xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision 2fa5ebe3bc4e31e07a99196455498472417842f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45 
46 struct pt_regs_offset {
47 	const char *name;
48 	int offset;
49 };
50 
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55 
56 static const struct pt_regs_offset regoffset_table[] = {
57 	GPR_OFFSET_NAME(0),
58 	GPR_OFFSET_NAME(1),
59 	GPR_OFFSET_NAME(2),
60 	GPR_OFFSET_NAME(3),
61 	GPR_OFFSET_NAME(4),
62 	GPR_OFFSET_NAME(5),
63 	GPR_OFFSET_NAME(6),
64 	GPR_OFFSET_NAME(7),
65 	GPR_OFFSET_NAME(8),
66 	GPR_OFFSET_NAME(9),
67 	GPR_OFFSET_NAME(10),
68 	GPR_OFFSET_NAME(11),
69 	GPR_OFFSET_NAME(12),
70 	GPR_OFFSET_NAME(13),
71 	GPR_OFFSET_NAME(14),
72 	GPR_OFFSET_NAME(15),
73 	GPR_OFFSET_NAME(16),
74 	GPR_OFFSET_NAME(17),
75 	GPR_OFFSET_NAME(18),
76 	GPR_OFFSET_NAME(19),
77 	GPR_OFFSET_NAME(20),
78 	GPR_OFFSET_NAME(21),
79 	GPR_OFFSET_NAME(22),
80 	GPR_OFFSET_NAME(23),
81 	GPR_OFFSET_NAME(24),
82 	GPR_OFFSET_NAME(25),
83 	GPR_OFFSET_NAME(26),
84 	GPR_OFFSET_NAME(27),
85 	GPR_OFFSET_NAME(28),
86 	GPR_OFFSET_NAME(29),
87 	GPR_OFFSET_NAME(30),
88 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 	REG_OFFSET_NAME(sp),
90 	REG_OFFSET_NAME(pc),
91 	REG_OFFSET_NAME(pstate),
92 	REG_OFFSET_END,
93 };
94 
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:	the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104 	const struct pt_regs_offset *roff;
105 
106 	for (roff = regoffset_table; roff->name != NULL; roff++)
107 		if (!strcmp(roff->name, name))
108 			return roff->offset;
109 	return -EINVAL;
110 }
111 
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 	return ((addr & ~(THREAD_SIZE - 1))  ==
123 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 		on_irq_stack(addr, sizeof(unsigned long));
125 }
126 
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:	pt_regs which contains kernel stack pointer.
130  * @n:		stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139 
140 	addr += n;
141 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 		return *addr;
143 	else
144 		return 0;
145 }
146 
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151 
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157 	/*
158 	 * This would be better off in core code, but PTRACE_DETACH has
159 	 * grown its fair share of arch-specific worts and changing it
160 	 * is likely to cause regressions on obscure architectures.
161 	 */
162 	user_disable_single_step(child);
163 }
164 
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170 				struct perf_sample_data *data,
171 				struct pt_regs *regs)
172 {
173 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 	const char *desc = "Hardware breakpoint trap (ptrace)";
175 
176 #ifdef CONFIG_COMPAT
177 	if (is_compat_task()) {
178 		int si_errno = 0;
179 		int i;
180 
181 		for (i = 0; i < ARM_MAX_BRP; ++i) {
182 			if (current->thread.debug.hbp_break[i] == bp) {
183 				si_errno = (i << 1) + 1;
184 				break;
185 			}
186 		}
187 
188 		for (i = 0; i < ARM_MAX_WRP; ++i) {
189 			if (current->thread.debug.hbp_watch[i] == bp) {
190 				si_errno = -((i << 1) + 1);
191 				break;
192 			}
193 		}
194 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 						  desc);
196 		return;
197 	}
198 #endif
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201 
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 	int i;
209 	struct thread_struct *t = &tsk->thread;
210 
211 	for (i = 0; i < ARM_MAX_BRP; i++) {
212 		if (t->debug.hbp_break[i]) {
213 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 			t->debug.hbp_break[i] = NULL;
215 		}
216 	}
217 
218 	for (i = 0; i < ARM_MAX_WRP; i++) {
219 		if (t->debug.hbp_watch[i]) {
220 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 			t->debug.hbp_watch[i] = NULL;
222 		}
223 	}
224 }
225 
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230 
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 					       struct task_struct *tsk,
233 					       unsigned long idx)
234 {
235 	struct perf_event *bp = ERR_PTR(-EINVAL);
236 
237 	switch (note_type) {
238 	case NT_ARM_HW_BREAK:
239 		if (idx >= ARM_MAX_BRP)
240 			goto out;
241 		idx = array_index_nospec(idx, ARM_MAX_BRP);
242 		bp = tsk->thread.debug.hbp_break[idx];
243 		break;
244 	case NT_ARM_HW_WATCH:
245 		if (idx >= ARM_MAX_WRP)
246 			goto out;
247 		idx = array_index_nospec(idx, ARM_MAX_WRP);
248 		bp = tsk->thread.debug.hbp_watch[idx];
249 		break;
250 	}
251 
252 out:
253 	return bp;
254 }
255 
256 static int ptrace_hbp_set_event(unsigned int note_type,
257 				struct task_struct *tsk,
258 				unsigned long idx,
259 				struct perf_event *bp)
260 {
261 	int err = -EINVAL;
262 
263 	switch (note_type) {
264 	case NT_ARM_HW_BREAK:
265 		if (idx >= ARM_MAX_BRP)
266 			goto out;
267 		idx = array_index_nospec(idx, ARM_MAX_BRP);
268 		tsk->thread.debug.hbp_break[idx] = bp;
269 		err = 0;
270 		break;
271 	case NT_ARM_HW_WATCH:
272 		if (idx >= ARM_MAX_WRP)
273 			goto out;
274 		idx = array_index_nospec(idx, ARM_MAX_WRP);
275 		tsk->thread.debug.hbp_watch[idx] = bp;
276 		err = 0;
277 		break;
278 	}
279 
280 out:
281 	return err;
282 }
283 
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 					    struct task_struct *tsk,
286 					    unsigned long idx)
287 {
288 	struct perf_event *bp;
289 	struct perf_event_attr attr;
290 	int err, type;
291 
292 	switch (note_type) {
293 	case NT_ARM_HW_BREAK:
294 		type = HW_BREAKPOINT_X;
295 		break;
296 	case NT_ARM_HW_WATCH:
297 		type = HW_BREAKPOINT_RW;
298 		break;
299 	default:
300 		return ERR_PTR(-EINVAL);
301 	}
302 
303 	ptrace_breakpoint_init(&attr);
304 
305 	/*
306 	 * Initialise fields to sane defaults
307 	 * (i.e. values that will pass validation).
