xref: /openbmc/linux/arch/arm64/kernel/ptrace.c (revision 0e17c50f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/pgtable.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46 
47 struct pt_regs_offset {
48 	const char *name;
49 	int offset;
50 };
51 
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56 
57 static const struct pt_regs_offset regoffset_table[] = {
58 	GPR_OFFSET_NAME(0),
59 	GPR_OFFSET_NAME(1),
60 	GPR_OFFSET_NAME(2),
61 	GPR_OFFSET_NAME(3),
62 	GPR_OFFSET_NAME(4),
63 	GPR_OFFSET_NAME(5),
64 	GPR_OFFSET_NAME(6),
65 	GPR_OFFSET_NAME(7),
66 	GPR_OFFSET_NAME(8),
67 	GPR_OFFSET_NAME(9),
68 	GPR_OFFSET_NAME(10),
69 	GPR_OFFSET_NAME(11),
70 	GPR_OFFSET_NAME(12),
71 	GPR_OFFSET_NAME(13),
72 	GPR_OFFSET_NAME(14),
73 	GPR_OFFSET_NAME(15),
74 	GPR_OFFSET_NAME(16),
75 	GPR_OFFSET_NAME(17),
76 	GPR_OFFSET_NAME(18),
77 	GPR_OFFSET_NAME(19),
78 	GPR_OFFSET_NAME(20),
79 	GPR_OFFSET_NAME(21),
80 	GPR_OFFSET_NAME(22),
81 	GPR_OFFSET_NAME(23),
82 	GPR_OFFSET_NAME(24),
83 	GPR_OFFSET_NAME(25),
84 	GPR_OFFSET_NAME(26),
85 	GPR_OFFSET_NAME(27),
86 	GPR_OFFSET_NAME(28),
87 	GPR_OFFSET_NAME(29),
88 	GPR_OFFSET_NAME(30),
89 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 	REG_OFFSET_NAME(sp),
91 	REG_OFFSET_NAME(pc),
92 	REG_OFFSET_NAME(pstate),
93 	REG_OFFSET_END,
94 };
95 
96 /**
97  * regs_query_register_offset() - query register offset from its name
98  * @name:	the name of a register
99  *
100  * regs_query_register_offset() returns the offset of a register in struct
101  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102  */
103 int regs_query_register_offset(const char *name)
104 {
105 	const struct pt_regs_offset *roff;
106 
107 	for (roff = regoffset_table; roff->name != NULL; roff++)
108 		if (!strcmp(roff->name, name))
109 			return roff->offset;
110 	return -EINVAL;
111 }
112 
113 /**
114  * regs_within_kernel_stack() - check the address in the stack
115  * @regs:      pt_regs which contains kernel stack pointer.
116  * @addr:      address which is checked.
117  *
118  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119  * If @addr is within the kernel stack, it returns true. If not, returns false.
120  */
121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 	return ((addr & ~(THREAD_SIZE - 1))  ==
124 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 		on_irq_stack(addr, NULL);
126 }
127 
128 /**
129  * regs_get_kernel_stack_nth() - get Nth entry of the stack
130  * @regs:	pt_regs which contains kernel stack pointer.
131  * @n:		stack entry number.
132  *
133  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135  * this returns 0.
136  */
137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140 
141 	addr += n;
142 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 		return *addr;
144 	else
145 		return 0;
146 }
147 
148 /*
149  * TODO: does not yet catch signals sent when the child dies.
150  * in exit.c or in signal.c.
151  */
152 
153 /*
154  * Called by kernel/ptrace.c when detaching..
155  */
156 void ptrace_disable(struct task_struct *child)
157 {
158 	/*
159 	 * This would be better off in core code, but PTRACE_DETACH has
160 	 * grown its fair share of arch-specific worts and changing it
161 	 * is likely to cause regressions on obscure architectures.
162 	 */
163 	user_disable_single_step(child);
164 }
165 
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168  * Handle hitting a HW-breakpoint.
169  */
170 static void ptrace_hbptriggered(struct perf_event *bp,
171 				struct perf_sample_data *data,
172 				struct pt_regs *regs)
173 {
174 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 	const char *desc = "Hardware breakpoint trap (ptrace)";
176 
177 #ifdef CONFIG_COMPAT
178 	if (is_compat_task()) {
179 		int si_errno = 0;
180 		int i;
181 
182 		for (i = 0; i < ARM_MAX_BRP; ++i) {
183 			if (current->thread.debug.hbp_break[i] == bp) {
184 				si_errno = (i << 1) + 1;
185 				break;
186 			}
187 		}
188 
189 		for (i = 0; i < ARM_MAX_WRP; ++i) {
190 			if (current->thread.debug.hbp_watch[i] == bp) {
191 				si_errno = -((i << 1) + 1);
192 				break;
193 			}
194 		}
195 		arm64_force_sig_ptrace_errno_trap(si_errno,
196 						  (void __user *)bkpt->trigger,
197 						  desc);
198 	}
199 #endif
200 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT,
201 			      (void __user *)(bkpt->trigger),
202 			      desc);
203 }
204 
205 /*
206  * Unregister breakpoints from this task and reset the pointers in
207  * the thread_struct.
208  */
209 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
210 {
211 	int i;
212 	struct thread_struct *t = &tsk->thread;
213 
214 	for (i = 0; i < ARM_MAX_BRP; i++) {
215 		if (t->debug.hbp_break[i]) {
216 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
217 			t->debug.hbp_break[i] = NULL;
218 		}
219 	}
220 
221 	for (i = 0; i < ARM_MAX_WRP; i++) {
222 		if (t->debug.hbp_watch[i]) {
223 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
224 			t->debug.hbp_watch[i] = NULL;
225 		}
226 	}
227 }
228 
229 void ptrace_hw_copy_thread(struct task_struct *tsk)
230 {
231 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
232 }
233 
234 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
235 					       struct task_struct *tsk,
236 					       unsigned long idx)
237 {
238 	struct perf_event *bp = ERR_PTR(-EINVAL);
239 
240 	switch (note_type) {
241 	case NT_ARM_HW_BREAK:
242 		if (idx >= ARM_MAX_BRP)
243 			goto out;
244 		idx = array_index_nospec(idx, ARM_MAX_BRP);
245 		bp = tsk->thread.debug.hbp_break[idx];
246 		break;
247 	case NT_ARM_HW_WATCH:
248 		if (idx >= ARM_MAX_WRP)
249 			goto out;
250 		idx = array_index_nospec(idx, ARM_MAX_WRP);
251 		bp = tsk->thread.debug.hbp_watch[idx];
252 		break;
253 	}
254 
255 out:
256 	return bp;
257 }
258 
259 static int ptrace_hbp_set_event(unsigned int note_type,
260 				struct task_struct *tsk,
261 				unsigned long idx,
262 				struct perf_event *bp)
263 {
264 	int err = -EINVAL;
265 
266 	switch (note_type) {
267 	case NT_ARM_HW_BREAK:
268 		if (idx >= ARM_MAX_BRP)
269 			goto out;
270 		idx = array_index_nospec(idx, ARM_MAX_BRP);
271 		tsk->thread.debug.hbp_break[idx] = bp;
272 		err = 0;
273 		break;
274 	case NT_ARM_HW_WATCH:
275 		if (idx >= ARM_MAX_WRP)
276 			goto out;
277 		idx = array_index_nospec(idx, ARM_MAX_WRP);
278 		tsk->thread.debug.hbp_watch[idx] = bp;
279 		err = 0;
280 		break;
281 	}
282 
283 out:
284 	return err;
285 }
286 
287 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
288 					    struct task_struct *tsk,
289 					    unsigned long idx)
290 {
291 	struct perf_event *bp;
292 	struct perf_event_attr attr;
293 	int err, type;
294 
295 	switch (note_type) {
296 	case NT_ARM_HW_BREAK:
297 		type = HW_BREAKPOINT_X;
298 		break;
299 	case NT_ARM_HW_WATCH:
300 		type = HW_BREAKPOINT_RW;
301 		break;
302 	default:
303 		return ERR_PTR(-EINVAL);
304 	}
305 
306 	ptrace_breakpoint_init(&attr);
307 
308 	/*
309 	 * Initialise fields to sane defaults
310 	 * (i.e. values that will pass validation).
