xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45 
46 struct pt_regs_offset {
47 	const char *name;
48 	int offset;
49 };
50 
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55 
56 static const struct pt_regs_offset regoffset_table[] = {
57 	GPR_OFFSET_NAME(0),
58 	GPR_OFFSET_NAME(1),
59 	GPR_OFFSET_NAME(2),
60 	GPR_OFFSET_NAME(3),
61 	GPR_OFFSET_NAME(4),
62 	GPR_OFFSET_NAME(5),
63 	GPR_OFFSET_NAME(6),
64 	GPR_OFFSET_NAME(7),
65 	GPR_OFFSET_NAME(8),
66 	GPR_OFFSET_NAME(9),
67 	GPR_OFFSET_NAME(10),
68 	GPR_OFFSET_NAME(11),
69 	GPR_OFFSET_NAME(12),
70 	GPR_OFFSET_NAME(13),
71 	GPR_OFFSET_NAME(14),
72 	GPR_OFFSET_NAME(15),
73 	GPR_OFFSET_NAME(16),
74 	GPR_OFFSET_NAME(17),
75 	GPR_OFFSET_NAME(18),
76 	GPR_OFFSET_NAME(19),
77 	GPR_OFFSET_NAME(20),
78 	GPR_OFFSET_NAME(21),
79 	GPR_OFFSET_NAME(22),
80 	GPR_OFFSET_NAME(23),
81 	GPR_OFFSET_NAME(24),
82 	GPR_OFFSET_NAME(25),
83 	GPR_OFFSET_NAME(26),
84 	GPR_OFFSET_NAME(27),
85 	GPR_OFFSET_NAME(28),
86 	GPR_OFFSET_NAME(29),
87 	GPR_OFFSET_NAME(30),
88 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 	REG_OFFSET_NAME(sp),
90 	REG_OFFSET_NAME(pc),
91 	REG_OFFSET_NAME(pstate),
92 	REG_OFFSET_END,
93 };
94 
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:	the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104 	const struct pt_regs_offset *roff;
105 
106 	for (roff = regoffset_table; roff->name != NULL; roff++)
107 		if (!strcmp(roff->name, name))
108 			return roff->offset;
109 	return -EINVAL;
110 }
111 
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 	return ((addr & ~(THREAD_SIZE - 1))  ==
123 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 		on_irq_stack(addr, sizeof(unsigned long));
125 }
126 
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:	pt_regs which contains kernel stack pointer.
130  * @n:		stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139 
140 	addr += n;
141 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 		return *addr;
143 	else
144 		return 0;
145 }
146 
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151 
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157 	/*
158 	 * This would be better off in core code, but PTRACE_DETACH has
159 	 * grown its fair share of arch-specific worts and changing it
160 	 * is likely to cause regressions on obscure architectures.
161 	 */
162 	user_disable_single_step(child);
163 }
164 
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170 				struct perf_sample_data *data,
171 				struct pt_regs *regs)
172 {
173 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 	const char *desc = "Hardware breakpoint trap (ptrace)";
175 
176 #ifdef CONFIG_COMPAT
177 	if (is_compat_task()) {
178 		int si_errno = 0;
179 		int i;
180 
181 		for (i = 0; i < ARM_MAX_BRP; ++i) {
182 			if (current->thread.debug.hbp_break[i] == bp) {
183 				si_errno = (i << 1) + 1;
184 				break;
185 			}
186 		}
187 
188 		for (i = 0; i < ARM_MAX_WRP; ++i) {
189 			if (current->thread.debug.hbp_watch[i] == bp) {
190 				si_errno = -((i << 1) + 1);
191 				break;
192 			}
193 		}
194 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 						  desc);
196 		return;
197 	}
198 #endif
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201 
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 	int i;
209 	struct thread_struct *t = &tsk->thread;
210 
211 	for (i = 0; i < ARM_MAX_BRP; i++) {
212 		if (t->debug.hbp_break[i]) {
213 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 			t->debug.hbp_break[i] = NULL;
215 		}
216 	}
217 
218 	for (i = 0; i < ARM_MAX_WRP; i++) {
219 		if (t->debug.hbp_watch[i]) {
220 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 			t->debug.hbp_watch[i] = NULL;
222 		}
223 	}
224 }
225 
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230 
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 					       struct task_struct *tsk,
233 					       unsigned long idx)
234 {
235 	struct perf_event *bp = ERR_PTR(-EINVAL);
236 
237 	switch (note_type) {
238 	case NT_ARM_HW_BREAK:
239 		if (idx >= ARM_MAX_BRP)
240 			goto out;
241 		idx = array_index_nospec(idx, ARM_MAX_BRP);
242 		bp = tsk->thread.debug.hbp_break[idx];
243 		break;
244 	case NT_ARM_HW_WATCH:
245 		if (idx >= ARM_MAX_WRP)
246 			goto out;
247 		idx = array_index_nospec(idx, ARM_MAX_WRP);
248 		bp = tsk->thread.debug.hbp_watch[idx];
249 		break;
250 	}
251 
252 out:
253 	return bp;
254 }
255 
256 static int ptrace_hbp_set_event(unsigned int note_type,
257 				struct task_struct *tsk,
258 				unsigned long idx,
259 				struct perf_event *bp)
260 {
261 	int err = -EINVAL;
262 
263 	switch (note_type) {
264 	case NT_ARM_HW_BREAK:
265 		if (idx >= ARM_MAX_BRP)
266 			goto out;
267 		idx = array_index_nospec(idx, ARM_MAX_BRP);
268 		tsk->thread.debug.hbp_break[idx] = bp;
269 		err = 0;
270 		break;
271 	case NT_ARM_HW_WATCH:
272 		if (idx >= ARM_MAX_WRP)
273 			goto out;
274 		idx = array_index_nospec(idx, ARM_MAX_WRP);
275 		tsk->thread.debug.hbp_watch[idx] = bp;
276 		err = 0;
277 		break;
278 	}
279 
280 out:
281 	return err;
282 }
283 
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 					    struct task_struct *tsk,
286 					    unsigned long idx)
287 {
288 	struct perf_event *bp;
289 	struct perf_event_attr attr;
290 	int err, type;
291 
292 	switch (note_type) {
293 	case NT_ARM_HW_BREAK:
294 		type = HW_BREAKPOINT_X;
295 		break;
296 	case NT_ARM_HW_WATCH:
297 		type = HW_BREAKPOINT_RW;
298 		break;
299 	default:
300 		return ERR_PTR(-EINVAL);
301 	}
302 
303 	ptrace_breakpoint_init(&attr);
304 
305 	/*
306 	 * Initialise fields to sane defaults
307 	 * (i.e. values that will pass validation).