308 	 */
309 	attr.bp_addr	= 0;
310 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
311 	attr.bp_type	= type;
312 	attr.disabled	= 1;
313 
314 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 	if (IS_ERR(bp))
316 		return bp;
317 
318 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 	if (err)
320 		return ERR_PTR(err);
321 
322 	return bp;
323 }
324 
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 				     struct arch_hw_breakpoint_ctrl ctrl,
327 				     struct perf_event_attr *attr)
328 {
329 	int err, len, type, offset, disabled = !ctrl.enabled;
330 
331 	attr->disabled = disabled;
332 	if (disabled)
333 		return 0;
334 
335 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 	if (err)
337 		return err;
338 
339 	switch (note_type) {
340 	case NT_ARM_HW_BREAK:
341 		if ((type & HW_BREAKPOINT_X) != type)
342 			return -EINVAL;
343 		break;
344 	case NT_ARM_HW_WATCH:
345 		if ((type & HW_BREAKPOINT_RW) != type)
346 			return -EINVAL;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	attr->bp_len	= len;
353 	attr->bp_type	= type;
354 	attr->bp_addr	+= offset;
355 
356 	return 0;
357 }
358 
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 	u8 num;
362 	u32 reg = 0;
363 
364 	switch (note_type) {
365 	case NT_ARM_HW_BREAK:
366 		num = hw_breakpoint_slots(TYPE_INST);
367 		break;
368 	case NT_ARM_HW_WATCH:
369 		num = hw_breakpoint_slots(TYPE_DATA);
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	reg |= debug_monitors_arch();
376 	reg <<= 8;
377 	reg |= num;
378 
379 	*info = reg;
380 	return 0;
381 }
382 
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 			       struct task_struct *tsk,
385 			       unsigned long idx,
386 			       u32 *ctrl)
387 {
388 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389 
390 	if (IS_ERR(bp))
391 		return PTR_ERR(bp);
392 
393 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u64 *addr)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*addr = bp ? counter_arch_bp(bp)->address : 0;
408 	return 0;
409 }
410 
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 							struct task_struct *tsk,
413 							unsigned long idx)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (!bp)
418 		bp = ptrace_hbp_create(note_type, tsk, idx);
419 
420 	return bp;
421 }
422 
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 			       struct task_struct *tsk,
425 			       unsigned long idx,
426 			       u32 uctrl)
427 {
428 	int err;
429 	struct perf_event *bp;
430 	struct perf_event_attr attr;
431 	struct arch_hw_breakpoint_ctrl ctrl;
432 
433 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 	if (IS_ERR(bp)) {
435 		err = PTR_ERR(bp);
436 		return err;
437 	}
438 
439 	attr = bp->attr;
440 	decode_ctrl_reg(uctrl, &ctrl);
441 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 	if (err)
443 		return err;
444 
445 	return modify_user_hw_breakpoint(bp, &attr);
446 }
447 
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 			       struct task_struct *tsk,
450 			       unsigned long idx,
451 			       u64 addr)
452 {
453 	int err;
454 	struct perf_event *bp;
455 	struct perf_event_attr attr;
456 
457 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 	if (IS_ERR(bp)) {
459 		err = PTR_ERR(bp);
460 		return err;
461 	}
462 
463 	attr = bp->attr;
464 	attr.bp_addr = addr;
465 	err = modify_user_hw_breakpoint(bp, &attr);
466 	return err;
467 }
468 
469 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
472 
473 static int hw_break_get(struct task_struct *target,
474 			const struct user_regset *regset,
475 			struct membuf to)
476 {
477 	unsigned int note_type = regset->core_note_type;
478 	int ret, idx = 0;
479 	u32 info, ctrl;
480 	u64 addr;
481 
482 	/* Resource info */
483 	ret = ptrace_hbp_get_resource_info(note_type, &info);
484 	if (ret)
485 		return ret;
486 
487 	membuf_write(&to, &info, sizeof(info));
488 	membuf_zero(&to, sizeof(u32));
489 	/* (address, ctrl) registers */
490 	while (to.left) {
491 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 		if (ret)
493 			return ret;
494 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 		if (ret)
496 			return ret;
497 		membuf_store(&to, addr);
498 		membuf_store(&to, ctrl);
499 		membuf_zero(&to, sizeof(u32));
500 		idx++;
501 	}
502 	return 0;
503 }
504 
505 static int hw_break_set(struct task_struct *target,
506 			const struct user_regset *regset,
507 			unsigned int pos, unsigned int count,
508 			const void *kbuf, const void __user *ubuf)
509 {
510 	unsigned int note_type = regset->core_note_type;
511 	int ret, idx = 0, offset, limit;
512 	u32 ctrl;
513 	u64 addr;
514 
515 	/* Resource info and pad */
516 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 
519 	/* (address, ctrl) registers */
520 	limit = regset->n * regset->size;
521 	while (count && offset < limit) {
522 		if (count < PTRACE_HBP_ADDR_SZ)
523 			return -EINVAL;
524 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525 					 offset, offset + PTRACE_HBP_ADDR_SZ);
526 		if (ret)
527 			return ret;
528 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529 		if (ret)
530 			return ret;
531 		offset += PTRACE_HBP_ADDR_SZ;
532 
533 		if (!count)
534 			break;
535 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536 					 offset, offset + PTRACE_HBP_CTRL_SZ);
537 		if (ret)
538 			return ret;
539 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540 		if (ret)
541 			return ret;
542 		offset += PTRACE_HBP_CTRL_SZ;
543 
544 		user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545 					  offset, offset + PTRACE_HBP_PAD_SZ);
546 		offset += PTRACE_HBP_PAD_SZ;
547 		idx++;
548 	}
549 
550 	return 0;
551 }
552 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
553 
554 static int gpr_get(struct task_struct *target,
555 		   const struct user_regset *regset,
556 		   struct membuf to)
557 {
558 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559 	return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561 
562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563 		   unsigned int pos, unsigned int count,
564 		   const void *kbuf, const void __user *ubuf)
565 {
566 	int ret;
567 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568 
569 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570 	if (ret)
571 		return ret;
572 
573 	if (!valid_user_regs(&newregs, target))
574 		return -EINVAL;
575 
576 	task_pt_regs(target)->user_regs = newregs;
577 	return 0;
578 }
579 
580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582 	if (!system_supports_fpsimd())
583 		return -ENODEV;
584 	return regset->n;
585 }
586 
587 /*
588  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589  */
590 static int __fpr_get(struct task_struct *target,
591 		     const struct user_regset *regset,
592 		     struct membuf to)
593 {
594 	struct user_fpsimd_state *uregs;
595 
596 	sve_sync_to_fpsimd(target);
597 
598 	uregs = &target->thread.uw.fpsimd_state;
599 
600 	return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602 
603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604 		   struct membuf to)
605 {
606 	if (!system_supports_fpsimd())
607 		return -EINVAL;
608 
609 	if (target == current)
610 		fpsimd_preserve_current_state();
611 
612 	return __fpr_get(target, regset, to);
613 }
614 
615 static int __fpr_set(struct task_struct *target,
616 		     const struct user_regset *regset,
617 		     unsigned int pos, unsigned int count,
618 		     const void *kbuf, const void __user *ubuf,
619 		     unsigned int start_pos)
620 {
621 	int ret;
622 	struct user_fpsimd_state newstate;
623 
624 	/*
625 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626 	 * short copyin can't resurrect stale data.