311 	 */
312 	attr.bp_addr	= 0;
313 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
314 	attr.bp_type	= type;
315 	attr.disabled	= 1;
316 
317 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
318 	if (IS_ERR(bp))
319 		return bp;
320 
321 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
322 	if (err)
323 		return ERR_PTR(err);
324 
325 	return bp;
326 }
327 
328 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
329 				     struct arch_hw_breakpoint_ctrl ctrl,
330 				     struct perf_event_attr *attr)
331 {
332 	int err, len, type, offset, disabled = !ctrl.enabled;
333 
334 	attr->disabled = disabled;
335 	if (disabled)
336 		return 0;
337 
338 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
339 	if (err)
340 		return err;
341 
342 	switch (note_type) {
343 	case NT_ARM_HW_BREAK:
344 		if ((type & HW_BREAKPOINT_X) != type)
345 			return -EINVAL;
346 		break;
347 	case NT_ARM_HW_WATCH:
348 		if ((type & HW_BREAKPOINT_RW) != type)
349 			return -EINVAL;
350 		break;
351 	default:
352 		return -EINVAL;
353 	}
354 
355 	attr->bp_len	= len;
356 	attr->bp_type	= type;
357 	attr->bp_addr	+= offset;
358 
359 	return 0;
360 }
361 
362 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
363 {
364 	u8 num;
365 	u32 reg = 0;
366 
367 	switch (note_type) {
368 	case NT_ARM_HW_BREAK:
369 		num = hw_breakpoint_slots(TYPE_INST);
370 		break;
371 	case NT_ARM_HW_WATCH:
372 		num = hw_breakpoint_slots(TYPE_DATA);
373 		break;
374 	default:
375 		return -EINVAL;
376 	}
377 
378 	reg |= debug_monitors_arch();
379 	reg <<= 8;
380 	reg |= num;
381 
382 	*info = reg;
383 	return 0;
384 }
385 
386 static int ptrace_hbp_get_ctrl(unsigned int note_type,
387 			       struct task_struct *tsk,
388 			       unsigned long idx,
389 			       u32 *ctrl)
390 {
391 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
392 
393 	if (IS_ERR(bp))
394 		return PTR_ERR(bp);
395 
396 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
397 	return 0;
398 }
399 
400 static int ptrace_hbp_get_addr(unsigned int note_type,
401 			       struct task_struct *tsk,
402 			       unsigned long idx,
403 			       u64 *addr)
404 {
405 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
406 
407 	if (IS_ERR(bp))
408 		return PTR_ERR(bp);
409 
410 	*addr = bp ? counter_arch_bp(bp)->address : 0;
411 	return 0;
412 }
413 
414 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
415 							struct task_struct *tsk,
416 							unsigned long idx)
417 {
418 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
419 
420 	if (!bp)
421 		bp = ptrace_hbp_create(note_type, tsk, idx);
422 
423 	return bp;
424 }
425 
426 static int ptrace_hbp_set_ctrl(unsigned int note_type,
427 			       struct task_struct *tsk,
428 			       unsigned long idx,
429 			       u32 uctrl)
430 {
431 	int err;
432 	struct perf_event *bp;
433 	struct perf_event_attr attr;
434 	struct arch_hw_breakpoint_ctrl ctrl;
435 
436 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
437 	if (IS_ERR(bp)) {
438 		err = PTR_ERR(bp);
439 		return err;
440 	}
441 
442 	attr = bp->attr;
443 	decode_ctrl_reg(uctrl, &ctrl);
444 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
445 	if (err)
446 		return err;
447 
448 	return modify_user_hw_breakpoint(bp, &attr);
449 }
450 
451 static int ptrace_hbp_set_addr(unsigned int note_type,
452 			       struct task_struct *tsk,
453 			       unsigned long idx,
454 			       u64 addr)
455 {
456 	int err;
457 	struct perf_event *bp;
458 	struct perf_event_attr attr;
459 
460 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
461 	if (IS_ERR(bp)) {
462 		err = PTR_ERR(bp);
463 		return err;
464 	}
465 
466 	attr = bp->attr;
467 	attr.bp_addr = addr;
468 	err = modify_user_hw_breakpoint(bp, &attr);
469 	return err;
470 }
471 
472 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
473 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
474 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
475 
476 static int hw_break_get(struct task_struct *target,
477 			const struct user_regset *regset,
478 			unsigned int pos, unsigned int count,
479 			void *kbuf, void __user *ubuf)
480 {
481 	unsigned int note_type = regset->core_note_type;
482 	int ret, idx = 0, offset, limit;
483 	u32 info, ctrl;
484 	u64 addr;
485 
486 	/* Resource info */
487 	ret = ptrace_hbp_get_resource_info(note_type, &info);
488 	if (ret)
489 		return ret;
490 
491 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &info, 0,
492 				  sizeof(info));
493 	if (ret)
494 		return ret;
495 
496 	/* Pad */
497 	offset = offsetof(struct user_hwdebug_state, pad);
498 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, offset,
499 				       offset + PTRACE_HBP_PAD_SZ);
500 	if (ret)
501 		return ret;
502 
503 	/* (address, ctrl) registers */
504 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
505 	limit = regset->n * regset->size;
506 	while (count && offset < limit) {
507 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
508 		if (ret)
509 			return ret;
510 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &addr,
511 					  offset, offset + PTRACE_HBP_ADDR_SZ);
512 		if (ret)
513 			return ret;
514 		offset += PTRACE_HBP_ADDR_SZ;
515 
516 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
517 		if (ret)
518 			return ret;
519 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &ctrl,
520 					  offset, offset + PTRACE_HBP_CTRL_SZ);
521 		if (ret)
522 			return ret;
523 		offset += PTRACE_HBP_CTRL_SZ;
524 
525 		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
526 					       offset,
527 					       offset + PTRACE_HBP_PAD_SZ);
528 		if (ret)
529 			return ret;
530 		offset += PTRACE_HBP_PAD_SZ;
531 		idx++;
532 	}
533 
534 	return 0;
535 }
536 
537 static int hw_break_set(struct task_struct *target,
538 			const struct user_regset *regset,
539 			unsigned int pos, unsigned int count,
540 			const void *kbuf, const void __user *ubuf)
541 {
542 	unsigned int note_type = regset->core_note_type;
543 	int ret, idx = 0, offset, limit;
544 	u32 ctrl;
545 	u64 addr;
546 
547 	/* Resource info and pad */
548 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
549 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
550 	if (ret)
551 		return ret;
552 
553 	/* (address, ctrl) registers */
554 	limit = regset->n * regset->size;
555 	while (count && offset < limit) {
556 		if (count < PTRACE_HBP_ADDR_SZ)
557 			return -EINVAL;
558 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
559 					 offset, offset + PTRACE_HBP_ADDR_SZ);
560 		if (ret)
561 			return ret;
562 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
563 		if (ret)
564 			return ret;