308 	 */
309 	attr.bp_addr	= 0;
310 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
311 	attr.bp_type	= type;
312 	attr.disabled	= 1;
313 
314 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 	if (IS_ERR(bp))
316 		return bp;
317 
318 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 	if (err)
320 		return ERR_PTR(err);
321 
322 	return bp;
323 }
324 
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 				     struct arch_hw_breakpoint_ctrl ctrl,
327 				     struct perf_event_attr *attr)
328 {
329 	int err, len, type, offset, disabled = !ctrl.enabled;
330 
331 	attr->disabled = disabled;
332 	if (disabled)
333 		return 0;
334 
335 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 	if (err)
337 		return err;
338 
339 	switch (note_type) {
340 	case NT_ARM_HW_BREAK:
341 		if ((type & HW_BREAKPOINT_X) != type)
342 			return -EINVAL;
343 		break;
344 	case NT_ARM_HW_WATCH:
345 		if ((type & HW_BREAKPOINT_RW) != type)
346 			return -EINVAL;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	attr->bp_len	= len;
353 	attr->bp_type	= type;
354 	attr->bp_addr	+= offset;
355 
356 	return 0;
357 }
358 
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 	u8 num;
362 	u32 reg = 0;
363 
364 	switch (note_type) {
365 	case NT_ARM_HW_BREAK:
366 		num = hw_breakpoint_slots(TYPE_INST);
367 		break;
368 	case NT_ARM_HW_WATCH:
369 		num = hw_breakpoint_slots(TYPE_DATA);
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	reg |= debug_monitors_arch();
376 	reg <<= 8;
377 	reg |= num;
378 
379 	*info = reg;
380 	return 0;
381 }
382 
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 			       struct task_struct *tsk,
385 			       unsigned long idx,
386 			       u32 *ctrl)
387 {
388 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389 
390 	if (IS_ERR(bp))
391 		return PTR_ERR(bp);
392 
393 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u64 *addr)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*addr = bp ? counter_arch_bp(bp)->address : 0;
408 	return 0;
409 }
410 
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 							struct task_struct *tsk,
413 							unsigned long idx)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (!bp)
418 		bp = ptrace_hbp_create(note_type, tsk, idx);
419 
420 	return bp;
421 }
422 
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 			       struct task_struct *tsk,
425 			       unsigned long idx,
426 			       u32 uctrl)
427 {
428 	int err;
429 	struct perf_event *bp;
430 	struct perf_event_attr attr;
431 	struct arch_hw_breakpoint_ctrl ctrl;
432 
433 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 	if (IS_ERR(bp)) {
435 		err = PTR_ERR(bp);
436 		return err;
437 	}
438 
439 	attr = bp->attr;
440 	decode_ctrl_reg(uctrl, &ctrl);
441 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 	if (err)
443 		return err;
444 
445 	return modify_user_hw_breakpoint(bp, &attr);
446 }
447 
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 			       struct task_struct *tsk,
450 			       unsigned long idx,
451 			       u64 addr)
452 {
453 	int err;
454 	struct perf_event *bp;
455 	struct perf_event_attr attr;
456 
457 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 	if (IS_ERR(bp)) {
459 		err = PTR_ERR(bp);
460 		return err;
461 	}
462 
463 	attr = bp->attr;
464 	attr.bp_addr = addr;
465 	err = modify_user_hw_breakpoint(bp, &attr);
466 	return err;
467 }
468 
469 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
472 
473 static int hw_break_get(struct task_struct *target,
474 			const struct user_regset *regset,
475 			struct membuf to)
476 {
477 	unsigned int note_type = regset->core_note_type;
478 	int ret, idx = 0;
479 	u32 info, ctrl;
480 	u64 addr;
481 
482 	/* Resource info */
483 	ret = ptrace_hbp_get_resource_info(note_type, &info);
484 	if (ret)
485 		return ret;
486 
487 	membuf_write(&to, &info, sizeof(info));
488 	membuf_zero(&to, sizeof(u32));
489 	/* (address, ctrl) registers */
490 	while (to.left) {
491 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 		if (ret)
493 			return ret;
494 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 		if (ret)
496 			return ret;
497 		membuf_store(&to, addr);
498 		membuf_store(&to, ctrl);
499 		membuf_zero(&to, sizeof(u32));
500 		idx++;
501 	}
502 	return 0;
503 }
504 
505 static int hw_break_set(struct task_struct *target,
506 			const struct user_regset *regset,
507 			unsigned int pos, unsigned int count,
508 			const void *kbuf, const void __user *ubuf)
509 {
510 	unsigned int note_type = regset->core_note_type;
511 	int ret, idx = 0, offset, limit;
512 	u32 ctrl;
513 	u64 addr;
514 
515 	/* Resource info and pad */
516 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 
519 	/* (address, ctrl) registers */
520 	limit = regset->n * regset->size;
521 	while (count && offset < limit) {
522 		if (count < PTRACE_HBP_ADDR_SZ)
523 			return -EINVAL;
524 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525 					 offset, offset + PTRACE_HBP_ADDR_SZ);
526 		if (ret)
527 			return ret;
528 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529 		if (ret)
530 			return ret;
531 		offset += PTRACE_HBP_ADDR_SZ;
532 
533 		if (!count)
534 			break;
535 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536 					 offset, offset + PTRACE_HBP_CTRL_SZ);
537 		if (ret)
538 			return ret;
539 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540 		if (ret)
541 			return ret;
542 		offset += PTRACE_HBP_CTRL_SZ;
543 
544 		user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545 					  offset, offset + PTRACE_HBP_PAD_SZ);
546 		offset += PTRACE_HBP_PAD_SZ;
547 		idx++;
548 	}
549 
550 	return 0;
551 }
552 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
553 
554 static int gpr_get(struct task_struct *target,
555 		   const struct user_regset *regset,
556 		   struct membuf to)
557 {
558 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559 	return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561 
562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563 		   unsigned int pos, unsigned int count,
564 		   const void *kbuf, const void __user *ubuf)
565 {
566 	int ret;
567 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568 
569 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570 	if (ret)
571 		return ret;
572 
573 	if (!valid_user_regs(&newregs, target))
574 		return -EINVAL;
575 
576 	task_pt_regs(target)->user_regs = newregs;
577 	return 0;
578 }
579 
580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582 	if (!system_supports_fpsimd())
583 		return -ENODEV;
584 	return regset->n;
585 }
586 
587 /*
588  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589  */
590 static int __fpr_get(struct task_struct *target,
591 		     const struct user_regset *regset,
592 		     struct membuf to)
593 {
594 	struct user_fpsimd_state *uregs;
595 
596 	sve_sync_to_fpsimd(target);
597 
598 	uregs = &target->thread.uw.fpsimd_state;
599 
600 	return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602 
603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604 		   struct membuf to)
605 {
606 	if (!system_supports_fpsimd())
607 		return -EINVAL;
608 
609 	if (target == current)
610 		fpsimd_preserve_current_state();
611 
612 	return __fpr_get(target, regset, to);
613 }
614 
615 static int __fpr_set(struct task_struct *target,
616 		     const struct user_regset *regset,
617 		     unsigned int pos, unsigned int count,
618 		     const void *kbuf, const void __user *ubuf,
619 		     unsigned int start_pos)
620 {
621 	int ret;
622 	struct user_fpsimd_state newstate;
623 
624 	/*
625 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626 	 * short copyin can't resurrect stale data.
627 	 */
628 	sve_sync_to_fpsimd(target);
629 
630 	newstate = target->thread.uw.fpsimd_state;
631 
632 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633 				 start_pos, start_pos + sizeof(newstate));
634 	if (ret)
635 		return ret;
636 
637 	target->thread.uw.fpsimd_state = newstate;
638 
639 	return ret;
640 }
641 
642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643 		   unsigned int pos, unsigned int count,
644 		   const void *kbuf, const void __user *ubuf)
645 {
646 	int ret;
647 
648 	if (!system_supports_fpsimd())
649 		return -EINVAL;
650 