627 	 */
628 	sve_sync_to_fpsimd(target);
629 
630 	newstate = target->thread.uw.fpsimd_state;
631 
632 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633 				 start_pos, start_pos + sizeof(newstate));
634 	if (ret)
635 		return ret;
636 
637 	target->thread.uw.fpsimd_state = newstate;
638 
639 	return ret;
640 }
641 
642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643 		   unsigned int pos, unsigned int count,
644 		   const void *kbuf, const void __user *ubuf)
645 {
646 	int ret;
647 
648 	if (!system_supports_fpsimd())
649 		return -EINVAL;
650 
651 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652 	if (ret)
653 		return ret;
654 
655 	sve_sync_from_fpsimd_zeropad(target);
656 	fpsimd_flush_task_state(target);
657 
658 	return ret;
659 }
660 
661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662 		   struct membuf to)
663 {
664 	int ret;
665 
666 	if (target == current)
667 		tls_preserve_current_state();
668 
669 	ret = membuf_store(&to, target->thread.uw.tp_value);
670 	if (system_supports_tpidr2())
671 		ret = membuf_store(&to, target->thread.tpidr2_el0);
672 	else
673 		ret = membuf_zero(&to, sizeof(u64));
674 
675 	return ret;
676 }
677 
678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 		   unsigned int pos, unsigned int count,
680 		   const void *kbuf, const void __user *ubuf)
681 {
682 	int ret;
683 	unsigned long tls[2];
684 
685 	tls[0] = target->thread.uw.tp_value;
686 	if (system_supports_tpidr2())
687 		tls[1] = target->thread.tpidr2_el0;
688 
689 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690 	if (ret)
691 		return ret;
692 
693 	target->thread.uw.tp_value = tls[0];
694 	if (system_supports_tpidr2())
695 		target->thread.tpidr2_el0 = tls[1];
696 
697 	return ret;
698 }
699 
700 static int system_call_get(struct task_struct *target,
701 			   const struct user_regset *regset,
702 			   struct membuf to)
703 {
704 	return membuf_store(&to, task_pt_regs(target)->syscallno);
705 }
706 
707 static int system_call_set(struct task_struct *target,
708 			   const struct user_regset *regset,
709 			   unsigned int pos, unsigned int count,
710 			   const void *kbuf, const void __user *ubuf)
711 {
712 	int syscallno = task_pt_regs(target)->syscallno;
713 	int ret;
714 
715 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
716 	if (ret)
717 		return ret;
718 
719 	task_pt_regs(target)->syscallno = syscallno;
720 	return ret;
721 }
722 
723 #ifdef CONFIG_ARM64_SVE
724 
725 static void sve_init_header_from_task(struct user_sve_header *header,
726 				      struct task_struct *target,
727 				      enum vec_type type)
728 {
729 	unsigned int vq;
730 	bool active;
731 	bool fpsimd_only;
732 	enum vec_type task_type;
733 
734 	memset(header, 0, sizeof(*header));
735 
736 	/* Check if the requested registers are active for the task */
737 	if (thread_sm_enabled(&target->thread))
738 		task_type = ARM64_VEC_SME;
739 	else
740 		task_type = ARM64_VEC_SVE;
741 	active = (task_type == type);
742 
743 	switch (type) {
744 	case ARM64_VEC_SVE:
745 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
746 			header->flags |= SVE_PT_VL_INHERIT;
747 		fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
748 		break;
749 	case ARM64_VEC_SME:
750 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
751 			header->flags |= SVE_PT_VL_INHERIT;
752 		fpsimd_only = false;
753 		break;
754 	default:
755 		WARN_ON_ONCE(1);
756 		return;
757 	}
758 
759 	if (active) {
760 		if (fpsimd_only) {
761 			header->flags |= SVE_PT_REGS_FPSIMD;
762 		} else {
763 			header->flags |= SVE_PT_REGS_SVE;
764 		}
765 	}
766 
767 	header->vl = task_get_vl(target, type);
768 	vq = sve_vq_from_vl(header->vl);
769 
770 	header->max_vl = vec_max_vl(type);
771 	header->size = SVE_PT_SIZE(vq, header->flags);
772 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
773 				      SVE_PT_REGS_SVE);
774 }
775 
776 static unsigned int sve_size_from_header(struct user_sve_header const *header)
777 {
778 	return ALIGN(header->size, SVE_VQ_BYTES);
779 }
780 
781 static int sve_get_common(struct task_struct *target,
782 			  const struct user_regset *regset,
783 			  struct membuf to,
784 			  enum vec_type type)
785 {
786 	struct user_sve_header header;
787 	unsigned int vq;
788 	unsigned long start, end;
789 
790 	/* Header */
791 	sve_init_header_from_task(&header, target, type);
792 	vq = sve_vq_from_vl(header.vl);
793 
794 	membuf_write(&to, &header, sizeof(header));
795 
796 	if (target == current)
797 		fpsimd_preserve_current_state();
798 
799 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
800 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
801 
802 	switch ((header.flags & SVE_PT_REGS_MASK)) {
803 	case SVE_PT_REGS_FPSIMD:
804 		return __fpr_get(target, regset, to);
805 
806 	case SVE_PT_REGS_SVE:
807 		start = SVE_PT_SVE_OFFSET;
808 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
809 		membuf_write(&to, target->thread.sve_state, end - start);
810 
811 		start = end;
812 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
813 		membuf_zero(&to, end - start);
814 
815 		/*
816 		 * Copy fpsr, and fpcr which must follow contiguously in
817 		 * struct fpsimd_state:
818 		 */
819 		start = end;
820 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
821 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
822 			     end - start);
823 
824 		start = end;
825 		end = sve_size_from_header(&header);
826 		return membuf_zero(&to, end - start);
827 
828 	default:
829 		return 0;
830 	}
831 }
832 
833 static int sve_get(struct task_struct *target,
834 		   const struct user_regset *regset,
835 		   struct membuf to)
836 {
837 	if (!system_supports_sve())
838 		return -EINVAL;
839 
840 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
841 }
842 
843 static int sve_set_common(struct task_struct *target,
844 			  const struct user_regset *regset,
845 			  unsigned int pos, unsigned int count,
846 			  const void *kbuf, const void __user *ubuf,
847 			  enum vec_type type)
848 {
849 	int ret;
850 	struct user_sve_header header;
851 	unsigned int vq;
852 	unsigned long start, end;
853 
854 	/* Header */
855 	if (count < sizeof(header))
856 		return -EINVAL;
857 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
858 				 0, sizeof(header));
859 	if (ret)
860 		goto out;
861 
862 	/*
863 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
864 	 * vec_set_vector_length(), which will also validate them for us:
865 	 */
866 	ret = vec_set_vector_length(target, type, header.vl,
867 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
868 	if (ret)
869 		goto out;
870 
871 	/* Actual VL set may be less than the user asked for: */
872 	vq = sve_vq_from_vl(task_get_vl(target, type));
873 
874 	/* Enter/exit streaming mode */
875 	if (system_supports_sme()) {
876 		u64 old_svcr = target->thread.svcr;
877 
878 		switch (type) {
879 		case ARM64_VEC_SVE:
880 			target->thread.svcr &= ~SVCR_SM_MASK;
881 			break;
882 		case ARM64_VEC_SME:
883 			target->thread.svcr |= SVCR_SM_MASK;
884 			break;
885 		default:
886 			WARN_ON_ONCE(1);
887 			return -EINVAL;
888 		}
889 
890 		/*
891 		 * If we switched then invalidate any existing SVE
892 		 * state and ensure there's storage.
893 		 */
894 		if (target->thread.svcr != old_svcr)
895 			sve_alloc(target, true);
896 	}
897 
898 	/* Registers: FPSIMD-only case */
899 
900 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
901 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
902 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
903 				SVE_PT_FPSIMD_OFFSET);
904 		clear_tsk_thread_flag(target, TIF_SVE);
905 		target->thread.fp_type = FP_STATE_FPSIMD;
906 		goto out;
907 	}
908 
909 	/*
910 	 * Otherwise: no registers or full SVE case.  For backwards
911 	 * compatibility reasons we treat empty flags as SVE registers.
912 	 */
913 
914 	/*
915 	 * If setting a different VL from the requested VL and there is
916 	 * register data, the data layout will be wrong: don't even
917 	 * try to set the registers in this case.
918 	 */
919 	if (count && vq != sve_vq_from_vl(header.vl)) {
920 		ret = -EIO;
921 		goto out;
922 	}
923 
924 	sve_alloc(target, true);
925 	if (!target->thread.sve_state) {
926 		ret = -ENOMEM;
927 		clear_tsk_thread_flag(target, TIF_SVE);
928 		target->thread.fp_type = FP_STATE_FPSIMD;
929 		goto out;
930 	}
931 
932 	/*
933 	 * Ensure target->thread.sve_state is up to date with target's
934 	 * FPSIMD regs, so that a short copyin leaves trailing
935 	 * registers unmodified.  Always enable SVE even if going into
936 	 * streaming mode.