565 		offset += PTRACE_HBP_ADDR_SZ;
566 
567 		if (!count)
568 			break;
569 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
570 					 offset, offset + PTRACE_HBP_CTRL_SZ);
571 		if (ret)
572 			return ret;
573 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
574 		if (ret)
575 			return ret;
576 		offset += PTRACE_HBP_CTRL_SZ;
577 
578 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
579 						offset,
580 						offset + PTRACE_HBP_PAD_SZ);
581 		if (ret)
582 			return ret;
583 		offset += PTRACE_HBP_PAD_SZ;
584 		idx++;
585 	}
586 
587 	return 0;
588 }
589 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
590 
591 static int gpr_get(struct task_struct *target,
592 		   const struct user_regset *regset,
593 		   unsigned int pos, unsigned int count,
594 		   void *kbuf, void __user *ubuf)
595 {
596 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
597 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0, -1);
598 }
599 
600 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
601 		   unsigned int pos, unsigned int count,
602 		   const void *kbuf, const void __user *ubuf)
603 {
604 	int ret;
605 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
606 
607 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
608 	if (ret)
609 		return ret;
610 
611 	if (!valid_user_regs(&newregs, target))
612 		return -EINVAL;
613 
614 	task_pt_regs(target)->user_regs = newregs;
615 	return 0;
616 }
617 
618 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
619 {
620 	if (!system_supports_fpsimd())
621 		return -ENODEV;
622 	return regset->n;
623 }
624 
625 /*
626  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
627  */
628 static int __fpr_get(struct task_struct *target,
629 		     const struct user_regset *regset,
630 		     unsigned int pos, unsigned int count,
631 		     void *kbuf, void __user *ubuf, unsigned int start_pos)
632 {
633 	struct user_fpsimd_state *uregs;
634 
635 	sve_sync_to_fpsimd(target);
636 
637 	uregs = &target->thread.uw.fpsimd_state;
638 
639 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
640 				   start_pos, start_pos + sizeof(*uregs));
641 }
642 
643 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
644 		   unsigned int pos, unsigned int count,
645 		   void *kbuf, void __user *ubuf)
646 {
647 	if (!system_supports_fpsimd())
648 		return -EINVAL;
649 
650 	if (target == current)
651 		fpsimd_preserve_current_state();
652 
653 	return __fpr_get(target, regset, pos, count, kbuf, ubuf, 0);
654 }
655 
656 static int __fpr_set(struct task_struct *target,
657 		     const struct user_regset *regset,
658 		     unsigned int pos, unsigned int count,
659 		     const void *kbuf, const void __user *ubuf,
660 		     unsigned int start_pos)
661 {
662 	int ret;
663 	struct user_fpsimd_state newstate;
664 
665 	/*
666 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
667 	 * short copyin can't resurrect stale data.
668 	 */
669 	sve_sync_to_fpsimd(target);
670 
671 	newstate = target->thread.uw.fpsimd_state;
672 
673 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
674 				 start_pos, start_pos + sizeof(newstate));
675 	if (ret)
676 		return ret;
677 
678 	target->thread.uw.fpsimd_state = newstate;
679 
680 	return ret;
681 }
682 
683 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
684 		   unsigned int pos, unsigned int count,
685 		   const void *kbuf, const void __user *ubuf)
686 {
687 	int ret;
688 
689 	if (!system_supports_fpsimd())
690 		return -EINVAL;
691 
692 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
693 	if (ret)
694 		return ret;
695 
696 	sve_sync_from_fpsimd_zeropad(target);
697 	fpsimd_flush_task_state(target);
698 
699 	return ret;
700 }
701 
702 static int tls_get(struct task_struct *target, const struct user_regset *regset,
703 		   unsigned int pos, unsigned int count,
704 		   void *kbuf, void __user *ubuf)
705 {
706 	unsigned long *tls = &target->thread.uw.tp_value;
707 
708 	if (target == current)
709 		tls_preserve_current_state();
710 
711 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, tls, 0, -1);
712 }
713 
714 static int tls_set(struct task_struct *target, const struct user_regset *regset,
715 		   unsigned int pos, unsigned int count,
716 		   const void *kbuf, const void __user *ubuf)
717 {
718 	int ret;
719 	unsigned long tls = target->thread.uw.tp_value;
720 
721 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
722 	if (ret)
723 		return ret;
724 
725 	target->thread.uw.tp_value = tls;
726 	return ret;
727 }
728 
729 static int system_call_get(struct task_struct *target,
730 			   const struct user_regset *regset,
731 			   unsigned int pos, unsigned int count,
732 			   void *kbuf, void __user *ubuf)
733 {
734 	int syscallno = task_pt_regs(target)->syscallno;
735 
736 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
737 				   &syscallno, 0, -1);
738 }
739 
740 static int system_call_set(struct task_struct *target,
741 			   const struct user_regset *regset,
742 			   unsigned int pos, unsigned int count,
743 			   const void *kbuf, const void __user *ubuf)
744 {
745 	int syscallno = task_pt_regs(target)->syscallno;
746 	int ret;
747 
748 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
749 	if (ret)
750 		return ret;
751 
752 	task_pt_regs(target)->syscallno = syscallno;
753 	return ret;
754 }
755 
756 #ifdef CONFIG_ARM64_SVE
757 
758 static void sve_init_header_from_task(struct user_sve_header *header,
759 				      struct task_struct *target)
760 {
761 	unsigned int vq;
762 
763 	memset(header, 0, sizeof(*header));
764 
765 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
766 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
767 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
768 		header->flags |= SVE_PT_VL_INHERIT;
769 
770 	header->vl = target->thread.sve_vl;
771 	vq = sve_vq_from_vl(header->vl);
772 
773 	header->max_vl = sve_max_vl;
774 	header->size = SVE_PT_SIZE(vq, header->flags);
775 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
776 				      SVE_PT_REGS_SVE);
777 }
778 
779 static unsigned int sve_size_from_header(struct user_sve_header const *header)
780 {
781 	return ALIGN(header->size, SVE_VQ_BYTES);
782 }
783 
784 static unsigned int sve_get_size(struct task_struct *target,
785 				 const struct user_regset *regset)
786 {
787 	struct user_sve_header header;
788 
789 	if (!system_supports_sve())
790 		return 0;
791 
792 	sve_init_header_from_task(&header, target);
793 	return sve_size_from_header(&header);
794 }
795 
796 static int sve_get(struct task_struct *target,
797 		   const struct user_regset *regset,
798 		   unsigned int pos, unsigned int count,