651 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652 	if (ret)
653 		return ret;
654 
655 	sve_sync_from_fpsimd_zeropad(target);
656 	fpsimd_flush_task_state(target);
657 
658 	return ret;
659 }
660 
661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662 		   struct membuf to)
663 {
664 	int ret;
665 
666 	if (target == current)
667 		tls_preserve_current_state();
668 
669 	ret = membuf_store(&to, target->thread.uw.tp_value);
670 	if (system_supports_tpidr2())
671 		ret = membuf_store(&to, target->thread.tpidr2_el0);
672 	else
673 		ret = membuf_zero(&to, sizeof(u64));
674 
675 	return ret;
676 }
677 
678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 		   unsigned int pos, unsigned int count,
680 		   const void *kbuf, const void __user *ubuf)
681 {
682 	int ret;
683 	unsigned long tls[2];
684 
685 	tls[0] = target->thread.uw.tp_value;
686 	if (system_supports_tpidr2())
687 		tls[1] = target->thread.tpidr2_el0;
688 
689 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690 	if (ret)
691 		return ret;
692 
693 	target->thread.uw.tp_value = tls[0];
694 	if (system_supports_tpidr2())
695 		target->thread.tpidr2_el0 = tls[1];
696 
697 	return ret;
698 }
699 
700 static int system_call_get(struct task_struct *target,
701 			   const struct user_regset *regset,
702 			   struct membuf to)
703 {
704 	return membuf_store(&to, task_pt_regs(target)->syscallno);
705 }
706 
707 static int system_call_set(struct task_struct *target,
708 			   const struct user_regset *regset,
709 			   unsigned int pos, unsigned int count,
710 			   const void *kbuf, const void __user *ubuf)
711 {
712 	int syscallno = task_pt_regs(target)->syscallno;
713 	int ret;
714 
715 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
716 	if (ret)
717 		return ret;
718 
719 	task_pt_regs(target)->syscallno = syscallno;
720 	return ret;
721 }
722 
723 #ifdef CONFIG_ARM64_SVE
724 
725 static void sve_init_header_from_task(struct user_sve_header *header,
726 				      struct task_struct *target,
727 				      enum vec_type type)
728 {
729 	unsigned int vq;
730 	bool active;
731 	bool fpsimd_only;
732 	enum vec_type task_type;
733 
734 	memset(header, 0, sizeof(*header));
735 
736 	/* Check if the requested registers are active for the task */
737 	if (thread_sm_enabled(&target->thread))
738 		task_type = ARM64_VEC_SME;
739 	else
740 		task_type = ARM64_VEC_SVE;
741 	active = (task_type == type);
742 
743 	switch (type) {
744 	case ARM64_VEC_SVE:
745 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
746 			header->flags |= SVE_PT_VL_INHERIT;
747 		fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
748 		break;
749 	case ARM64_VEC_SME:
750 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
751 			header->flags |= SVE_PT_VL_INHERIT;
752 		fpsimd_only = false;
753 		break;
754 	default:
755 		WARN_ON_ONCE(1);
756 		return;
757 	}
758 
759 	if (active) {
760 		if (fpsimd_only) {
761 			header->flags |= SVE_PT_REGS_FPSIMD;
762 		} else {
763 			header->flags |= SVE_PT_REGS_SVE;
764 		}
765 	}
766 
767 	header->vl = task_get_vl(target, type);
768 	vq = sve_vq_from_vl(header->vl);
769 
770 	header->max_vl = vec_max_vl(type);
771 	header->size = SVE_PT_SIZE(vq, header->flags);
772 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
773 				      SVE_PT_REGS_SVE);
774 }
775 
776 static unsigned int sve_size_from_header(struct user_sve_header const *header)
777 {
778 	return ALIGN(header->size, SVE_VQ_BYTES);
779 }
780 
781 static int sve_get_common(struct task_struct *target,
782 			  const struct user_regset *regset,
783 			  struct membuf to,
784 			  enum vec_type type)
785 {
786 	struct user_sve_header header;
787 	unsigned int vq;
788 	unsigned long start, end;
789 
790 	/* Header */
791 	sve_init_header_from_task(&header, target, type);
792 	vq = sve_vq_from_vl(header.vl);
793 
794 	membuf_write(&to, &header, sizeof(header));
795 
796 	if (target == current)
797 		fpsimd_preserve_current_state();
798 
799 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
800 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
801 
802 	switch ((header.flags & SVE_PT_REGS_MASK)) {
803 	case SVE_PT_REGS_FPSIMD:
804 		return __fpr_get(target, regset, to);
805 
806 	case SVE_PT_REGS_SVE:
807 		start = SVE_PT_SVE_OFFSET;
808 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
809 		membuf_write(&to, target->thread.sve_state, end - start);
810 
811 		start = end;
812 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
813 		membuf_zero(&to, end - start);
814 
815 		/*
816 		 * Copy fpsr, and fpcr which must follow contiguously in
817 		 * struct fpsimd_state:
818 		 */
819 		start = end;
820 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
821 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
822 			     end - start);
823 
824 		start = end;
825 		end = sve_size_from_header(&header);
826 		return membuf_zero(&to, end - start);
827 
828 	default:
829 		return 0;
830 	}
831 }
832 
833 static int sve_get(struct task_struct *target,
834 		   const struct user_regset *regset,
835 		   struct membuf to)
836 {
837 	if (!system_supports_sve())
838 		return -EINVAL;
839 
840 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
841 }
842 
843 static int sve_set_common(struct task_struct *target,
844 			  const struct user_regset *regset,
845 			  unsigned int pos, unsigned int count,
846 			  const void *kbuf, const void __user *ubuf,
847 			  enum vec_type type)
848 {
849 	int ret;
850 	struct user_sve_header header;
851 	unsigned int vq;
852 	unsigned long start, end;
853 
854 	/* Header */
855 	if (count < sizeof(header))
856 		return -EINVAL;
857 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
858 				 0, sizeof(header));
859 	if (ret)
860 		goto out;
861 
862 	/*
863 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
864 	 * vec_set_vector_length(), which will also validate them for us:
865 	 */
866 	ret = vec_set_vector_length(target, type, header.vl,
867 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
868 	if (ret)
869 		goto out;
870 
871 	/* Actual VL set may be less than the user asked for: */
872 	vq = sve_vq_from_vl(task_get_vl(target, type));
873 
874 	/* Enter/exit streaming mode */
875 	if (system_supports_sme()) {
876 		u64 old_svcr = target->thread.svcr;
877 
878 		switch (type) {
879 		case ARM64_VEC_SVE:
880 			target->thread.svcr &= ~SVCR_SM_MASK;
881 			break;
882 		case ARM64_VEC_SME:
883 			target->thread.svcr |= SVCR_SM_MASK;
884 
885 			/*
886 			 * Disable traps and ensure there is SME storage but
887 			 * preserve any currently set values in ZA/ZT.
888 			 */
889 			sme_alloc(target, false);
890 			set_tsk_thread_flag(target, TIF_SME);
891 			break;
892 		default:
893 			WARN_ON_ONCE(1);
894 			ret = -EINVAL;
895 			goto out;
896 		}
897 
898 		/*
899 		 * If we switched then invalidate any existing SVE
900 		 * state and ensure there's storage.
901 		 */
902 		if (target->thread.svcr != old_svcr)
903 			sve_alloc(target, true);
904 	}
905 
906 	/* Registers: FPSIMD-only case */
907 
908 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
909 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
910 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
911 				SVE_PT_FPSIMD_OFFSET);
912 		clear_tsk_thread_flag(target, TIF_SVE);
913 		target->thread.fp_type = FP_STATE_FPSIMD;
914 		goto out;
915 	}
916 
917 	/*
918 	 * Otherwise: no registers or full SVE case.  For backwards
919 	 * compatibility reasons we treat empty flags as SVE registers.
920 	 */
921 
922 	/*
923 	 * If setting a different VL from the requested VL and there is
924 	 * register data, the data layout will be wrong: don't even
925 	 * try to set the registers in this case.
926 	 */
927 	if (count && vq != sve_vq_from_vl(header.vl)) {
928 		ret = -EIO;
929 		goto out;
930 	}
931 
932 	sve_alloc(target, true);
933 	if (!target->thread.sve_state) {
934 		ret = -ENOMEM;
935 		clear_tsk_thread_flag(target, TIF_SVE);
936 		target->thread.fp_type = FP_STATE_FPSIMD;
937 		goto out;
938 	}
939 
940 	/*
941 	 * Ensure target->thread.sve_state is up to date with target's
942 	 * FPSIMD regs, so that a short copyin leaves trailing
943 	 * registers unmodified.  Only enable SVE if we are
944 	 * configuring normal SVE, a system with streaming SVE may not
945 	 * have normal SVE.