937 	 */
938 	fpsimd_sync_to_sve(target);
939 	set_tsk_thread_flag(target, TIF_SVE);
940 	target->thread.fp_type = FP_STATE_SVE;
941 
942 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
943 	start = SVE_PT_SVE_OFFSET;
944 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
945 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
946 				 target->thread.sve_state,
947 				 start, end);
948 	if (ret)
949 		goto out;
950 
951 	start = end;
952 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
953 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
954 
955 	/*
956 	 * Copy fpsr, and fpcr which must follow contiguously in
957 	 * struct fpsimd_state:
958 	 */
959 	start = end;
960 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
961 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
962 				 &target->thread.uw.fpsimd_state.fpsr,
963 				 start, end);
964 
965 out:
966 	fpsimd_flush_task_state(target);
967 	return ret;
968 }
969 
970 static int sve_set(struct task_struct *target,
971 		   const struct user_regset *regset,
972 		   unsigned int pos, unsigned int count,
973 		   const void *kbuf, const void __user *ubuf)
974 {
975 	if (!system_supports_sve())
976 		return -EINVAL;
977 
978 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
979 			      ARM64_VEC_SVE);
980 }
981 
982 #endif /* CONFIG_ARM64_SVE */
983 
984 #ifdef CONFIG_ARM64_SME
985 
986 static int ssve_get(struct task_struct *target,
987 		   const struct user_regset *regset,
988 		   struct membuf to)
989 {
990 	if (!system_supports_sme())
991 		return -EINVAL;
992 
993 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
994 }
995 
996 static int ssve_set(struct task_struct *target,
997 		    const struct user_regset *regset,
998 		    unsigned int pos, unsigned int count,
999 		    const void *kbuf, const void __user *ubuf)
1000 {
1001 	if (!system_supports_sme())
1002 		return -EINVAL;
1003 
1004 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1005 			      ARM64_VEC_SME);
1006 }
1007 
1008 static int za_get(struct task_struct *target,
1009 		  const struct user_regset *regset,
1010 		  struct membuf to)
1011 {
1012 	struct user_za_header header;
1013 	unsigned int vq;
1014 	unsigned long start, end;
1015 
1016 	if (!system_supports_sme())
1017 		return -EINVAL;
1018 
1019 	/* Header */
1020 	memset(&header, 0, sizeof(header));
1021 
1022 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1023 		header.flags |= ZA_PT_VL_INHERIT;
1024 
1025 	header.vl = task_get_sme_vl(target);
1026 	vq = sve_vq_from_vl(header.vl);
1027 	header.max_vl = sme_max_vl();
1028 	header.max_size = ZA_PT_SIZE(vq);
1029 
1030 	/* If ZA is not active there is only the header */
1031 	if (thread_za_enabled(&target->thread))
1032 		header.size = ZA_PT_SIZE(vq);
1033 	else
1034 		header.size = ZA_PT_ZA_OFFSET;
1035 
1036 	membuf_write(&to, &header, sizeof(header));
1037 
1038 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1039 	end = ZA_PT_ZA_OFFSET;
1040 
1041 	if (target == current)
1042 		fpsimd_preserve_current_state();
1043 
1044 	/* Any register data to include? */
1045 	if (thread_za_enabled(&target->thread)) {
1046 		start = end;
1047 		end = ZA_PT_SIZE(vq);
1048 		membuf_write(&to, target->thread.sme_state, end - start);
1049 	}
1050 
1051 	/* Zero any trailing padding */
1052 	start = end;
1053 	end = ALIGN(header.size, SVE_VQ_BYTES);
1054 	return membuf_zero(&to, end - start);
1055 }
1056 
1057 static int za_set(struct task_struct *target,
1058 		  const struct user_regset *regset,
1059 		  unsigned int pos, unsigned int count,
1060 		  const void *kbuf, const void __user *ubuf)
1061 {
1062 	int ret;
1063 	struct user_za_header header;
1064 	unsigned int vq;
1065 	unsigned long start, end;
1066 
1067 	if (!system_supports_sme())
1068 		return -EINVAL;
1069 
1070 	/* Header */
1071 	if (count < sizeof(header))
1072 		return -EINVAL;
1073 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1074 				 0, sizeof(header));
1075 	if (ret)
1076 		goto out;
1077 
1078 	/*
1079 	 * All current ZA_PT_* flags are consumed by
1080 	 * vec_set_vector_length(), which will also validate them for
1081 	 * us:
1082 	 */
1083 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1084 		((unsigned long)header.flags) << 16);
1085 	if (ret)
1086 		goto out;
1087 
1088 	/* Actual VL set may be less than the user asked for: */
1089 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1090 
1091 	/* Ensure there is some SVE storage for streaming mode */
1092 	if (!target->thread.sve_state) {
1093 		sve_alloc(target, false);
1094 		if (!target->thread.sve_state) {
1095 			ret = -ENOMEM;
1096 			goto out;
1097 		}
1098 	}
1099 
1100 	/* Allocate/reinit ZA storage */
1101 	sme_alloc(target);
1102 	if (!target->thread.sme_state) {
1103 		ret = -ENOMEM;
1104 		goto out;
1105 	}
1106 
1107 	/* If there is no data then disable ZA */
1108 	if (!count) {
1109 		target->thread.svcr &= ~SVCR_ZA_MASK;
1110 		goto out;
1111 	}
1112 
1113 	/*
1114 	 * If setting a different VL from the requested VL and there is
1115 	 * register data, the data layout will be wrong: don't even
1116 	 * try to set the registers in this case.
1117 	 */
1118 	if (vq != sve_vq_from_vl(header.vl)) {
1119 		ret = -EIO;
1120 		goto out;
1121 	}
1122 
1123 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1124 	start = ZA_PT_ZA_OFFSET;
1125 	end = ZA_PT_SIZE(vq);
1126 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1127 				 target->thread.sme_state,
1128 				 start, end);
1129 	if (ret)
1130 		goto out;
1131 
1132 	/* Mark ZA as active and let userspace use it */
1133 	set_tsk_thread_flag(target, TIF_SME);
1134 	target->thread.svcr |= SVCR_ZA_MASK;
1135 
1136 out:
1137 	fpsimd_flush_task_state(target);
1138 	return ret;
1139 }
1140 
1141 static int zt_get(struct task_struct *target,
1142 		  const struct user_regset *regset,
1143 		  struct membuf to)
1144 {
1145 	if (!system_supports_sme2())
1146 		return -EINVAL;
1147 
1148 	/*
1149 	 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1150 	 * enabled so report the current register value as zero.
1151 	 */
1152 	if (thread_za_enabled(&target->thread))
1153 		membuf_write(&to, thread_zt_state(&target->thread),
1154 			     ZT_SIG_REG_BYTES);
1155 	else
1156 		membuf_zero(&to, ZT_SIG_REG_BYTES);
1157 
1158 	return 0;
1159 }
1160 
1161 static int zt_set(struct task_struct *target,
1162 		  const struct user_regset *regset,
1163 		  unsigned int pos, unsigned int count,
1164 		  const void *kbuf, const void __user *ubuf)
1165 {
1166 	int ret;
1167 
1168 	if (!system_supports_sme2())
1169 		return -EINVAL;
1170 
1171 	if (!thread_za_enabled(&target->thread)) {
1172 		sme_alloc(target);
1173 		if (!target->thread.sme_state)
1174 			return -ENOMEM;
1175 	}
1176 
1177 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1178 				 thread_zt_state(&target->thread),
1179 				 0, ZT_SIG_REG_BYTES);
1180 	if (ret == 0)
1181 		target->thread.svcr |= SVCR_ZA_MASK;
1182 
1183 	return ret;
1184 }
1185 
1186 #endif /* CONFIG_ARM64_SME */
1187 
1188 #ifdef CONFIG_ARM64_PTR_AUTH
1189 static int pac_mask_get(struct task_struct *target,
1190 			const struct user_regset *regset,
1191 			struct membuf to)
1192 {
1193 	/*
1194 	 * The PAC bits can differ across data and instruction pointers
1195 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1196 	 * we expose separate masks.