799 		   void *kbuf, void __user *ubuf)
800 {
801 	int ret;
802 	struct user_sve_header header;
803 	unsigned int vq;
804 	unsigned long start, end;
805 
806 	if (!system_supports_sve())
807 		return -EINVAL;
808 
809 	/* Header */
810 	sve_init_header_from_task(&header, target);
811 	vq = sve_vq_from_vl(header.vl);
812 
813 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &header,
814 				  0, sizeof(header));
815 	if (ret)
816 		return ret;
817 
818 	if (target == current)
819 		fpsimd_preserve_current_state();
820 
821 	/* Registers: FPSIMD-only case */
822 
823 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
824 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
825 		return __fpr_get(target, regset, pos, count, kbuf, ubuf,
826 				 SVE_PT_FPSIMD_OFFSET);
827 
828 	/* Otherwise: full SVE case */
829 
830 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
831 	start = SVE_PT_SVE_OFFSET;
832 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
833 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
834 				  target->thread.sve_state,
835 				  start, end);
836 	if (ret)
837 		return ret;
838 
839 	start = end;
840 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
841 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
842 				       start, end);
843 	if (ret)
844 		return ret;
845 
846 	/*
847 	 * Copy fpsr, and fpcr which must follow contiguously in
848 	 * struct fpsimd_state:
849 	 */
850 	start = end;
851 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
852 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
853 				  &target->thread.uw.fpsimd_state.fpsr,
854 				  start, end);
855 	if (ret)
856 		return ret;
857 
858 	start = end;
859 	end = sve_size_from_header(&header);
860 	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
861 					start, end);
862 }
863 
864 static int sve_set(struct task_struct *target,
865 		   const struct user_regset *regset,
866 		   unsigned int pos, unsigned int count,
867 		   const void *kbuf, const void __user *ubuf)
868 {
869 	int ret;
870 	struct user_sve_header header;
871 	unsigned int vq;
872 	unsigned long start, end;
873 
874 	if (!system_supports_sve())
875 		return -EINVAL;
876 
877 	/* Header */
878 	if (count < sizeof(header))
879 		return -EINVAL;
880 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
881 				 0, sizeof(header));
882 	if (ret)
883 		goto out;
884 
885 	/*
886 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
887 	 * sve_set_vector_length(), which will also validate them for us:
888 	 */
889 	ret = sve_set_vector_length(target, header.vl,
890 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
891 	if (ret)
892 		goto out;
893 
894 	/* Actual VL set may be less than the user asked for: */
895 	vq = sve_vq_from_vl(target->thread.sve_vl);
896 
897 	/* Registers: FPSIMD-only case */
898 
899 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
900 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
901 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
902 				SVE_PT_FPSIMD_OFFSET);
903 		clear_tsk_thread_flag(target, TIF_SVE);
904 		goto out;
905 	}
906 
907 	/* Otherwise: full SVE case */
908 
909 	/*
910 	 * If setting a different VL from the requested VL and there is
911 	 * register data, the data layout will be wrong: don't even
912 	 * try to set the registers in this case.
913 	 */
914 	if (count && vq != sve_vq_from_vl(header.vl)) {
915 		ret = -EIO;
916 		goto out;
917 	}
918 
919 	sve_alloc(target);
920 
921 	/*
922 	 * Ensure target->thread.sve_state is up to date with target's
923 	 * FPSIMD regs, so that a short copyin leaves trailing registers
924 	 * unmodified.
925 	 */
926 	fpsimd_sync_to_sve(target);
927 	set_tsk_thread_flag(target, TIF_SVE);
928 
929 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
930 	start = SVE_PT_SVE_OFFSET;
931 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
932 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
933 				 target->thread.sve_state,
934 				 start, end);
935 	if (ret)
936 		goto out;
937 
938 	start = end;
939 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
940 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
941 					start, end);
942 	if (ret)
943 		goto out;
944 
945 	/*
946 	 * Copy fpsr, and fpcr which must follow contiguously in
947 	 * struct fpsimd_state:
948 	 */
949 	start = end;
950 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
951 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
952 				 &target->thread.uw.fpsimd_state.fpsr,
953 				 start, end);
954 
955 out:
956 	fpsimd_flush_task_state(target);
957 	return ret;
958 }
959 
960 #endif /* CONFIG_ARM64_SVE */
961 
962 #ifdef CONFIG_ARM64_PTR_AUTH
963 static int pac_mask_get(struct task_struct *target,
964 			const struct user_regset *regset,
965 			unsigned int pos, unsigned int count,
966 			void *kbuf, void __user *ubuf)
967 {
968 	/*
969 	 * The PAC bits can differ across data and instruction pointers
970 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
971 	 * we expose separate masks.
972 	 */
973 	unsigned long mask = ptrauth_user_pac_mask();
974 	struct user_pac_mask uregs = {
975 		.data_mask = mask,
976 		.insn_mask = mask,
977 	};
978 
979 	if (!system_supports_address_auth())
980 		return -EINVAL;
981 
982 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &uregs, 0, -1);
983 }
984 
985 #ifdef CONFIG_CHECKPOINT_RESTORE
986 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
987 {
988 	return (__uint128_t)key->hi << 64 | key->lo;
989 }
990 
991 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
992 {
993 	struct ptrauth_key key = {
994 		.lo = (unsigned long)ukey,
995 		.hi = (unsigned long)(ukey >> 64),
996 	};
997 
998 	return key;
999 }
1000 
1001 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1002 				     const struct ptrauth_keys *keys)
1003 {
1004 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1005 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1006 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1007 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1008 }
1009 
1010 static void pac_address_keys_from_user(struct ptrauth_keys *keys,
1011 				       const struct user_pac_address_keys *ukeys)
1012 {
1013 	keys->apia = pac_key_from_user(ukeys->apiakey);
1014 	keys->apib = pac_key_from_user(ukeys->apibkey);
1015 	keys->apda = pac_key_from_user(ukeys->apdakey);
1016 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1017 }
1018 
1019 static int pac_address_keys_get(struct task_struct *target,
1020 				const struct user_regset *regset,
1021 				unsigned int pos, unsigned int count,
