ignored/discarded.
1766 	 *
1767 	 * - The actual value of the register is not available during the stop,
1768 	 *   so the tracer cannot save it and restore it later.
1769 	 *
1770 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
1771 	 *   (the latter do not nobble any registers).
1772 	 */
1773 	regno = (is_compat_task() ? 12 : 7);
1774 	saved_reg = regs->regs[regno];
1775 	regs->regs[regno] = dir;
1776 
1777 	if (dir == PTRACE_SYSCALL_ENTER) {
1778 		if (tracehook_report_syscall_entry(regs))
1779 			forget_syscall(regs);
1780 		regs->regs[regno] = saved_reg;
1781 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
1782 		tracehook_report_syscall_exit(regs, 0);
1783 		regs->regs[regno] = saved_reg;
1784 	} else {
1785 		regs->regs[regno] = saved_reg;
1786 
1787 		/*
1788 		 * Signal a pseudo-step exception since we are stepping but
1789 		 * tracer modifications to the registers may have rewound the
1790 		 * state machine.
1791 		 */
1792 		tracehook_report_syscall_exit(regs, 1);
1793 	}
1794 }
1795 
1796 int syscall_trace_enter(struct pt_regs *regs)
1797 {
1798 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
1799 
1800 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
1801 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1802 		if (!in_syscall(regs) || (flags & _TIF_SYSCALL_EMU))
1803 			return NO_SYSCALL;
1804 	}
1805 
1806 	/* Do the secure computing after ptrace; failures should be fast. */
1807 	if (secure_computing() == -1)
1808 		return NO_SYSCALL;
1809 
1810 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1811 		trace_sys_enter(regs, regs->syscallno);
1812 
1813 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1814 			    regs->regs[2], regs->regs[3]);
1815 
1816 	return regs->syscallno;
1817 }
1818 
1819 void syscall_trace_exit(struct pt_regs *regs)
1820 {
1821 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
1822 
1823 	audit_syscall_exit(regs);
1824 
1825 	if (flags & _TIF_SYSCALL_TRACEPOINT)
1826 		trace_sys_exit(regs, regs_return_value(regs));
1827 
1828 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
1829 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1830 
1831 	rseq_syscall(regs);
1832 }
1833 
1834 /*
1835  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1836  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1837  * not described in ARM DDI 0487D.a.
1838  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1839  * be allocated an EL0 meaning in future.
1840  * Userspace cannot use these until they have an architectural meaning.
1841  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1842  * We also reserve IL for the kernel; SS is handled dynamically.
1843  */
1844 #define SPSR_EL1_AARCH64_RES0_BITS \
1845 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
1846 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
1847 #define SPSR_EL1_AARCH32_RES0_BITS \
1848 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1849 
1850 static int valid_compat_regs(struct user_pt_regs *regs)
1851 {
1852 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1853 
1854 	if (!system_supports_mixed_endian_el0()) {
1855 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1856 			regs->pstate |= PSR_AA32_E_BIT;
1857 		else
1858 			regs->pstate &= ~PSR_AA32_E_BIT;
1859 	}
1860 
1861 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1862 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1863 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1864 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
1865 		return 1;
1866 	}
1867 
1868 	/*
1869 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1870 	 * arch/arm.
1871 	 */
1872 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1873 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1874 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1875 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1876 			PSR_AA32_T_BIT;
1877 	regs->pstate |= PSR_MODE32_BIT;
1878 
1879 	return 0;
1880 }
1881 
1882 static int valid_native_regs(struct user_pt_regs *regs)
1883 {
1884 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1885 
1886 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1887 	    (regs->pstate & PSR_D_BIT) == 0 &&
1888 	    (regs->pstate & PSR_A_BIT) == 0 &&
1889 	    (regs->pstate & PSR_I_BIT) == 0 &&
1890 	    (regs->pstate & PSR_F_BIT) == 0) {
1891 		return 1;
1892 	}
1893 
1894 	/* Force PSR to a valid 64-bit EL0t */
1895 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1896 
1897 	return 0;
1898 }
1899 
1900 /*
1901  * Are the current registers suitable for user mode? (used to maintain
1902  * security in signal handlers)
1903  */
1904 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1905 {
1906 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
1907 	user_regs_reset_single_step(regs, task);
1908 
1909 	if (is_compat_thread(task_thread_info(task)))
1910 		return valid_compat_regs(regs);
1911 	else
1912 		return valid_native_regs(regs);
1913 }
1914