1197 	 */
1198 	unsigned long mask = ptrauth_user_pac_mask();
1199 	struct user_pac_mask uregs = {
1200 		.data_mask = mask,
1201 		.insn_mask = mask,
1202 	};
1203 
1204 	if (!system_supports_address_auth())
1205 		return -EINVAL;
1206 
1207 	return membuf_write(&to, &uregs, sizeof(uregs));
1208 }
1209 
1210 static int pac_enabled_keys_get(struct task_struct *target,
1211 				const struct user_regset *regset,
1212 				struct membuf to)
1213 {
1214 	long enabled_keys = ptrauth_get_enabled_keys(target);
1215 
1216 	if (IS_ERR_VALUE(enabled_keys))
1217 		return enabled_keys;
1218 
1219 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1220 }
1221 
1222 static int pac_enabled_keys_set(struct task_struct *target,
1223 				const struct user_regset *regset,
1224 				unsigned int pos, unsigned int count,
1225 				const void *kbuf, const void __user *ubuf)
1226 {
1227 	int ret;
1228 	long enabled_keys = ptrauth_get_enabled_keys(target);
1229 
1230 	if (IS_ERR_VALUE(enabled_keys))
1231 		return enabled_keys;
1232 
1233 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1234 				 sizeof(long));
1235 	if (ret)
1236 		return ret;
1237 
1238 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1239 					enabled_keys);
1240 }
1241 
1242 #ifdef CONFIG_CHECKPOINT_RESTORE
1243 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1244 {
1245 	return (__uint128_t)key->hi << 64 | key->lo;
1246 }
1247 
1248 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1249 {
1250 	struct ptrauth_key key = {
1251 		.lo = (unsigned long)ukey,
1252 		.hi = (unsigned long)(ukey >> 64),
1253 	};
1254 
1255 	return key;
1256 }
1257 
1258 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1259 				     const struct ptrauth_keys_user *keys)
1260 {
1261 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1262 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1263 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1264 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1265 }
1266 
1267 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1268 				       const struct user_pac_address_keys *ukeys)
1269 {
1270 	keys->apia = pac_key_from_user(ukeys->apiakey);
1271 	keys->apib = pac_key_from_user(ukeys->apibkey);
1272 	keys->apda = pac_key_from_user(ukeys->apdakey);
1273 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1274 }
1275 
1276 static int pac_address_keys_get(struct task_struct *target,
1277 				const struct user_regset *regset,
1278 				struct membuf to)
1279 {
1280 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1281 	struct user_pac_address_keys user_keys;
1282 
1283 	if (!system_supports_address_auth())
1284 		return -EINVAL;
1285 
1286 	pac_address_keys_to_user(&user_keys, keys);
1287 
1288 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1289 }
1290 
1291 static int pac_address_keys_set(struct task_struct *target,
1292 				const struct user_regset *regset,
1293 				unsigned int pos, unsigned int count,
1294 				const void *kbuf, const void __user *ubuf)
1295 {
1296 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1297 	struct user_pac_address_keys user_keys;
1298 	int ret;
1299 
1300 	if (!system_supports_address_auth())
1301 		return -EINVAL;
1302 
1303 	pac_address_keys_to_user(&user_keys, keys);
1304 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1305 				 &user_keys, 0, -1);
1306 	if (ret)
1307 		return ret;
1308 	pac_address_keys_from_user(keys, &user_keys);
1309 
1310 	return 0;
1311 }
1312 
1313 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1314 				     const struct ptrauth_keys_user *keys)
1315 {
1316 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1317 }
1318 
1319 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1320 				       const struct user_pac_generic_keys *ukeys)
1321 {
1322 	keys->apga = pac_key_from_user(ukeys->apgakey);
1323 }
1324 
1325 static int pac_generic_keys_get(struct task_struct *target,
1326 				const struct user_regset *regset,
1327 				struct membuf to)
1328 {
1329 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1330 	struct user_pac_generic_keys user_keys;
1331 
1332 	if (!system_supports_generic_auth())
1333 		return -EINVAL;
1334 
1335 	pac_generic_keys_to_user(&user_keys, keys);
1336 
1337 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1338 }
1339 
1340 static int pac_generic_keys_set(struct task_struct *target,
1341 				const struct user_regset *regset,
1342 				unsigned int pos, unsigned int count,
1343 				const void *kbuf, const void __user *ubuf)
1344 {
1345 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1346 	struct user_pac_generic_keys user_keys;
1347 	int ret;
1348 
1349 	if (!system_supports_generic_auth())
1350 		return -EINVAL;
1351 
1352 	pac_generic_keys_to_user(&user_keys, keys);
1353 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1354 				 &user_keys, 0, -1);
1355 	if (ret)
1356 		return ret;
1357 	pac_generic_keys_from_user(keys, &user_keys);
1358 
1359 	return 0;
1360 }
1361 #endif /* CONFIG_CHECKPOINT_RESTORE */
1362 #endif /* CONFIG_ARM64_PTR_AUTH */
1363 
1364 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1365 static int tagged_addr_ctrl_get(struct task_struct *target,
1366 				const struct user_regset *regset,
1367 				struct membuf to)
1368 {
1369 	long ctrl = get_tagged_addr_ctrl(target);
1370 
1371 	if (IS_ERR_VALUE(ctrl))
1372 		return ctrl;
1373 
1374 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1375 }
1376 
1377 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1378 				user_regset *regset, unsigned int pos,
1379 				unsigned int count, const void *kbuf, const
1380 				void __user *ubuf)
1381 {
1382 	int ret;
1383 	long ctrl;
1384 
1385 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1386 	if (ret)
1387 		return ret;
1388 
1389 	return set_tagged_addr_ctrl(target, ctrl);
1390 }
1391 #endif
1392 
1393 enum aarch64_regset {
1394 	REGSET_GPR,
1395 	REGSET_FPR,
1396 	REGSET_TLS,
1397 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1398 	REGSET_HW_BREAK,
1399 	REGSET_HW_WATCH,
1400 #endif
1401 	REGSET_SYSTEM_CALL,
1402 #ifdef CONFIG_ARM64_SVE
1403 	REGSET_SVE,
1404 #endif
1405 #ifdef CONFIG_ARM64_SME
1406 	REGSET_SSVE,
1407 	REGSET_ZA,
1408 	REGSET_ZT,
1409 #endif
1410 #ifdef CONFIG_ARM64_PTR_AUTH
1411 	REGSET_PAC_MASK,
1412 	REGSET_PAC_ENABLED_KEYS,
1413 #ifdef CONFIG_CHECKPOINT_RESTORE
1414 	REGSET_PACA_KEYS,
1415 	REGSET_PACG_KEYS,
1416 #endif
1417 #endif
1418 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1419 	REGSET_TAGGED_ADDR_CTRL,
1420 #endif
1421 };
1422 
1423 static const struct user_regset aarch64_regsets[] = {
1424 	[REGSET_GPR] = {
1425 		.core_note_type = NT_PRSTATUS,
1426 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1427 		.size = sizeof(u64),
1428 		.align = sizeof(u64),
1429 		.regset_get = gpr_get,
1430 		.set = gpr_set
1431 	},
1432 	[REGSET_FPR] = {
1433 		.core_note_type = NT_PRFPREG,
1434 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1435 		/*
1436 		 * We pretend we have 32-bit registers because the fpsr and
1437 		 * fpcr are 32-bits wide.
1438 		 */
1439 		.size = sizeof(u32),
1440 		.align = sizeof(u32),
1441 		.active = fpr_active,
1442 		.regset_get = fpr_get,
1443 		.set = fpr_set
1444 	},
1445 	[REGSET_TLS] = {
1446 		.core_note_type = NT_ARM_TLS,
1447 		.n = 2,
1448 		.size = sizeof(void *),
1449 		.align = sizeof(void *),
1450 		.regset_get = tls_get,
1451 		.set = tls_set,
1452 	},
1453 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1454 	[REGSET_HW_BREAK] = {
1455 		.core_note_type = NT_ARM_HW_BREAK,
1456 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1457 		.size = sizeof(u32),
1458 		.align = sizeof(u32),
1459 		.regset_get = hw_break_get,
1460 		.set = hw_break_set,
1461 	},
1462 	[REGSET_HW_WATCH] = {
1463 		.core_note_type = NT_ARM_HW_WATCH,
1464 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1465 		.size = sizeof(u32),
1466 		.align = sizeof(u32),
1467 		.regset_get = hw_break_get,
1468 		.set = hw_break_set,
1469 	},
1470 #endif
1471 	[REGSET_SYSTEM_CALL] = {
1472 		.core_note_type = NT_ARM_SYSTEM_CALL,
1473 		.n = 1,
1474 		.size = sizeof(int),
1475 		.align = sizeof(int),
1476 		.regset_get = system_call_get,
1477 		.set = system_call_set,
1478 	},
1479 #ifdef CONFIG_ARM64_SVE
1480 	[REGSET_SVE] = { /* Scalable Vector Extension */
1481 		.core_note_type = NT_ARM_SVE,
1482 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1483 				  SVE_VQ_BYTES),
1484 		.size = SVE_VQ_BYTES,
1485 		.align = SVE_VQ_BYTES,
1486 		.regset_get = sve_get,
1487 		.set = sve_set,
1488 	},
1489 #endif
1490 #ifdef CONFIG_ARM64_SME
1491 	[REGSET_SSVE] = { /* Streaming mode SVE */
1492 		.core_note_type = NT_ARM_SSVE,
1493 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1494 				  SVE_VQ_BYTES),
1495 		.size = SVE_VQ_BYTES,
1496 		.align = SVE_VQ_BYTES,
1497 		.regset_get = ssve_get,
1498 		.set = ssve_set,
1499 	},
1500 	[REGSET_ZA] = { /* SME ZA */
1501 		.core_note_type = NT_ARM_ZA,
1502 		/*
1503 		 * ZA is a single register but it's variably sized and
1504 		 * the ptrace core requires that the size of any data
1505 		 * be an exact multiple of the configured register
1506 		 * size so report as though we had SVE_VQ_BYTES
1507 		 * registers. These values aren't exposed to
1508 		 * userspace.