1022 				void *kbuf, void __user *ubuf)
1023 {
1024 	struct ptrauth_keys *keys = &target->thread.keys_user;
1025 	struct user_pac_address_keys user_keys;
1026 
1027 	if (!system_supports_address_auth())
1028 		return -EINVAL;
1029 
1030 	pac_address_keys_to_user(&user_keys, keys);
1031 
1032 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1033 				   &user_keys, 0, -1);
1034 }
1035 
1036 static int pac_address_keys_set(struct task_struct *target,
1037 				const struct user_regset *regset,
1038 				unsigned int pos, unsigned int count,
1039 				const void *kbuf, const void __user *ubuf)
1040 {
1041 	struct ptrauth_keys *keys = &target->thread.keys_user;
1042 	struct user_pac_address_keys user_keys;
1043 	int ret;
1044 
1045 	if (!system_supports_address_auth())
1046 		return -EINVAL;
1047 
1048 	pac_address_keys_to_user(&user_keys, keys);
1049 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1050 				 &user_keys, 0, -1);
1051 	if (ret)
1052 		return ret;
1053 	pac_address_keys_from_user(keys, &user_keys);
1054 
1055 	return 0;
1056 }
1057 
1058 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1059 				     const struct ptrauth_keys *keys)
1060 {
1061 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1062 }
1063 
1064 static void pac_generic_keys_from_user(struct ptrauth_keys *keys,
1065 				       const struct user_pac_generic_keys *ukeys)
1066 {
1067 	keys->apga = pac_key_from_user(ukeys->apgakey);
1068 }
1069 
1070 static int pac_generic_keys_get(struct task_struct *target,
1071 				const struct user_regset *regset,
1072 				unsigned int pos, unsigned int count,
1073 				void *kbuf, void __user *ubuf)
1074 {
1075 	struct ptrauth_keys *keys = &target->thread.keys_user;
1076 	struct user_pac_generic_keys user_keys;
1077 
1078 	if (!system_supports_generic_auth())
1079 		return -EINVAL;
1080 
1081 	pac_generic_keys_to_user(&user_keys, keys);
1082 
1083 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1084 				   &user_keys, 0, -1);
1085 }
1086 
1087 static int pac_generic_keys_set(struct task_struct *target,
1088 				const struct user_regset *regset,
1089 				unsigned int pos, unsigned int count,
1090 				const void *kbuf, const void __user *ubuf)
1091 {
1092 	struct ptrauth_keys *keys = &target->thread.keys_user;
1093 	struct user_pac_generic_keys user_keys;
1094 	int ret;
1095 
1096 	if (!system_supports_generic_auth())
1097 		return -EINVAL;
1098 
1099 	pac_generic_keys_to_user(&user_keys, keys);
1100 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1101 				 &user_keys, 0, -1);
1102 	if (ret)
1103 		return ret;
1104 	pac_generic_keys_from_user(keys, &user_keys);
1105 
1106 	return 0;
1107 }
1108 #endif /* CONFIG_CHECKPOINT_RESTORE */
1109 #endif /* CONFIG_ARM64_PTR_AUTH */
1110 
1111 enum aarch64_regset {
1112 	REGSET_GPR,
1113 	REGSET_FPR,
1114 	REGSET_TLS,
1115 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1116 	REGSET_HW_BREAK,
1117 	REGSET_HW_WATCH,
1118 #endif
1119 	REGSET_SYSTEM_CALL,
1120 #ifdef CONFIG_ARM64_SVE
1121 	REGSET_SVE,
1122 #endif
1123 #ifdef CONFIG_ARM64_PTR_AUTH
1124 	REGSET_PAC_MASK,
1125 #ifdef CONFIG_CHECKPOINT_RESTORE
1126 	REGSET_PACA_KEYS,
1127 	REGSET_PACG_KEYS,
1128 #endif
1129 #endif
1130 };
1131 
1132 static const struct user_regset aarch64_regsets[] = {
1133 	[REGSET_GPR] = {
1134 		.core_note_type = NT_PRSTATUS,
1135 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1136 		.size = sizeof(u64),
1137 		.align = sizeof(u64),
1138 		.get = gpr_get,
1139 		.set = gpr_set
1140 	},
1141 	[REGSET_FPR] = {
1142 		.core_note_type = NT_PRFPREG,
1143 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1144 		/*
1145 		 * We pretend we have 32-bit registers because the fpsr and
1146 		 * fpcr are 32-bits wide.
1147 		 */
1148 		.size = sizeof(u32),
1149 		.align = sizeof(u32),
1150 		.active = fpr_active,
1151 		.get = fpr_get,
1152 		.set = fpr_set
1153 	},
1154 	[REGSET_TLS] = {
1155 		.core_note_type = NT_ARM_TLS,
1156 		.n = 1,
1157 		.size = sizeof(void *),
1158 		.align = sizeof(void *),
1159 		.get = tls_get,
1160 		.set = tls_set,
1161 	},
1162 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1163 	[REGSET_HW_BREAK] = {
1164 		.core_note_type = NT_ARM_HW_BREAK,
1165 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1166 		.size = sizeof(u32),
1167 		.align = sizeof(u32),
1168 		.get = hw_break_get,
1169 		.set = hw_break_set,
1170 	},
1171 	[REGSET_HW_WATCH] = {
1172 		.core_note_type = NT_ARM_HW_WATCH,
1173 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1174 		.size = sizeof(u32),
1175 		.align = sizeof(u32),
1176 		.get = hw_break_get,
1177 		.set = hw_break_set,
1178 	},
1179 #endif
1180 	[REGSET_SYSTEM_CALL] = {
1181 		.core_note_type = NT_ARM_SYSTEM_CALL,
1182 		.n = 1,
1183 		.size = sizeof(int),
1184 		.align = sizeof(int),
1185 		.get = system_call_get,
1186 		.set = system_call_set,
1187 	},
1188 #ifdef CONFIG_ARM64_SVE
1189 	[REGSET_SVE] = { /* Scalable Vector Extension */
1190 		.core_note_type = NT_ARM_SVE,
1191 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1192 				  SVE_VQ_BYTES),
1193 		.size = SVE_VQ_BYTES,
1194 		.align = SVE_VQ_BYTES,
1195 		.get = sve_get,
1196 		.set = sve_set,
1197 		.get_size = sve_get_size,
1198 	},
1199 #endif
1200 #ifdef CONFIG_ARM64_PTR_AUTH
1201 	[REGSET_PAC_MASK] = {
1202 		.core_note_type = NT_ARM_PAC_MASK,
1203 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1204 		.size = sizeof(u64),
1205 		.align = sizeof(u64),
1206 		.get = pac_mask_get,
1207 		/* this cannot be set dynamically */
1208 	},
1209 #ifdef CONFIG_CHECKPOINT_RESTORE
1210 	[REGSET_PACA_KEYS] = {
1211 		.core_note_type = NT_ARM_PACA_KEYS,
1212 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1213 		.size = sizeof(__uint128_t),
1214 		.align = sizeof(__uint128_t),
1215 		.get = pac_address_keys_get,
1216 		.set = pac_address_keys_set,
1217 	},
1218 	[REGSET_PACG_KEYS] = {
1219 		.core_note_type = NT_ARM_PACG_KEYS,
1220 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1221 		.size = sizeof(__uint128_t),
1222 		.align = sizeof(__uint128_t),
1223 		.get = pac_generic_keys_get,
1224 		.set = pac_generic_keys_set,
1225 	},
1226 #endif
1227 #endif
1228 };
1229 
1230 static const struct user_regset_view user_aarch64_view = {
1231 	.name = "aarch64", .e_machine = EM_AARCH64,
1232 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1233 };
1234 
1235 #ifdef CONFIG_COMPAT
1236 enum compat_regset {
1237 	REGSET_COMPAT_GPR,
1238 	REGSET_COMPAT_VFP,
1239 };
1240 
1241 static int compat_gpr_get(struct task_struct *target,
1242 			  const struct user_regset *regset,
1243 			  unsigned int pos, unsigned int count,