946 	 */
947 	fpsimd_sync_to_sve(target);
948 	if (type == ARM64_VEC_SVE)
949 		set_tsk_thread_flag(target, TIF_SVE);
950 	target->thread.fp_type = FP_STATE_SVE;
951 
952 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
953 	start = SVE_PT_SVE_OFFSET;
954 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
955 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
956 				 target->thread.sve_state,
957 				 start, end);
958 	if (ret)
959 		goto out;
960 
961 	start = end;
962 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
963 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
964 
965 	/*
966 	 * Copy fpsr, and fpcr which must follow contiguously in
967 	 * struct fpsimd_state:
968 	 */
969 	start = end;
970 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
971 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
972 				 &target->thread.uw.fpsimd_state.fpsr,
973 				 start, end);
974 
975 out:
976 	fpsimd_flush_task_state(target);
977 	return ret;
978 }
979 
980 static int sve_set(struct task_struct *target,
981 		   const struct user_regset *regset,
982 		   unsigned int pos, unsigned int count,
983 		   const void *kbuf, const void __user *ubuf)
984 {
985 	if (!system_supports_sve())
986 		return -EINVAL;
987 
988 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
989 			      ARM64_VEC_SVE);
990 }
991 
992 #endif /* CONFIG_ARM64_SVE */
993 
994 #ifdef CONFIG_ARM64_SME
995 
996 static int ssve_get(struct task_struct *target,
997 		   const struct user_regset *regset,
998 		   struct membuf to)
999 {
1000 	if (!system_supports_sme())
1001 		return -EINVAL;
1002 
1003 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
1004 }
1005 
1006 static int ssve_set(struct task_struct *target,
1007 		    const struct user_regset *regset,
1008 		    unsigned int pos, unsigned int count,
1009 		    const void *kbuf, const void __user *ubuf)
1010 {
1011 	if (!system_supports_sme())
1012 		return -EINVAL;
1013 
1014 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1015 			      ARM64_VEC_SME);
1016 }
1017 
1018 static int za_get(struct task_struct *target,
1019 		  const struct user_regset *regset,
1020 		  struct membuf to)
1021 {
1022 	struct user_za_header header;
1023 	unsigned int vq;
1024 	unsigned long start, end;
1025 
1026 	if (!system_supports_sme())
1027 		return -EINVAL;
1028 
1029 	/* Header */
1030 	memset(&header, 0, sizeof(header));
1031 
1032 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1033 		header.flags |= ZA_PT_VL_INHERIT;
1034 
1035 	header.vl = task_get_sme_vl(target);
1036 	vq = sve_vq_from_vl(header.vl);
1037 	header.max_vl = sme_max_vl();
1038 	header.max_size = ZA_PT_SIZE(vq);
1039 
1040 	/* If ZA is not active there is only the header */
1041 	if (thread_za_enabled(&target->thread))
1042 		header.size = ZA_PT_SIZE(vq);
1043 	else
1044 		header.size = ZA_PT_ZA_OFFSET;
1045 
1046 	membuf_write(&to, &header, sizeof(header));
1047 
1048 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1049 	end = ZA_PT_ZA_OFFSET;
1050 
1051 	if (target == current)
1052 		fpsimd_preserve_current_state();
1053 
1054 	/* Any register data to include? */
1055 	if (thread_za_enabled(&target->thread)) {
1056 		start = end;
1057 		end = ZA_PT_SIZE(vq);
1058 		membuf_write(&to, target->thread.sme_state, end - start);
1059 	}
1060 
1061 	/* Zero any trailing padding */
1062 	start = end;
1063 	end = ALIGN(header.size, SVE_VQ_BYTES);
1064 	return membuf_zero(&to, end - start);
1065 }
1066 
1067 static int za_set(struct task_struct *target,
1068 		  const struct user_regset *regset,
1069 		  unsigned int pos, unsigned int count,
1070 		  const void *kbuf, const void __user *ubuf)
1071 {
1072 	int ret;
1073 	struct user_za_header header;
1074 	unsigned int vq;
1075 	unsigned long start, end;
1076 
1077 	if (!system_supports_sme())
1078 		return -EINVAL;
1079 
1080 	/* Header */
1081 	if (count < sizeof(header))
1082 		return -EINVAL;
1083 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1084 				 0, sizeof(header));
1085 	if (ret)
1086 		goto out;
1087 
1088 	/*
1089 	 * All current ZA_PT_* flags are consumed by
1090 	 * vec_set_vector_length(), which will also validate them for
1091 	 * us:
1092 	 */
1093 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1094 		((unsigned long)header.flags) << 16);
1095 	if (ret)
1096 		goto out;
1097 
1098 	/* Actual VL set may be less than the user asked for: */
1099 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1100 
1101 	/* Ensure there is some SVE storage for streaming mode */
1102 	if (!target->thread.sve_state) {
1103 		sve_alloc(target, false);
1104 		if (!target->thread.sve_state) {
1105 			ret = -ENOMEM;
1106 			goto out;
1107 		}
1108 	}
1109 
1110 	/* Allocate/reinit ZA storage */
1111 	sme_alloc(target, true);
1112 	if (!target->thread.sme_state) {
1113 		ret = -ENOMEM;
1114 		goto out;
1115 	}
1116 
1117 	/* If there is no data then disable ZA */
1118 	if (!count) {
1119 		target->thread.svcr &= ~SVCR_ZA_MASK;
1120 		goto out;
1121 	}
1122 
1123 	/*
1124 	 * If setting a different VL from the requested VL and there is
1125 	 * register data, the data layout will be wrong: don't even
1126 	 * try to set the registers in this case.
1127 	 */
1128 	if (vq != sve_vq_from_vl(header.vl)) {
1129 		ret = -EIO;
1130 		goto out;
1131 	}
1132 
1133 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1134 	start = ZA_PT_ZA_OFFSET;
1135 	end = ZA_PT_SIZE(vq);
1136 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1137 				 target->thread.sme_state,
1138 				 start, end);
1139 	if (ret)
1140 		goto out;
1141 
1142 	/* Mark ZA as active and let userspace use it */
1143 	set_tsk_thread_flag(target, TIF_SME);
1144 	target->thread.svcr |= SVCR_ZA_MASK;
1145 
1146 out:
1147 	fpsimd_flush_task_state(target);
1148 	return ret;
1149 }
1150 
1151 static int zt_get(struct task_struct *target,
1152 		  const struct user_regset *regset,
1153 		  struct membuf to)
1154 {
1155 	if (!system_supports_sme2())
1156 		return -EINVAL;
1157 
1158 	/*
1159 	 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1160 	 * enabled so report the current register value as zero.
1161 	 */
1162 	if (thread_za_enabled(&target->thread))
1163 		membuf_write(&to, thread_zt_state(&target->thread),
1164 			     ZT_SIG_REG_BYTES);
1165 	else
1166 		membuf_zero(&to, ZT_SIG_REG_BYTES);
1167 
1168 	return 0;
1169 }
1170 
1171 static int zt_set(struct task_struct *target,
1172 		  const struct user_regset *regset,
1173 		  unsigned int pos, unsigned int count,
1174 		  const void *kbuf, const void __user *ubuf)
1175 {
1176 	int ret;
1177 
1178 	if (!system_supports_sme2())
1179 		return -EINVAL;
1180 
1181 	/* Ensure SVE storage in case this is first use of SME */
1182 	sve_alloc(target, false);
1183 	if (!target->thread.sve_state)
1184 		return -ENOMEM;
1185 
1186 	if (!thread_za_enabled(&target->thread)) {
1187 		sme_alloc(target, true);
1188 		if (!target->thread.sme_state)
1189 			return -ENOMEM;
1190 	}
1191 
1192 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1193 				 thread_zt_state(&target->thread),
1194 				 0, ZT_SIG_REG_BYTES);
1195 	if (ret == 0) {
1196 		target->thread.svcr |= SVCR_ZA_MASK;
1197 		set_tsk_thread_flag(target, TIF_SME);
1198 	}
1199 
1200 	fpsimd_flush_task_state(target);
1201 
1202 	return ret;
1203 }
1204 
1205 #endif /* CONFIG_ARM64_SME */
1206 
1207 #ifdef CONFIG_ARM64_PTR_AUTH
1208 static int pac_mask_get(struct task_struct *target,
1209 			const struct user_regset *regset,
1210 			struct membuf to)
1211 {
1212 	/*
1213 	 * The PAC bits can differ across data and instruction pointers
1214 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1215 	 * we expose separate masks.