1509 		 */
1510 		.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1511 		.size = SVE_VQ_BYTES,
1512 		.align = SVE_VQ_BYTES,
1513 		.regset_get = za_get,
1514 		.set = za_set,
1515 	},
1516 	[REGSET_ZT] = { /* SME ZT */
1517 		.core_note_type = NT_ARM_ZT,
1518 		.n = 1,
1519 		.size = ZT_SIG_REG_BYTES,
1520 		.align = sizeof(u64),
1521 		.regset_get = zt_get,
1522 		.set = zt_set,
1523 	},
1524 #endif
1525 #ifdef CONFIG_ARM64_PTR_AUTH
1526 	[REGSET_PAC_MASK] = {
1527 		.core_note_type = NT_ARM_PAC_MASK,
1528 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1529 		.size = sizeof(u64),
1530 		.align = sizeof(u64),
1531 		.regset_get = pac_mask_get,
1532 		/* this cannot be set dynamically */
1533 	},
1534 	[REGSET_PAC_ENABLED_KEYS] = {
1535 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1536 		.n = 1,
1537 		.size = sizeof(long),
1538 		.align = sizeof(long),
1539 		.regset_get = pac_enabled_keys_get,
1540 		.set = pac_enabled_keys_set,
1541 	},
1542 #ifdef CONFIG_CHECKPOINT_RESTORE
1543 	[REGSET_PACA_KEYS] = {
1544 		.core_note_type = NT_ARM_PACA_KEYS,
1545 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1546 		.size = sizeof(__uint128_t),
1547 		.align = sizeof(__uint128_t),
1548 		.regset_get = pac_address_keys_get,
1549 		.set = pac_address_keys_set,
1550 	},
1551 	[REGSET_PACG_KEYS] = {
1552 		.core_note_type = NT_ARM_PACG_KEYS,
1553 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1554 		.size = sizeof(__uint128_t),
1555 		.align = sizeof(__uint128_t),
1556 		.regset_get = pac_generic_keys_get,
1557 		.set = pac_generic_keys_set,
1558 	},
1559 #endif
1560 #endif
1561 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1562 	[REGSET_TAGGED_ADDR_CTRL] = {
1563 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1564 		.n = 1,
1565 		.size = sizeof(long),
1566 		.align = sizeof(long),
1567 		.regset_get = tagged_addr_ctrl_get,
1568 		.set = tagged_addr_ctrl_set,
1569 	},
1570 #endif
1571 };
1572 
1573 static const struct user_regset_view user_aarch64_view = {
1574 	.name = "aarch64", .e_machine = EM_AARCH64,
1575 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1576 };
1577 
1578 #ifdef CONFIG_COMPAT
1579 enum compat_regset {
1580 	REGSET_COMPAT_GPR,
1581 	REGSET_COMPAT_VFP,
1582 };
1583 
1584 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1585 {
1586 	struct pt_regs *regs = task_pt_regs(task);
1587 
1588 	switch (idx) {
1589 	case 15:
1590 		return regs->pc;
1591 	case 16:
1592 		return pstate_to_compat_psr(regs->pstate);
1593 	case 17:
1594 		return regs->orig_x0;
1595 	default:
1596 		return regs->regs[idx];
1597 	}
1598 }
1599 
1600 static int compat_gpr_get(struct task_struct *target,
1601 			  const struct user_regset *regset,
1602 			  struct membuf to)
1603 {
1604 	int i = 0;
1605 
1606 	while (to.left)
1607 		membuf_store(&to, compat_get_user_reg(target, i++));
1608 	return 0;
1609 }
1610 
1611 static int compat_gpr_set(struct task_struct *target,
1612 			  const struct user_regset *regset,
1613 			  unsigned int pos, unsigned int count,
1614 			  const void *kbuf, const void __user *ubuf)
1615 {
1616 	struct pt_regs newregs;
1617 	int ret = 0;
1618 	unsigned int i, start, num_regs;
1619 
1620 	/* Calculate the number of AArch32 registers contained in count */
1621 	num_regs = count / regset->size;
1622 
1623 	/* Convert pos into an register number */
1624 	start = pos / regset->size;
1625 
1626 	if (start + num_regs > regset->n)
1627 		return -EIO;
1628 
1629 	newregs = *task_pt_regs(target);
1630 
1631 	for (i = 0; i < num_regs; ++i) {
1632 		unsigned int idx = start + i;
1633 		compat_ulong_t reg;
1634 
1635 		if (kbuf) {
1636 			memcpy(&reg, kbuf, sizeof(reg));
1637 			kbuf += sizeof(reg);
1638 		} else {
1639 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1640 			if (ret) {
1641 				ret = -EFAULT;
1642 				break;
1643 			}
1644 
1645 			ubuf += sizeof(reg);
1646 		}
1647 
1648 		switch (idx) {
1649 		case 15:
1650 			newregs.pc = reg;
1651 			break;
1652 		case 16:
1653 			reg = compat_psr_to_pstate(reg);
1654 			newregs.pstate = reg;
1655 			break;
1656 		case 17:
1657 			newregs.orig_x0 = reg;
1658 			break;
1659 		default:
1660 			newregs.regs[idx] = reg;
1661 		}
1662 
1663 	}
1664 
1665 	if (valid_user_regs(&newregs.user_regs, target))
1666 		*task_pt_regs(target) = newregs;
1667 	else
1668 		ret = -EINVAL;
1669 
1670 	return ret;
1671 }
1672 
1673 static int compat_vfp_get(struct task_struct *target,
1674 			  const struct user_regset *regset,
1675 			  struct membuf to)
1676 {
1677 	struct user_fpsimd_state *uregs;
1678 	compat_ulong_t fpscr;
1679 
1680 	if (!system_supports_fpsimd())
1681 		return -EINVAL;
1682 
1683 	uregs = &target->thread.uw.fpsimd_state;
1684 
1685 	if (target == current)
1686 		fpsimd_preserve_current_state();
1687 
1688 	/*
1689 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1690 	 * nicely together for us. We just need to create the fpscr separately.