1244 			  void *kbuf, void __user *ubuf)
1245 {
1246 	int ret = 0;
1247 	unsigned int i, start, num_regs;
1248 
1249 	/* Calculate the number of AArch32 registers contained in count */
1250 	num_regs = count / regset->size;
1251 
1252 	/* Convert pos into an register number */
1253 	start = pos / regset->size;
1254 
1255 	if (start + num_regs > regset->n)
1256 		return -EIO;
1257 
1258 	for (i = 0; i < num_regs; ++i) {
1259 		unsigned int idx = start + i;
1260 		compat_ulong_t reg;
1261 
1262 		switch (idx) {
1263 		case 15:
1264 			reg = task_pt_regs(target)->pc;
1265 			break;
1266 		case 16:
1267 			reg = task_pt_regs(target)->pstate;
1268 			reg = pstate_to_compat_psr(reg);
1269 			break;
1270 		case 17:
1271 			reg = task_pt_regs(target)->orig_x0;
1272 			break;
1273 		default:
1274 			reg = task_pt_regs(target)->regs[idx];
1275 		}
1276 
1277 		if (kbuf) {
1278 			memcpy(kbuf, &reg, sizeof(reg));
1279 			kbuf += sizeof(reg);
1280 		} else {
1281 			ret = copy_to_user(ubuf, &reg, sizeof(reg));
1282 			if (ret) {
1283 				ret = -EFAULT;
1284 				break;
1285 			}
1286 
1287 			ubuf += sizeof(reg);
1288 		}
1289 	}
1290 
1291 	return ret;
1292 }
1293 
1294 static int compat_gpr_set(struct task_struct *target,
1295 			  const struct user_regset *regset,
1296 			  unsigned int pos, unsigned int count,
1297 			  const void *kbuf, const void __user *ubuf)
1298 {
1299 	struct pt_regs newregs;
1300 	int ret = 0;
1301 	unsigned int i, start, num_regs;
1302 
1303 	/* Calculate the number of AArch32 registers contained in count */
1304 	num_regs = count / regset->size;
1305 
1306 	/* Convert pos into an register number */
1307 	start = pos / regset->size;
1308 
1309 	if (start + num_regs > regset->n)
1310 		return -EIO;
1311 
1312 	newregs = *task_pt_regs(target);
1313 
1314 	for (i = 0; i < num_regs; ++i) {
1315 		unsigned int idx = start + i;
1316 		compat_ulong_t reg;
1317 
1318 		if (kbuf) {
1319 			memcpy(&reg, kbuf, sizeof(reg));
1320 			kbuf += sizeof(reg);
1321 		} else {
1322 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1323 			if (ret) {
1324 				ret = -EFAULT;
1325 				break;
1326 			}
1327 
1328 			ubuf += sizeof(reg);
1329 		}
1330 
1331 		switch (idx) {
1332 		case 15:
1333 			newregs.pc = reg;
1334 			break;
1335 		case 16:
1336 			reg = compat_psr_to_pstate(reg);
1337 			newregs.pstate = reg;
1338 			break;
1339 		case 17:
1340 			newregs.orig_x0 = reg;
1341 			break;
1342 		default:
1343 			newregs.regs[idx] = reg;
1344 		}
1345 
1346 	}
1347 
1348 	if (valid_user_regs(&newregs.user_regs, target))
1349 		*task_pt_regs(target) = newregs;
1350 	else
1351 		ret = -EINVAL;
1352 
1353 	return ret;
1354 }
1355 
1356 static int compat_vfp_get(struct task_struct *target,
1357 			  const struct user_regset *regset,
1358 			  unsigned int pos, unsigned int count,
1359 			  void *kbuf, void __user *ubuf)
1360 {
1361 	struct user_fpsimd_state *uregs;
1362 	compat_ulong_t fpscr;
1363 	int ret, vregs_end_pos;
1364 
1365 	if (!system_supports_fpsimd())
1366 		return -EINVAL;
1367 
1368 	uregs = &target->thread.uw.fpsimd_state;
1369 
1370 	if (target == current)
1371 		fpsimd_preserve_current_state();
1372 
1373 	/*
1374 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1375 	 * nicely together for us. We just need to create the fpscr separately.
1376 	 */
1377 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1378 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
1379 				  0, vregs_end_pos);
1380 
1381 	if (count && !ret) {
1382 		fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1383 			(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1384 
1385 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpscr,
1386 					  vregs_end_pos, VFP_STATE_SIZE);
1387 	}
1388 
1389 	return ret;
1390 }
1391 
1392 static int compat_vfp_set(struct task_struct *target,
1393 			  const struct user_regset *regset,
1394 			  unsigned int pos, unsigned int count,
1395 			  const void *kbuf, const void __user *ubuf)
1396 {
1397 	struct user_fpsimd_state *uregs;
1398 	compat_ulong_t fpscr;
1399 	int ret, vregs_end_pos;
1400 
1401 	if (!system_supports_fpsimd())
1402 		return -EINVAL;
1403 
1404 	uregs = &target->thread.uw.fpsimd_state;
1405 
1406 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1407 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1408 				 vregs_end_pos);
1409 
1410 	if (count && !ret) {
1411 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1412 					 vregs_end_pos, VFP_STATE_SIZE);
1413 		if (!ret) {
1414 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1415 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1416 		}
1417 	}
1418 
1419 	fpsimd_flush_task_state(target);
1420 	return ret;
1421 }
1422 
1423 static int compat_tls_get(struct task_struct *target,
1424 			  const struct user_regset *regset, unsigned int pos,
1425 			  unsigned int count, void *kbuf, void __user *ubuf)
1426 {
1427 	compat_ulong_t tls = (compat_ulong_t)target->thread.uw.tp_value;
1428 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1429 }
1430 
1431 static int compat_tls_set(struct task_struct *target,
1432 			  const struct user_regset *regset, unsigned int pos,
1433 			  unsigned int count, const void *kbuf,
1434 			  const void __user *ubuf)
1435 {
1436 	int ret;
1437 	compat_ulong_t tls = target->thread.uw.tp_value;
1438 
1439 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1440 	if (ret)
1441 		return ret;
1442 
1443 	target->thread.uw.tp_value = tls;
1444 	return ret;
1445 }
1446 
1447 static const struct user_regset aarch32_regsets[] = {
1448 	[REGSET_COMPAT_GPR] = {
1449 		.core_note_type = NT_PRSTATUS,
1450 		.n = COMPAT_ELF_NGREG,
1451 		.size = sizeof(compat_elf_greg_t),
1452 		.align = sizeof(compat_elf_greg_t),
1453 		.get = compat_gpr_get,
1454 		.set = compat_gpr_set
1455 	},
1456 	[REGSET_COMPAT_VFP] = {
1457 		.core_note_type = NT_ARM_VFP,
1458 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1459 		.size = sizeof(compat_ulong_t),
1460 		.align = sizeof(compat_ulong_t),
1461 		.active = fpr_active,
1462 		.get = compat_vfp_get,
1463 		.set = compat_vfp_set
1464 	},
1465 };
1466 
1467 static const struct user_regset_view user_aarch32_view = {
1468 	.name = "aarch32", .e_machine = EM_ARM,
1469 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1470 };
1471 
1472 static const struct user_regset aarch32_ptrace_regsets[] = {
1473 	[REGSET_GPR] = {
1474 		.core_note_type = NT_PRSTATUS,
1475 		.n = COMPAT_ELF_NGREG,
1476 		.size = sizeof(compat_elf_greg_t),
1477 		.align = sizeof(compat_elf_greg_t),
1478 		.get = compat_gpr_get,
1479 		.set = compat_gpr_set
1480 	},