1216 	 */
1217 	unsigned long mask = ptrauth_user_pac_mask();
1218 	struct user_pac_mask uregs = {
1219 		.data_mask = mask,
1220 		.insn_mask = mask,
1221 	};
1222 
1223 	if (!system_supports_address_auth())
1224 		return -EINVAL;
1225 
1226 	return membuf_write(&to, &uregs, sizeof(uregs));
1227 }
1228 
1229 static int pac_enabled_keys_get(struct task_struct *target,
1230 				const struct user_regset *regset,
1231 				struct membuf to)
1232 {
1233 	long enabled_keys = ptrauth_get_enabled_keys(target);
1234 
1235 	if (IS_ERR_VALUE(enabled_keys))
1236 		return enabled_keys;
1237 
1238 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1239 }
1240 
1241 static int pac_enabled_keys_set(struct task_struct *target,
1242 				const struct user_regset *regset,
1243 				unsigned int pos, unsigned int count,
1244 				const void *kbuf, const void __user *ubuf)
1245 {
1246 	int ret;
1247 	long enabled_keys = ptrauth_get_enabled_keys(target);
1248 
1249 	if (IS_ERR_VALUE(enabled_keys))
1250 		return enabled_keys;
1251 
1252 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1253 				 sizeof(long));
1254 	if (ret)
1255 		return ret;
1256 
1257 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1258 					enabled_keys);
1259 }
1260 
1261 #ifdef CONFIG_CHECKPOINT_RESTORE
1262 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1263 {
1264 	return (__uint128_t)key->hi << 64 | key->lo;
1265 }
1266 
1267 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1268 {
1269 	struct ptrauth_key key = {
1270 		.lo = (unsigned long)ukey,
1271 		.hi = (unsigned long)(ukey >> 64),
1272 	};
1273 
1274 	return key;
1275 }
1276 
1277 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1278 				     const struct ptrauth_keys_user *keys)
1279 {
1280 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1281 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1282 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1283 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1284 }
1285 
1286 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1287 				       const struct user_pac_address_keys *ukeys)
1288 {
1289 	keys->apia = pac_key_from_user(ukeys->apiakey);
1290 	keys->apib = pac_key_from_user(ukeys->apibkey);
1291 	keys->apda = pac_key_from_user(ukeys->apdakey);
1292 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1293 }
1294 
1295 static int pac_address_keys_get(struct task_struct *target,
1296 				const struct user_regset *regset,
1297 				struct membuf to)
1298 {
1299 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1300 	struct user_pac_address_keys user_keys;
1301 
1302 	if (!system_supports_address_auth())
1303 		return -EINVAL;
1304 
1305 	pac_address_keys_to_user(&user_keys, keys);
1306 
1307 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1308 }
1309 
1310 static int pac_address_keys_set(struct task_struct *target,
1311 				const struct user_regset *regset,
1312 				unsigned int pos, unsigned int count,
1313 				const void *kbuf, const void __user *ubuf)
1314 {
1315 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1316 	struct user_pac_address_keys user_keys;
1317 	int ret;
1318 
1319 	if (!system_supports_address_auth())
1320 		return -EINVAL;
1321 
1322 	pac_address_keys_to_user(&user_keys, keys);
1323 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1324 				 &user_keys, 0, -1);
1325 	if (ret)
1326 		return ret;
1327 	pac_address_keys_from_user(keys, &user_keys);
1328 
1329 	return 0;
1330 }
1331 
1332 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1333 				     const struct ptrauth_keys_user *keys)
1334 {
1335 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1336 }
1337 
1338 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1339 				       const struct user_pac_generic_keys *ukeys)
1340 {
1341 	keys->apga = pac_key_from_user(ukeys->apgakey);
1342 }
1343 
1344 static int pac_generic_keys_get(struct task_struct *target,
1345 				const struct user_regset *regset,
1346 				struct membuf to)
1347 {
1348 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1349 	struct user_pac_generic_keys user_keys;
1350 
1351 	if (!system_supports_generic_auth())
1352 		return -EINVAL;
1353 
1354 	pac_generic_keys_to_user(&user_keys, keys);
1355 
1356 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1357 }
1358 
1359 static int pac_generic_keys_set(struct task_struct *target,
1360 				const struct user_regset *regset,
1361 				unsigned int pos, unsigned int count,
1362 				const void *kbuf, const void __user *ubuf)
1363 {
1364 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1365 	struct user_pac_generic_keys user_keys;
1366 	int ret;
1367 
1368 	if (!system_supports_generic_auth())
1369 		return -EINVAL;
1370 
1371 	pac_generic_keys_to_user(&user_keys, keys);
1372 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1373 				 &user_keys, 0, -1);
1374 	if (ret)
1375 		return ret;
1376 	pac_generic_keys_from_user(keys, &user_keys);
1377 
1378 	return 0;
1379 }
1380 #endif /* CONFIG_CHECKPOINT_RESTORE */
1381 #endif /* CONFIG_ARM64_PTR_AUTH */
1382 
1383 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1384 static int tagged_addr_ctrl_get(struct task_struct *target,
1385 				const struct user_regset *regset,
1386 				struct membuf to)
1387 {
1388 	long ctrl = get_tagged_addr_ctrl(target);
1389 
1390 	if (IS_ERR_VALUE(ctrl))
1391 		return ctrl;
1392 
1393 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1394 }
1395 
1396 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1397 				user_regset *regset, unsigned int pos,
1398 				unsigned int count, const void *kbuf, const
1399 				void __user *ubuf)
1400 {
1401 	int ret;
1402 	long ctrl;
1403 
1404 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1405 	if (ret)
1406 		return ret;
1407 
1408 	return set_tagged_addr_ctrl(target, ctrl);
1409 }
1410 #endif
1411 
1412 enum aarch64_regset {
1413 	REGSET_GPR,
1414 	REGSET_FPR,
1415 	REGSET_TLS,
1416 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1417 	REGSET_HW_BREAK,
1418 	REGSET_HW_WATCH,
1419 #endif
1420 	REGSET_SYSTEM_CALL,
1421 #ifdef CONFIG_ARM64_SVE
1422 	REGSET_SVE,
1423 #endif
1424 #ifdef CONFIG_ARM64_SME
1425 	REGSET_SSVE,
1426 	REGSET_ZA,
1427 	REGSET_ZT,
1428 #endif
1429 #ifdef CONFIG_ARM64_PTR_AUTH
1430 	REGSET_PAC_MASK,
1431 	REGSET_PAC_ENABLED_KEYS,
1432 #ifdef CONFIG_CHECKPOINT_RESTORE
1433 	REGSET_PACA_KEYS,
1434 	REGSET_PACG_KEYS,
1435 #endif
1436 #endif
1437 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1438 	REGSET_TAGGED_ADDR_CTRL,
1439 #endif
1440 };
1441 
1442 static const struct user_regset aarch64_regsets[] = {
1443 	[REGSET_GPR] = {
1444 		.core_note_type = NT_PRSTATUS,
1445 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1446 		.size = sizeof(u64),
1447 		.align = sizeof(u64),
1448 		.regset_get = gpr_get,
1449 		.set = gpr_set
1450 	},
1451 	[REGSET_FPR] = {
1452 		.core_note_type = NT_PRFPREG,
1453 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1454 		/*
1455 		 * We pretend we have 32-bit registers because the fpsr and
1456 		 * fpcr are 32-bits wide.
1457 		 */
1458 		.size = sizeof(u32),
1459 		.align = sizeof(u32),
1460 		.active = fpr_active,
1461 		.regset_get = fpr_get,
1462 		.set = fpr_set
1463 	},
1464 	[REGSET_TLS] = {
1465 		.core_note_type = NT_ARM_TLS,
1466 		.n = 2,
1467 		.size = sizeof(void *),
1468 		.align = sizeof(void *),
1469 		.regset_get = tls_get,
1470 		.set = tls_set,
1471 	},
1472 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1473 	[REGSET_HW_BREAK] = {
1474 		.core_note_type = NT_ARM_HW_BREAK,
1475 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1476 		.size = sizeof(u32),
1477 		.align = sizeof(u32),
1478 		.regset_get = hw_break_get,
1479 		.set = hw_break_set,
1480 	},
1481 	[REGSET_HW_WATCH] = {
1482 		.core_note_type = NT_ARM_HW_WATCH,
1483 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1484 		.size = sizeof(u32),
1485 		.align = sizeof(u32),
1486 		.regset_get = hw_break_get,
1487 		.set = hw_break_set,
1488 	},
1489 #endif
1490 	[REGSET_SYSTEM_CALL] = {
1491 		.core_note_type = NT_ARM_SYSTEM_CALL,
1492 		.n = 1,
1493 		.size = sizeof(int),
1494 		.align = sizeof(int),
1495 		.regset_get = system_call_get,
1496 		.set = system_call_set,
1497 	},
1498 #ifdef CONFIG_ARM64_SVE
1499 	[REGSET_SVE] = { /* Scalable Vector Extension */
1500 		.core_note_type = NT_ARM_SVE,
1501 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1502 				  SVE_VQ_BYTES),
1503 		.size = SVE_VQ_BYTES,
1504 		.align = SVE_VQ_BYTES,
1505 		.regset_get = sve_get,
1506 		.set = sve_set,
1507 	},
1508 #endif
1509 #ifdef CONFIG_ARM64_SME
1510 	[REGSET_SSVE] = { /* Streaming mode SVE */
1511 		.core_note_type = NT_ARM_SSVE,
1512 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1513 				  SVE_VQ_BYTES),
1514 		.size = SVE_VQ_BYTES,
1515 		.align = SVE_VQ_BYTES,
1516 		.regset_get = ssve_get,
1517 		.set = ssve_set,
1518 	},
1519 	[REGSET_ZA] = { /* SME ZA */
1520 		.core_note_type = NT_ARM_ZA,
1521 		/*
1522 		 * ZA is a single register but it's variably sized and
1523 		 * the ptrace core requires that the size of any data
1524 		 * be an exact multiple of the configured register
1525 		 * size so report as though we had SVE_VQ_BYTES
1526 		 * registers. These values aren't exposed to
1527 		 * userspace.