1691 	 */
1692 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1693 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1694 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1695 	return membuf_store(&to, fpscr);
1696 }
1697 
1698 static int compat_vfp_set(struct task_struct *target,
1699 			  const struct user_regset *regset,
1700 			  unsigned int pos, unsigned int count,
1701 			  const void *kbuf, const void __user *ubuf)
1702 {
1703 	struct user_fpsimd_state *uregs;
1704 	compat_ulong_t fpscr;
1705 	int ret, vregs_end_pos;
1706 
1707 	if (!system_supports_fpsimd())
1708 		return -EINVAL;
1709 
1710 	uregs = &target->thread.uw.fpsimd_state;
1711 
1712 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1713 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1714 				 vregs_end_pos);
1715 
1716 	if (count && !ret) {
1717 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1718 					 vregs_end_pos, VFP_STATE_SIZE);
1719 		if (!ret) {
1720 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1721 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1722 		}
1723 	}
1724 
1725 	fpsimd_flush_task_state(target);
1726 	return ret;
1727 }
1728 
1729 static int compat_tls_get(struct task_struct *target,
1730 			  const struct user_regset *regset,
1731 			  struct membuf to)
1732 {
1733 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1734 }
1735 
1736 static int compat_tls_set(struct task_struct *target,
1737 			  const struct user_regset *regset, unsigned int pos,
1738 			  unsigned int count, const void *kbuf,
1739 			  const void __user *ubuf)
1740 {
1741 	int ret;
1742 	compat_ulong_t tls = target->thread.uw.tp_value;
1743 
1744 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1745 	if (ret)
1746 		return ret;
1747 
1748 	target->thread.uw.tp_value = tls;
1749 	return ret;
1750 }
1751 
1752 static const struct user_regset aarch32_regsets[] = {
1753 	[REGSET_COMPAT_GPR] = {
1754 		.core_note_type = NT_PRSTATUS,
1755 		.n = COMPAT_ELF_NGREG,
1756 		.size = sizeof(compat_elf_greg_t),
1757 		.align = sizeof(compat_elf_greg_t),
1758 		.regset_get = compat_gpr_get,
1759 		.set = compat_gpr_set
1760 	},
1761 	[REGSET_COMPAT_VFP] = {
1762 		.core_note_type = NT_ARM_VFP,
1763 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1764 		.size = sizeof(compat_ulong_t),
1765 		.align = sizeof(compat_ulong_t),
1766 		.active = fpr_active,
1767 		.regset_get = compat_vfp_get,
1768 		.set = compat_vfp_set
1769 	},
1770 };
1771 
1772 static const struct user_regset_view user_aarch32_view = {
1773 	.name = "aarch32", .e_machine = EM_ARM,
1774 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1775 };
1776 
1777 static const struct user_regset aarch32_ptrace_regsets[] = {
1778 	[REGSET_GPR] = {
1779 		.core_note_type = NT_PRSTATUS,
1780 		.n = COMPAT_ELF_NGREG,
1781 		.size = sizeof(compat_elf_greg_t),
1782 		.align = sizeof(compat_elf_greg_t),
1783 		.regset_get = compat_gpr_get,
1784 		.set = compat_gpr_set
1785 	},
1786 	[REGSET_FPR] = {
1787 		.core_note_type = NT_ARM_VFP,
1788 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1789 		.size = sizeof(compat_ulong_t),
1790 		.align = sizeof(compat_ulong_t),
1791 		.regset_get = compat_vfp_get,
1792 		.set = compat_vfp_set
1793 	},
1794 	[REGSET_TLS] = {
1795 		.core_note_type = NT_ARM_TLS,
1796 		.n = 1,
1797 		.size = sizeof(compat_ulong_t),
1798 		.align = sizeof(compat_ulong_t),
1799 		.regset_get = compat_tls_get,
1800 		.set = compat_tls_set,
1801 	},
1802 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1803 	[REGSET_HW_BREAK] = {
1804 		.core_note_type = NT_ARM_HW_BREAK,
1805 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1806 		.size = sizeof(u32),
1807 		.align = sizeof(u32),
1808 		.regset_get = hw_break_get,
1809 		.set = hw_break_set,
1810 	},
1811 	[REGSET_HW_WATCH] = {
1812 		.core_note_type = NT_ARM_HW_WATCH,
1813 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1814 		.size = sizeof(u32),
1815 		.align = sizeof(u32),
1816 		.regset_get = hw_break_get,
1817 		.set = hw_break_set,
1818 	},
1819 #endif
1820 	[REGSET_SYSTEM_CALL] = {
1821 		.core_note_type = NT_ARM_SYSTEM_CALL,
1822 		.n = 1,
1823 		.size = sizeof(int),
1824 		.align = sizeof(int),
1825 		.regset_get = system_call_get,
1826 		.set = system_call_set,
1827 	},
1828 };
1829 
1830 static const struct user_regset_view user_aarch32_ptrace_view = {
1831 	.name = "aarch32", .e_machine = EM_ARM,
1832 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1833 };
1834 
1835 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1836 				   compat_ulong_t __user *ret)
1837 {
1838 	compat_ulong_t tmp;
1839 
1840 	if (off & 3)
1841 		return -EIO;
1842 
1843 	if (off == COMPAT_PT_TEXT_ADDR)
1844 		tmp = tsk->mm->start_code;
1845 	else if (off == COMPAT_PT_DATA_ADDR)
1846 		tmp = tsk->mm->start_data;
1847 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1848 		tmp = tsk->mm->end_code;
1849 	else if (off < sizeof(compat_elf_gregset_t))
1850 		tmp = compat_get_user_reg(tsk, off >> 2);
1851 	else if (off >= COMPAT_USER_SZ)
1852 		return -EIO;
1853 	else
1854 		tmp = 0;
1855 
1856 	return put_user(tmp, ret);
1857 }
1858 
1859 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1860 				    compat_ulong_t val)
1861 {
1862 	struct pt_regs newregs = *task_pt_regs(tsk);
1863 	unsigned int idx = off / 4;
1864 
1865 	if (off & 3 || off >= COMPAT_USER_SZ)
1866 		return -EIO;
1867 
1868 	if (off >= sizeof(compat_elf_gregset_t))
1869 		return 0;
1870 
1871 	switch (idx) {
1872 	case 15:
1873 		newregs.pc = val;
1874 		break;
1875 	case 16:
1876 		newregs.pstate = compat_psr_to_pstate(val);
1877 		break;
1878 	case 17:
1879 		newregs.orig_x0 = val;
1880 		break;
1881 	default:
1882 		newregs.regs[idx] = val;
1883 	}
1884 
1885 	if (!valid_user_regs(&newregs.user_regs, tsk))
1886 		return -EINVAL;
1887 
1888 	*task_pt_regs(tsk) = newregs;
1889 	return 0;
1890 }
1891 
1892 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1893 
1894 /*
1895  * Convert a virtual register number into an index for a thread_info
1896  * breakpoint array. Breakpoints are identified using positive numbers
1897  * whilst watchpoints are negative. The registers are laid out as pairs
1898  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1899  * Register 0 is reserved for describing resource information.
1900  */
1901 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1902 {
1903 	return (abs(num) - 1) >> 1;
1904 }
1905 
1906 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1907 {
1908 	u8 num_brps, num_wrps, debug_arch, wp_len;
1909 	u32 reg = 0;
1910 
1911 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1912 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1913 
1914 	debug_arch	= debug_monitors_arch();
1915 	wp_len		= 8;
1916 	reg		|= debug_arch;
1917 	reg		<<= 8;
1918 	reg		|= wp_len;
1919 	reg		<<= 8;
1920 	reg		|= num_wrps;
1921 	reg		<<= 8;
1922 	reg		|= num_brps;
1923 
1924 	*kdata = reg;
1925 	return 0;
1926 }
1927 
1928 static int compat_ptrace_hbp_get(unsigned int note_type,
1929 				 struct task_struct *tsk,
1930 				 compat_long_t num,
1931 				 u32 *kdata)
1932 {
1933 	u64 addr = 0;
1934 	u32 ctrl = 0;
1935 
1936 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1937 
1938 	if (num & 1) {
1939 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1940 		*kdata = (u32)addr;
1941 	} else {
1942 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1943 		*kdata = ctrl;
1944 	}
1945 
1946 	return err;
1947 }
1948 
1949 static int compat_ptrace_hbp_set(unsigned int note_type,
1950 				 struct task_struct *tsk,
1951 				 compat_long_t num,
1952 				 u32 *kdata)
1953 {
1954 	u64 addr;
1955 	u32 ctrl;
1956 
1957 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1958 
1959 	if (num & 1) {
1960 		addr = *kdata;
1961 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1962 	} else {
1963 		ctrl = *kdata;
1964 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1965 	}
1966 
1967 	return err;
1968 }
1969 
1970 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1971 				    compat_ulong_t __user *data)
1972 {
1973 	int ret;
1974 	u32 kdata;
1975 
1976 	/* Watchpoint */
1977 	if (num < 0) {
1978 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1979 	/* Resource info */
1980 	} else if (num == 0) {
1981 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1982 	/* Breakpoint */
1983 	} else {
1984 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1985 	}
1986 
1987 	if (!ret)
1988 		ret = put_user(kdata, data);
1989 
1990 	return ret;
1991 }
1992 
1993 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1994 				    compat_ulong_t __user *data)
1995 {
1996 	int ret;
1997 	u32 kdata = 0;
1998 
1999 	if (num == 0)
2000 		return 0;
2001 
2002 	ret = get_user(kdata, data);
2003 	if (ret)
2004 		return ret;
2005 
2006 	if (num < 0)
2007 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2008 	else