1481 	[REGSET_FPR] = {
1482 		.core_note_type = NT_ARM_VFP,
1483 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1484 		.size = sizeof(compat_ulong_t),
1485 		.align = sizeof(compat_ulong_t),
1486 		.get = compat_vfp_get,
1487 		.set = compat_vfp_set
1488 	},
1489 	[REGSET_TLS] = {
1490 		.core_note_type = NT_ARM_TLS,
1491 		.n = 1,
1492 		.size = sizeof(compat_ulong_t),
1493 		.align = sizeof(compat_ulong_t),
1494 		.get = compat_tls_get,
1495 		.set = compat_tls_set,
1496 	},
1497 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1498 	[REGSET_HW_BREAK] = {
1499 		.core_note_type = NT_ARM_HW_BREAK,
1500 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1501 		.size = sizeof(u32),
1502 		.align = sizeof(u32),
1503 		.get = hw_break_get,
1504 		.set = hw_break_set,
1505 	},
1506 	[REGSET_HW_WATCH] = {
1507 		.core_note_type = NT_ARM_HW_WATCH,
1508 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1509 		.size = sizeof(u32),
1510 		.align = sizeof(u32),
1511 		.get = hw_break_get,
1512 		.set = hw_break_set,
1513 	},
1514 #endif
1515 	[REGSET_SYSTEM_CALL] = {
1516 		.core_note_type = NT_ARM_SYSTEM_CALL,
1517 		.n = 1,
1518 		.size = sizeof(int),
1519 		.align = sizeof(int),
1520 		.get = system_call_get,
1521 		.set = system_call_set,
1522 	},
1523 };
1524 
1525 static const struct user_regset_view user_aarch32_ptrace_view = {
1526 	.name = "aarch32", .e_machine = EM_ARM,
1527 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1528 };
1529 
1530 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1531 				   compat_ulong_t __user *ret)
1532 {
1533 	compat_ulong_t tmp;
1534 
1535 	if (off & 3)
1536 		return -EIO;
1537 
1538 	if (off == COMPAT_PT_TEXT_ADDR)
1539 		tmp = tsk->mm->start_code;
1540 	else if (off == COMPAT_PT_DATA_ADDR)
1541 		tmp = tsk->mm->start_data;
1542 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1543 		tmp = tsk->mm->end_code;
1544 	else if (off < sizeof(compat_elf_gregset_t))
1545 		return copy_regset_to_user(tsk, &user_aarch32_view,
1546 					   REGSET_COMPAT_GPR, off,
1547 					   sizeof(compat_ulong_t), ret);
1548 	else if (off >= COMPAT_USER_SZ)
1549 		return -EIO;
1550 	else
1551 		tmp = 0;
1552 
1553 	return put_user(tmp, ret);
1554 }
1555 
1556 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1557 				    compat_ulong_t val)
1558 {
1559 	int ret;
1560 	mm_segment_t old_fs = get_fs();
1561 
1562 	if (off & 3 || off >= COMPAT_USER_SZ)
1563 		return -EIO;
1564 
1565 	if (off >= sizeof(compat_elf_gregset_t))
1566 		return 0;
1567 
1568 	set_fs(KERNEL_DS);
1569 	ret = copy_regset_from_user(tsk, &user_aarch32_view,
1570 				    REGSET_COMPAT_GPR, off,
1571 				    sizeof(compat_ulong_t),
1572 				    &val);
1573 	set_fs(old_fs);
1574 
1575 	return ret;
1576 }
1577 
1578 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1579 
1580 /*
1581  * Convert a virtual register number into an index for a thread_info
1582  * breakpoint array. Breakpoints are identified using positive numbers
1583  * whilst watchpoints are negative. The registers are laid out as pairs
1584  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1585  * Register 0 is reserved for describing resource information.
1586  */
1587 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1588 {
1589 	return (abs(num) - 1) >> 1;
1590 }
1591 
1592 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1593 {
1594 	u8 num_brps, num_wrps, debug_arch, wp_len;
1595 	u32 reg = 0;
1596 
1597 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1598 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1599 
1600 	debug_arch	= debug_monitors_arch();
1601 	wp_len		= 8;
1602 	reg		|= debug_arch;
1603 	reg		<<= 8;
1604 	reg		|= wp_len;
1605 	reg		<<= 8;
1606 	reg		|= num_wrps;
1607 	reg		<<= 8;
1608 	reg		|= num_brps;
1609 
1610 	*kdata = reg;
1611 	return 0;
1612 }
1613 
1614 static int compat_ptrace_hbp_get(unsigned int note_type,
1615 				 struct task_struct *tsk,
1616 				 compat_long_t num,
1617 				 u32 *kdata)
1618 {
1619 	u64 addr = 0;
1620 	u32 ctrl = 0;
1621 
1622 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1623 
1624 	if (num & 1) {
1625 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1626 		*kdata = (u32)addr;
1627 	} else {
1628 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1629 		*kdata = ctrl;
1630 	}
1631 
1632 	return err;
1633 }
1634 
1635 static int compat_ptrace_hbp_set(unsigned int note_type,
1636 				 struct task_struct *tsk,
1637 				 compat_long_t num,
1638 				 u32 *kdata)
1639 {
1640 	u64 addr;
1641 	u32 ctrl;
1642 
1643 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1644 
1645 	if (num & 1) {
1646 		addr = *kdata;
1647 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1648 	} else {
1649 		ctrl = *kdata;
1650 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1651 	}
1652 
1653 	return err;
1654 }
1655 
1656 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1657 				    compat_ulong_t __user *data)
1658 {
1659 	int ret;
1660 	u32 kdata;
1661 
1662 	/* Watchpoint */
1663 	if (num < 0) {
1664 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1665 	/* Resource info */
1666 	} else if (num == 0) {
1667 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1668 	/* Breakpoint */
1669 	} else {
1670 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1671 	}
1672 
1673 	if (!ret)
1674 		ret = put_user(kdata, data);
1675 
1676 	return ret;
1677 }
1678 
1679 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1680 				    compat_ulong_t __user *data)
1681 {
1682 	int ret;
1683 	u32 kdata = 0;
1684 
1685 	if (num == 0)
1686 		return 0;
1687 
1688 	ret = get_user(kdata, data);
1689 	if (ret)
1690 		return ret;
1691 
1692 	if (num < 0)
1693 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1694 	else
1695 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1696 
1697 	return ret;
1698 }
1699 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1700 
1701 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1702 			compat_ulong_t caddr, compat_ulong_t cdata)
1703 {
1704 	unsigned long addr = caddr;
1705 	unsigned long data = cdata;
1706 	void __user *datap = compat_ptr(data);
1707 	int ret;
1708 
1709 	switch (request) {
1710 		case PTRACE_PEEKUSR:
1711 			ret = compat_ptrace_read_user(child, addr, datap);
1712 			break;
1713 
1714 		case PTRACE_POKEUSR:
1715 			ret = compat_ptrace_write_user(child, addr, data);
1716 			break;
1717 
1718 		case COMPAT_PTRACE_GETREGS:
1719 			ret = copy_regset_to_user(child,
1720 						  &user_aarch32_view,
1721 						  REGSET_COMPAT_GPR,
1722 						  0, sizeof(compat_elf_gregset_t),
1723 						  datap);
1724 			break;
1725 