1528 		 */
1529 		.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1530 		.size = SVE_VQ_BYTES,
1531 		.align = SVE_VQ_BYTES,
1532 		.regset_get = za_get,
1533 		.set = za_set,
1534 	},
1535 	[REGSET_ZT] = { /* SME ZT */
1536 		.core_note_type = NT_ARM_ZT,
1537 		.n = 1,
1538 		.size = ZT_SIG_REG_BYTES,
1539 		.align = sizeof(u64),
1540 		.regset_get = zt_get,
1541 		.set = zt_set,
1542 	},
1543 #endif
1544 #ifdef CONFIG_ARM64_PTR_AUTH
1545 	[REGSET_PAC_MASK] = {
1546 		.core_note_type = NT_ARM_PAC_MASK,
1547 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1548 		.size = sizeof(u64),
1549 		.align = sizeof(u64),
1550 		.regset_get = pac_mask_get,
1551 		/* this cannot be set dynamically */
1552 	},
1553 	[REGSET_PAC_ENABLED_KEYS] = {
1554 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1555 		.n = 1,
1556 		.size = sizeof(long),
1557 		.align = sizeof(long),
1558 		.regset_get = pac_enabled_keys_get,
1559 		.set = pac_enabled_keys_set,
1560 	},
1561 #ifdef CONFIG_CHECKPOINT_RESTORE
1562 	[REGSET_PACA_KEYS] = {
1563 		.core_note_type = NT_ARM_PACA_KEYS,
1564 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1565 		.size = sizeof(__uint128_t),
1566 		.align = sizeof(__uint128_t),
1567 		.regset_get = pac_address_keys_get,
1568 		.set = pac_address_keys_set,
1569 	},
1570 	[REGSET_PACG_KEYS] = {
1571 		.core_note_type = NT_ARM_PACG_KEYS,
1572 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1573 		.size = sizeof(__uint128_t),
1574 		.align = sizeof(__uint128_t),
1575 		.regset_get = pac_generic_keys_get,
1576 		.set = pac_generic_keys_set,
1577 	},
1578 #endif
1579 #endif
1580 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1581 	[REGSET_TAGGED_ADDR_CTRL] = {
1582 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1583 		.n = 1,
1584 		.size = sizeof(long),
1585 		.align = sizeof(long),
1586 		.regset_get = tagged_addr_ctrl_get,
1587 		.set = tagged_addr_ctrl_set,
1588 	},
1589 #endif
1590 };
1591 
1592 static const struct user_regset_view user_aarch64_view = {
1593 	.name = "aarch64", .e_machine = EM_AARCH64,
1594 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1595 };
1596 
1597 #ifdef CONFIG_COMPAT
1598 enum compat_regset {
1599 	REGSET_COMPAT_GPR,
1600 	REGSET_COMPAT_VFP,
1601 };
1602 
1603 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1604 {
1605 	struct pt_regs *regs = task_pt_regs(task);
1606 
1607 	switch (idx) {
1608 	case 15:
1609 		return regs->pc;
1610 	case 16:
1611 		return pstate_to_compat_psr(regs->pstate);
1612 	case 17:
1613 		return regs->orig_x0;
1614 	default:
1615 		return regs->regs[idx];
1616 	}
1617 }
1618 
1619 static int compat_gpr_get(struct task_struct *target,
1620 			  const struct user_regset *regset,
1621 			  struct membuf to)
1622 {
1623 	int i = 0;
1624 
1625 	while (to.left)
1626 		membuf_store(&to, compat_get_user_reg(target, i++));
1627 	return 0;
1628 }
1629 
1630 static int compat_gpr_set(struct task_struct *target,
1631 			  const struct user_regset *regset,
1632 			  unsigned int pos, unsigned int count,
1633 			  const void *kbuf, const void __user *ubuf)
1634 {
1635 	struct pt_regs newregs;
1636 	int ret = 0;
1637 	unsigned int i, start, num_regs;
1638 
1639 	/* Calculate the number of AArch32 registers contained in count */
1640 	num_regs = count / regset->size;
1641 
1642 	/* Convert pos into an register number */
1643 	start = pos / regset->size;
1644 
1645 	if (start + num_regs > regset->n)
1646 		return -EIO;
1647 
1648 	newregs = *task_pt_regs(target);
1649 
1650 	for (i = 0; i < num_regs; ++i) {
1651 		unsigned int idx = start + i;
1652 		compat_ulong_t reg;
1653 
1654 		if (kbuf) {
1655 			memcpy(&reg, kbuf, sizeof(reg));
1656 			kbuf += sizeof(reg);
1657 		} else {
1658 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1659 			if (ret) {
1660 				ret = -EFAULT;
1661 				break;
1662 			}
1663 
1664 			ubuf += sizeof(reg);
1665 		}
1666 
1667 		switch (idx) {
1668 		case 15:
1669 			newregs.pc = reg;
1670 			break;
1671 		case 16:
1672 			reg = compat_psr_to_pstate(reg);
1673 			newregs.pstate = reg;
1674 			break;
1675 		case 17:
1676 			newregs.orig_x0 = reg;
1677 			break;
1678 		default:
1679 			newregs.regs[idx] = reg;
1680 		}
1681 
1682 	}
1683 
1684 	if (valid_user_regs(&newregs.user_regs, target))
1685 		*task_pt_regs(target) = newregs;
1686 	else
1687 		ret = -EINVAL;
1688 
1689 	return ret;
1690 }
1691 
1692 static int compat_vfp_get(struct task_struct *target,
1693 			  const struct user_regset *regset,
1694 			  struct membuf to)
1695 {
1696 	struct user_fpsimd_state *uregs;
1697 	compat_ulong_t fpscr;
1698 
1699 	if (!system_supports_fpsimd())
1700 		return -EINVAL;
1701 
1702 	uregs = &target->thread.uw.fpsimd_state;
1703 
1704 	if (target == current)
1705 		fpsimd_preserve_current_state();
1706 
1707 	/*
1708 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1709 	 * nicely together for us. We just need to create the fpscr separately.