2009 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2010 
2011 	return ret;
2012 }
2013 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
2014 
2015 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2016 			compat_ulong_t caddr, compat_ulong_t cdata)
2017 {
2018 	unsigned long addr = caddr;
2019 	unsigned long data = cdata;
2020 	void __user *datap = compat_ptr(data);
2021 	int ret;
2022 
2023 	switch (request) {
2024 		case PTRACE_PEEKUSR:
2025 			ret = compat_ptrace_read_user(child, addr, datap);
2026 			break;
2027 
2028 		case PTRACE_POKEUSR:
2029 			ret = compat_ptrace_write_user(child, addr, data);
2030 			break;
2031 
2032 		case COMPAT_PTRACE_GETREGS:
2033 			ret = copy_regset_to_user(child,
2034 						  &user_aarch32_view,
2035 						  REGSET_COMPAT_GPR,
2036 						  0, sizeof(compat_elf_gregset_t),
2037 						  datap);
2038 			break;
2039 
2040 		case COMPAT_PTRACE_SETREGS:
2041 			ret = copy_regset_from_user(child,
2042 						    &user_aarch32_view,
2043 						    REGSET_COMPAT_GPR,
2044 						    0, sizeof(compat_elf_gregset_t),
2045 						    datap);
2046 			break;
2047 
2048 		case COMPAT_PTRACE_GET_THREAD_AREA:
2049 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2050 				       (compat_ulong_t __user *)datap);
2051 			break;
2052 
2053 		case COMPAT_PTRACE_SET_SYSCALL:
2054 			task_pt_regs(child)->syscallno = data;
2055 			ret = 0;
2056 			break;
2057 
2058 		case COMPAT_PTRACE_GETVFPREGS:
2059 			ret = copy_regset_to_user(child,
2060 						  &user_aarch32_view,
2061 						  REGSET_COMPAT_VFP,
2062 						  0, VFP_STATE_SIZE,
2063 						  datap);
2064 			break;
2065 
2066 		case COMPAT_PTRACE_SETVFPREGS:
2067 			ret = copy_regset_from_user(child,
2068 						    &user_aarch32_view,
2069 						    REGSET_COMPAT_VFP,
2070 						    0, VFP_STATE_SIZE,
2071 						    datap);
2072 			break;
2073 
2074 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2075 		case COMPAT_PTRACE_GETHBPREGS:
2076 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2077 			break;
2078 
2079 		case COMPAT_PTRACE_SETHBPREGS:
2080 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2081 			break;
2082 #endif
2083 
2084 		default:
2085 			ret = compat_ptrace_request(child, request, addr,
2086 						    data);
2087 			break;
2088 	}
2089 
2090 	return ret;
2091 }
2092 #endif /* CONFIG_COMPAT */
2093 
2094 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2095 {
2096 #ifdef CONFIG_COMPAT
2097 	/*
2098 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2099 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2100 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2101 	 * access to the TLS register.
2102 	 */
2103 	if (is_compat_task())
2104 		return &user_aarch32_view;
2105 	else if (is_compat_thread(task_thread_info(task)))
2106 		return &user_aarch32_ptrace_view;
2107 #endif
2108 	return &user_aarch64_view;
2109 }
2110 
2111 long arch_ptrace(struct task_struct *child, long request,
2112 		 unsigned long addr, unsigned long data)
2113 {
2114 	switch (request) {
2115 	case PTRACE_PEEKMTETAGS:
2116 	case PTRACE_POKEMTETAGS:
2117 		return mte_ptrace_copy_tags(child, request, addr, data);
2118 	}
2119 
2120 	return ptrace_request(child, request, addr, data);
2121 }
2122 
2123 enum ptrace_syscall_dir {
2124 	PTRACE_SYSCALL_ENTER = 0,
2125 	PTRACE_SYSCALL_EXIT,
2126 };
2127 
2128 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2129 {
2130 	int regno;
2131 	unsigned long saved_reg;
2132 
2133 	/*
2134 	 * We have some ABI weirdness here in the way that we handle syscall
2135 	 * exit stops because we indicate whether or not the stop has been
2136 	 * signalled from syscall entry or syscall exit by clobbering a general
2137 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2138 	 * and restoring its old value after the stop. This means that:
2139 	 *
2140 	 * - Any writes by the tracer to this register during the stop are
2141 	 *   ignored/discarded.
2142 	 *
2143 	 * - The actual value of the register is not available during the stop,
2144 	 *   so the tracer cannot save it and restore it later.
2145 	 *
2146 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2147 	 *   (the latter do not nobble any registers).
2148 	 */
2149 	regno = (is_compat_task() ? 12 : 7);
2150 	saved_reg = regs->regs[regno];
2151 	regs->regs[regno] = dir;
2152 
2153 	if (dir == PTRACE_SYSCALL_ENTER) {
2154 		if (ptrace_report_syscall_entry(regs))
2155 			forget_syscall(regs);
2156 		regs->regs[regno] = saved_reg;
2157 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2158 		ptrace_report_syscall_exit(regs, 0);
2159 		regs->regs[regno] = saved_reg;
2160 	} else {
2161 		regs->regs[regno] = saved_reg;
2162 
2163 		/*
2164 		 * Signal a pseudo-step exception since we are stepping but
2165 		 * tracer modifications to the registers may have rewound the
2166 		 * state machine.
2167 		 */
2168 		ptrace_report_syscall_exit(regs, 1);
2169 	}
2170 }
2171 
2172 int syscall_trace_enter(struct pt_regs *regs)
2173 {
2174 	unsigned long flags = read_thread_flags();
2175 
2176 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2177 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
2178 		if (flags & _TIF_SYSCALL_EMU)
2179 			return NO_SYSCALL;
2180 	}
2181 
2182 	/* Do the secure computing after ptrace; failures should be fast. */
2183 	if (secure_computing() == -1)
2184 		return NO_SYSCALL;
2185 
2186 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2187 		trace_sys_enter(regs, regs->syscallno);
2188 
2189 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2190 			    regs->regs[2], regs->regs[3]);
2191 
2192 	return regs->syscallno;
2193 }
2194 
2195 void syscall_trace_exit(struct pt_regs *regs)
2196 {
2197 	unsigned long flags = read_thread_flags();
2198 
2199 	audit_syscall_exit(regs);
2200 
2201 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2202 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2203 
2204 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2205 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
2206 
2207 	rseq_syscall(regs);
2208 }
2209 
2210 /*
2211  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2212  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2213  * not described in ARM DDI 0487D.a.
2214  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2215  * be allocated an EL0 meaning in future.
2216  * Userspace cannot use these until they have an architectural meaning.
2217  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2218  * We also reserve IL for the kernel; SS is handled dynamically.
2219  */
2220 #define SPSR_EL1_AARCH64_RES0_BITS \
2221 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2222 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2223 #define SPSR_EL1_AARCH32_RES0_BITS \
2224 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2225 
2226 static int valid_compat_regs(struct user_pt_regs *regs)
2227 {
2228 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2229 
2230 	if (!system_supports_mixed_endian_el0()) {
2231 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2232 			regs->pstate |= PSR_AA32_E_BIT;
2233 		else
2234 			regs->pstate &= ~PSR_AA32_E_BIT;
2235 	}
2236 
2237 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2238 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2239 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2240 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2241 		return 1;
2242 	}
2243 
2244 	/*
2245 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2246 	 * arch/arm.
2247 	 */
2248 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2249 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2250 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2251 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2252 			PSR_AA32_T_BIT;
2253 	regs->pstate |= PSR_MODE32_BIT;
2254 
2255 	return 0;
2256 }
2257 
2258 static int valid_native_regs(struct user_pt_regs *regs)
2259 {
2260 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2261 
2262 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2263 	    (regs->pstate & PSR_D_BIT) == 0 &&
2264 	    (regs->pstate & PSR_A_BIT) == 0 &&
2265 	    (regs->pstate & PSR_I_BIT) == 0 &&
2266 	    (regs->pstate & PSR_F_BIT) == 0) {
2267 		return 1;
2268 	}
2269 
2270 	/* Force PSR to a valid 64-bit EL0t */
2271 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2272 
2273 	return 0;
2274 }
2275 
2276 /*
2277  * Are the current registers suitable for user mode? (used to maintain
2278  * security in signal handlers)
2279  */
2280 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2281 {
2282 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2283 	user_regs_reset_single_step(regs, task);
2284 
2285 	if (is_compat_thread(task_thread_info(task)))
2286 		return valid_compat_regs(regs);
2287 	else
2288 		return valid_native_regs(regs);
2289 }
2290