1710 	 */
1711 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1712 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1713 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1714 	return membuf_store(&to, fpscr);
1715 }
1716 
1717 static int compat_vfp_set(struct task_struct *target,
1718 			  const struct user_regset *regset,
1719 			  unsigned int pos, unsigned int count,
1720 			  const void *kbuf, const void __user *ubuf)
1721 {
1722 	struct user_fpsimd_state *uregs;
1723 	compat_ulong_t fpscr;
1724 	int ret, vregs_end_pos;
1725 
1726 	if (!system_supports_fpsimd())
1727 		return -EINVAL;
1728 
1729 	uregs = &target->thread.uw.fpsimd_state;
1730 
1731 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1732 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1733 				 vregs_end_pos);
1734 
1735 	if (count && !ret) {
1736 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1737 					 vregs_end_pos, VFP_STATE_SIZE);
1738 		if (!ret) {
1739 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1740 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1741 		}
1742 	}
1743 
1744 	fpsimd_flush_task_state(target);
1745 	return ret;
1746 }
1747 
1748 static int compat_tls_get(struct task_struct *target,
1749 			  const struct user_regset *regset,
1750 			  struct membuf to)
1751 {
1752 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1753 }
1754 
1755 static int compat_tls_set(struct task_struct *target,
1756 			  const struct user_regset *regset, unsigned int pos,
1757 			  unsigned int count, const void *kbuf,
1758 			  const void __user *ubuf)
1759 {
1760 	int ret;
1761 	compat_ulong_t tls = target->thread.uw.tp_value;
1762 
1763 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1764 	if (ret)
1765 		return ret;
1766 
1767 	target->thread.uw.tp_value = tls;
1768 	return ret;
1769 }
1770 
1771 static const struct user_regset aarch32_regsets[] = {
1772 	[REGSET_COMPAT_GPR] = {
1773 		.core_note_type = NT_PRSTATUS,
1774 		.n = COMPAT_ELF_NGREG,
1775 		.size = sizeof(compat_elf_greg_t),
1776 		.align = sizeof(compat_elf_greg_t),
1777 		.regset_get = compat_gpr_get,
1778 		.set = compat_gpr_set
1779 	},
1780 	[REGSET_COMPAT_VFP] = {
1781 		.core_note_type = NT_ARM_VFP,
1782 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1783 		.size = sizeof(compat_ulong_t),
1784 		.align = sizeof(compat_ulong_t),
1785 		.active = fpr_active,
1786 		.regset_get = compat_vfp_get,
1787 		.set = compat_vfp_set
1788 	},
1789 };
1790 
1791 static const struct user_regset_view user_aarch32_view = {
1792 	.name = "aarch32", .e_machine = EM_ARM,
1793 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1794 };
1795 
1796 static const struct user_regset aarch32_ptrace_regsets[] = {
1797 	[REGSET_GPR] = {
1798 		.core_note_type = NT_PRSTATUS,
1799 		.n = COMPAT_ELF_NGREG,
1800 		.size = sizeof(compat_elf_greg_t),
1801 		.align = sizeof(compat_elf_greg_t),
1802 		.regset_get = compat_gpr_get,
1803 		.set = compat_gpr_set
1804 	},
1805 	[REGSET_FPR] = {
1806 		.core_note_type = NT_ARM_VFP,
1807 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1808 		.size = sizeof(compat_ulong_t),
1809 		.align = sizeof(compat_ulong_t),
1810 		.regset_get = compat_vfp_get,
1811 		.set = compat_vfp_set
1812 	},
1813 	[REGSET_TLS] = {
1814 		.core_note_type = NT_ARM_TLS,
1815 		.n = 1,
1816 		.size = sizeof(compat_ulong_t),
1817 		.align = sizeof(compat_ulong_t),
1818 		.regset_get = compat_tls_get,
1819 		.set = compat_tls_set,
1820 	},
1821 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1822 	[REGSET_HW_BREAK] = {
1823 		.core_note_type = NT_ARM_HW_BREAK,
1824 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1825 		.size = sizeof(u32),
1826 		.align = sizeof(u32),
1827 		.regset_get = hw_break_get,
1828 		.set = hw_break_set,
1829 	},
1830 	[REGSET_HW_WATCH] = {
1831 		.core_note_type = NT_ARM_HW_WATCH,
1832 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1833 		.size = sizeof(u32),
1834 		.align = sizeof(u32),
1835 		.regset_get = hw_break_get,
1836 		.set = hw_break_set,
1837 	},
1838 #endif
1839 	[REGSET_SYSTEM_CALL] = {
1840 		.core_note_type = NT_ARM_SYSTEM_CALL,
1841 		.n = 1,
1842 		.size = sizeof(int),
1843 		.align = sizeof(int),
1844 		.regset_get = system_call_get,
1845 		.set = system_call_set,
1846 	},
1847 };
1848 
1849 static const struct user_regset_view user_aarch32_ptrace_view = {
1850 	.name = "aarch32", .e_machine = EM_ARM,
1851 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1852 };
1853 
1854 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1855 				   compat_ulong_t __user *ret)
1856 {
1857 	compat_ulong_t tmp;
1858 
1859 	if (off & 3)
1860 		return -EIO;
1861 
1862 	if (off == COMPAT_PT_TEXT_ADDR)
1863 		tmp = tsk->mm->start_code;
1864 	else if (off == COMPAT_PT_DATA_ADDR)
1865 		tmp = tsk->mm->start_data;
1866 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1867 		tmp = tsk->mm->end_code;
1868 	else if (off < sizeof(compat_elf_gregset_t))
1869 		tmp = compat_get_user_reg(tsk, off >> 2);
1870 	else if (off >= COMPAT_USER_SZ)
1871 		return -EIO;
1872 	else
1873 		tmp = 0;
1874 
1875 	return put_user(tmp, ret);
1876 }
1877 
1878 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1879 				    compat_ulong_t val)
1880 {
1881 	struct pt_regs newregs = *task_pt_regs(tsk);
1882 	unsigned int idx = off / 4;
1883 
1884 	if (off & 3 || off >= COMPAT_USER_SZ)
1885 		return -EIO;
1886 
1887 	if (off >= sizeof(compat_elf_gregset_t))
1888 		return 0;
1889 
1890 	switch (idx) {
1891 	case 15:
1892 		newregs.pc = val;
1893 		break;
1894 	case 16:
1895 		newregs.pstate = compat_psr_to_pstate(val);
1896 		break;
1897 	case 17:
1898 		newregs.orig_x0 = val;
1899 		break;
1900 	default:
1901 		newregs.regs[idx] = val;
1902 	}
1903 
1904 	if (!valid_user_regs(&newregs.user_regs, tsk))
1905 		return -EINVAL;
1906 
1907 	*task_pt_regs(tsk) = newregs;
1908 	return 0;
1909 }
1910 
1911 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1912 
1913 /*
1914  * Convert a virtual register number into an index for a thread_info
1915  * breakpoint array. Breakpoints are identified using positive numbers
1916  * whilst watchpoints are negative. The registers are laid out as pairs
1917  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1918  * Register 0 is reserved for describing resource information.
1919  */
1920 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1921 {
1922 	return (abs(num) - 1) >> 1;
1923 }
1924 
1925 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1926 {
1927 	u8 num_brps, num_wrps, debug_arch, wp_len;
1928 	u32 reg = 0;
1929 
1930 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1931 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1932 
1933 	debug_arch	= debug_monitors_arch();
1934 	wp_len		= 8;
1935 	reg		|= debug_arch;
1936 	reg		<<= 8;
1937 	reg		|= wp_len;
1938 	reg		<<= 8;
1939 	reg		|= num_wrps;
1940 	reg		<<= 8;
1941 	reg		|= num_brps;
1942 
1943 	*kdata = reg;
1944 	return 0;
1945 }
1946 
1947 static int compat_ptrace_hbp_get(unsigned int note_type,
1948 				 struct task_struct *tsk,
1949 				 compat_long_t num,
1950 				 u32 *kdata)
1951 {
1952 	u64 addr = 0;
1953 	u32 ctrl = 0;
1954 
1955 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1956 
1957 	if (num & 1) {
1958 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1959 		*kdata = (u32)addr;
1960 	} else {
1961 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1962 		*kdata = ctrl;
1963 	}
1964 
1965 	return err;
1966 }
1967 
1968 static int compat_ptrace_hbp_set(unsigned int note_type,
1969 				 struct task_struct *tsk,
1970 				 compat_long_t num,
1971 				 u32 *kdata)
1972 {
1973 	u64 addr;
1974 	u32 ctrl;
1975 
1976 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1977 
1978 	if (num & 1) {
1979 		addr = *kdata;
1980 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1981 	} else {
1982 		ctrl = *kdata;
1983 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1984 	}
1985 
1986 	return err;
1987 }
1988 
1989 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1990 				    compat_ulong_t __user *data)
1991 {
1992 	int ret;
1993 	u32 kdata;
1994 
1995 	/* Watchpoint */
1996 	if (num < 0) {
1997 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1998 	/* Resource info */
1999 	} else if (num == 0) {
2000 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
2001 	/* Breakpoint */
2002 	} else {
2003 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2004 	}
2005 
2006 	if (!ret)
2007 		ret = put_user(kdata, data);
2008 
2009 	return ret;
2010 }
2011 
2012 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2013 				    compat_ulong_t __user *data)
2014 {
2015 	int ret;
2016 	u32 kdata = 0;
2017 
2018 	if (num == 0)
2019 		return 0;
2020 
2021 	ret = get_user(kdata, data);
2022 	if (ret)
2023 		return ret;
2024 
2025 	if (num < 0)
2026 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2027 	else
2028 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2029 
2030 	return ret;
2031 }
2032 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
2033 
2034 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2035 			compat_ulong_t caddr, compat_ulong_t cdata)
2036 {
2037 	unsigned long addr = caddr;
2038 	unsigned long data = cdata;
2039 	void __user *datap = compat_ptr(data);
2040 	int ret;
2041 
2042 	switch (request) {
2043 		case PTRACE_PEEKUSR:
2044 			ret = compat_ptrace_read_user(child, addr, datap);
2045 			break;
2046 
2047 		case PTRACE_POKEUSR:
2048 			ret = compat_ptrace_write_user(child, addr, data);
2049 			break;
2050 
2051 		case COMPAT_PTRACE_GETREGS:
2052 			ret = copy_regset_to_user(child,
2053 						  &user_aarch32_view,
2054 						  REGSET_COMPAT_GPR,
2055 						  0, sizeof(compat_elf_gregset_t),
2056 						  datap);
2057 			break;
2058 
2059 		case COMPAT_PTRACE_SETREGS:
2060 			ret = copy_regset_from_user(child,
2061 						    &user_aarch32_view,
2062 						    REGSET_COMPAT_GPR,
2063 						    0, sizeof(compat_elf_gregset_t),
2064 						    datap);
2065 			break;
2066 
2067 		case COMPAT_PTRACE_GET_THREAD_AREA:
2068 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2069 				       (compat_ulong_t __user *)datap);
2070 			break;
2071 
2072 		case COMPAT_PTRACE_SET_SYSCALL:
2073 			task_pt_regs(child)->syscallno = data;
2074 			ret = 0;
2075 			break;
2076 
2077 		case COMPAT_PTRACE_GETVFPREGS:
2078 			ret = copy_regset_to_user(child,
2079 						  &user_aarch32_view,
2080 						  REGSET_COMPAT_VFP,
2081 						  0, VFP_STATE_SIZE,
2082 						  datap);
2083 			break;
2084 
2085 		case COMPAT_PTRACE_SETVFPREGS:
2086 			ret = copy_regset_from_user(child,
2087 						    &user_aarch32_view,
2088 						    REGSET_COMPAT_VFP,
2089 						    0, VFP_STATE_SIZE,
2090 						    datap);
2091 			break;
2092 
2093 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2094 		case COMPAT_PTRACE_GETHBPREGS:
2095 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2096 			break;
2097 
2098 		case COMPAT_PTRACE_SETHBPREGS:
2099 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2100 			break;
2101 #endif
2102 
2103 		default:
2104 			ret = compat_ptrace_request(child, request, addr,
2105 						    data);
2106 			break;
2107 	}
2108 
2109 	return ret;
2110 }
2111 #endif /* CONFIG_COMPAT */
2112 
2113 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2114 {
2115 #ifdef CONFIG_COMPAT
2116 	/*
2117 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2118 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2119 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2120 	 * access to the TLS register.
2121 	 */
2122 	if (is_compat_task())
2123 		return &user_aarch32_view;
2124 	else if (is_compat_thread(task_thread_info(task)))
2125 		return &user_aarch32_ptrace_view;
2126 #endif
2127 	return &user_aarch64_view;
2128 }
2129 
2130 long arch_ptrace(struct task_struct *child, long request,
2131 		 unsigned long addr, unsigned long data)
2132 {
2133 	switch (request) {
2134 	case PTRACE_PEEKMTETAGS:
2135 	case PTRACE_POKEMTETAGS:
2136 		return mte_ptrace_copy_tags(child, request, addr, data);
2137 	}
2138 
2139 	return ptrace_request(child, request, addr, data);
2140 }
2141 
2142 enum ptrace_syscall_dir {
2143 	PTRACE_SYSCALL_ENTER = 0,
2144 	PTRACE_SYSCALL_EXIT,
2145 };
2146 
2147 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2148 {
2149 	int regno;
2150 	unsigned long saved_reg;
2151 
2152 	/*
2153 	 * We have some ABI weirdness here in the way that we handle syscall
2154 	 * exit stops because we indicate whether or not the stop has been
2155 	 * signalled from syscall entry or syscall exit by clobbering a general
2156 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2157 	 * and restoring its old value after the stop. This means that:
2158 	 *
2159 	 * - Any writes by the tracer to this register during the stop are
2160 	 *   ignored/discarded.
2161 	 *
2162 	 * - The actual value of the register is not available during the stop,
2163 	 *   so the tracer cannot save it and restore it later.
2164 	 *
2165 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2166 	 *   (the latter do not nobble any registers).
2167 	 */
2168 	regno = (is_compat_task() ? 12 : 7);
2169 	saved_reg = regs->regs[regno];
2170 	regs->regs[regno] = dir;
2171 
2172 	if (dir == PTRACE_SYSCALL_ENTER) {
2173 		if (ptrace_report_syscall_entry(regs))
2174 			forget_syscall(regs);
2175 		regs->regs[regno] = saved_reg;
2176 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2177 		ptrace_report_syscall_exit(regs, 0);
2178 		regs->regs[regno] = saved_reg;
2179 	} else {
2180 		regs->regs[regno] = saved_reg;
2181 
2182 		/*
2183 		 * Signal a pseudo-step exception since we are stepping but
2184 		 * tracer modifications to the registers may have rewound the
2185 		 * state machine.
2186 		 */
2187 		ptrace_report_syscall_exit(regs, 1);
2188 	}
2189 }
2190 
2191 int syscall_trace_enter(struct pt_regs *regs)
2192 {
2193 	unsigned long flags = read_thread_flags();
2194 
2195 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2196 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
2197 		if (flags & _TIF_SYSCALL_EMU)
2198 			return NO_SYSCALL;
2199 	}
2200 
2201 	/* Do the secure computing after ptrace; failures should be fast. */
2202 	if (secure_computing() == -1)
2203 		return NO_SYSCALL;
2204 
2205 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2206 		trace_sys_enter(regs, regs->syscallno);
2207 
2208 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2209 			    regs->regs[2], regs->regs[3]);
2210 
2211 	return regs->syscallno;
2212 }
2213 
2214 void syscall_trace_exit(struct pt_regs *regs)
2215 {
2216 	unsigned long flags = read_thread_flags();
2217 
2218 	audit_syscall_exit(regs);
2219 
2220 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2221 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2222 
2223 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2224 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
2225 
2226 	rseq_syscall(regs);
2227 }
2228 
2229 /*
2230  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2231  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2232  * not described in ARM DDI 0487D.a.
2233  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2234  * be allocated an EL0 meaning in future.
2235  * Userspace cannot use these until they have an architectural meaning.
2236  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2237  * We also reserve IL for the kernel; SS is handled dynamically.
2238  */
2239 #define SPSR_EL1_AARCH64_RES0_BITS \
2240 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2241 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2242 #define SPSR_EL1_AARCH32_RES0_BITS \
2243 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2244 
2245 static int valid_compat_regs(struct user_pt_regs *regs)
2246 {
2247 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2248 
2249 	if (!system_supports_mixed_endian_el0()) {
2250 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2251 			regs->pstate |= PSR_AA32_E_BIT;
2252 		else
2253 			regs->pstate &= ~PSR_AA32_E_BIT;
2254 	}
2255 
2256 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2257 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2258 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2259 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2260 		return 1;
2261 	}
2262 
2263 	/*
2264 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2265 	 * arch/arm.
2266 	 */
2267 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2268 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2269 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2270 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2271 			PSR_AA32_T_BIT;
2272 	regs->pstate |= PSR_MODE32_BIT;
2273 
2274 	return 0;
2275 }
2276 
2277 static int valid_native_regs(struct user_pt_regs *regs)
2278 {
2279 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2280 
2281 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2282 	    (regs->pstate & PSR_D_BIT) == 0 &&
2283 	    (regs->pstate & PSR_A_BIT) == 0 &&
2284 	    (regs->pstate & PSR_I_BIT) == 0 &&
2285 	    (regs->pstate & PSR_F_BIT) == 0) {
2286 		return 1;
2287 	}
2288 
2289 	/* Force PSR to a valid 64-bit EL0t */
2290 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2291 
2292 	return 0;
2293 }
2294 
2295 /*
2296  * Are the current registers suitable for user mode? (used to maintain
2297  * security in signal handlers)
2298  */
2299 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2300 {
2301 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2302 	user_regs_reset_single_step(regs, task);
2303 
2304 	if (is_compat_thread(task_thread_info(task)))
2305 		return valid_compat_regs(regs);
2306 	else
2307 		return valid_native_regs(regs);
2308 }
2309