1726 		case COMPAT_PTRACE_SETREGS:
1727 			ret = copy_regset_from_user(child,
1728 						    &user_aarch32_view,
1729 						    REGSET_COMPAT_GPR,
1730 						    0, sizeof(compat_elf_gregset_t),
1731 						    datap);
1732 			break;
1733 
1734 		case COMPAT_PTRACE_GET_THREAD_AREA:
1735 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1736 				       (compat_ulong_t __user *)datap);
1737 			break;
1738 
1739 		case COMPAT_PTRACE_SET_SYSCALL:
1740 			task_pt_regs(child)->syscallno = data;
1741 			ret = 0;
1742 			break;
1743 
1744 		case COMPAT_PTRACE_GETVFPREGS:
1745 			ret = copy_regset_to_user(child,
1746 						  &user_aarch32_view,
1747 						  REGSET_COMPAT_VFP,
1748 						  0, VFP_STATE_SIZE,
1749 						  datap);
1750 			break;
1751 
1752 		case COMPAT_PTRACE_SETVFPREGS:
1753 			ret = copy_regset_from_user(child,
1754 						    &user_aarch32_view,
1755 						    REGSET_COMPAT_VFP,
1756 						    0, VFP_STATE_SIZE,
1757 						    datap);
1758 			break;
1759 
1760 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1761 		case COMPAT_PTRACE_GETHBPREGS:
1762 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1763 			break;
1764 
1765 		case COMPAT_PTRACE_SETHBPREGS:
1766 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1767 			break;
1768 #endif
1769 
1770 		default:
1771 			ret = compat_ptrace_request(child, request, addr,
1772 						    data);
1773 			break;
1774 	}
1775 
1776 	return ret;
1777 }
1778 #endif /* CONFIG_COMPAT */
1779 
1780 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1781 {
1782 #ifdef CONFIG_COMPAT
1783 	/*
1784 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1785 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1786 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1787 	 * access to the TLS register.
1788 	 */
1789 	if (is_compat_task())
1790 		return &user_aarch32_view;
1791 	else if (is_compat_thread(task_thread_info(task)))
1792 		return &user_aarch32_ptrace_view;
1793 #endif
1794 	return &user_aarch64_view;
1795 }
1796 
1797 long arch_ptrace(struct task_struct *child, long request,
1798 		 unsigned long addr, unsigned long data)
1799 {
1800 	return ptrace_request(child, request, addr, data);
1801 }
1802 
1803 enum ptrace_syscall_dir {
1804 	PTRACE_SYSCALL_ENTER = 0,
1805 	PTRACE_SYSCALL_EXIT,
1806 };
1807 
1808 static void tracehook_report_syscall(struct pt_regs *regs,
1809 				     enum ptrace_syscall_dir dir)
1810 {
1811 	int regno;
1812 	unsigned long saved_reg;
1813 
1814 	/*
1815 	 * A scratch register (ip(r12) on AArch32, x7 on AArch64) is
1816 	 * used to denote syscall entry/exit:
1817 	 */
1818 	regno = (is_compat_task() ? 12 : 7);
1819 	saved_reg = regs->regs[regno];
1820 	regs->regs[regno] = dir;
1821 
1822 	if (dir == PTRACE_SYSCALL_EXIT)
1823 		tracehook_report_syscall_exit(regs, 0);
1824 	else if (tracehook_report_syscall_entry(regs))
1825 		forget_syscall(regs);
1826 
1827 	regs->regs[regno] = saved_reg;
1828 }
1829 
1830 int syscall_trace_enter(struct pt_regs *regs)
1831 {
1832 	if (test_thread_flag(TIF_SYSCALL_TRACE) ||
1833 		test_thread_flag(TIF_SYSCALL_EMU)) {
1834 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1835 		if (!in_syscall(regs) || test_thread_flag(TIF_SYSCALL_EMU))
1836 			return -1;
1837 	}
1838 
1839 	/* Do the secure computing after ptrace; failures should be fast. */
1840 	if (secure_computing() == -1)
1841 		return -1;
1842 
1843 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1844 		trace_sys_enter(regs, regs->syscallno);
1845 
1846 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1847 			    regs->regs[2], regs->regs[3]);
1848 
1849 	return regs->syscallno;
1850 }
1851 
1852 void syscall_trace_exit(struct pt_regs *regs)
1853 {
1854 	audit_syscall_exit(regs);
1855 
1856 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1857 		trace_sys_exit(regs, regs_return_value(regs));
1858 
1859 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1860 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1861 
1862 	rseq_syscall(regs);
1863 }
1864 
1865 /*
1866  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1867  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1868  * not described in ARM DDI 0487D.a.
1869  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1870  * be allocated an EL0 meaning in future.
1871  * Userspace cannot use these until they have an architectural meaning.
1872  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1873  * We also reserve IL for the kernel; SS is handled dynamically.
1874  */
1875 #define SPSR_EL1_AARCH64_RES0_BITS \
1876 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 25) | GENMASK_ULL(23, 22) | \
1877 	 GENMASK_ULL(20, 13) | GENMASK_ULL(11, 10) | GENMASK_ULL(5, 5))
1878 #define SPSR_EL1_AARCH32_RES0_BITS \
1879 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1880 
1881 static int valid_compat_regs(struct user_pt_regs *regs)
1882 {
1883 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1884 
1885 	if (!system_supports_mixed_endian_el0()) {
1886 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1887 			regs->pstate |= PSR_AA32_E_BIT;
1888 		else
1889 			regs->pstate &= ~PSR_AA32_E_BIT;
1890 	}
1891 
1892 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1893 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1894 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1895 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
1896 		return 1;
1897 	}
1898 
1899 	/*
1900 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1901 	 * arch/arm.
1902 	 */
1903 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1904 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1905 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1906 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1907 			PSR_AA32_T_BIT;
1908 	regs->pstate |= PSR_MODE32_BIT;
1909 
1910 	return 0;
1911 }
1912 
1913 static int valid_native_regs(struct user_pt_regs *regs)
1914 {
1915 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1916 
1917 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1918 	    (regs->pstate & PSR_D_BIT) == 0 &&
1919 	    (regs->pstate & PSR_A_BIT) == 0 &&
1920 	    (regs->pstate & PSR_I_BIT) == 0 &&
1921 	    (regs->pstate & PSR_F_BIT) == 0) {
1922 		return 1;
1923 	}
1924 
1925 	/* Force PSR to a valid 64-bit EL0t */
1926 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1927 
1928 	return 0;
1929 }
1930 
1931 /*
1932  * Are the current registers suitable for user mode? (used to maintain
1933  * security in signal handlers)
1934  */
1935 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1936 {
1937 	if (!test_tsk_thread_flag(task, TIF_SINGLESTEP))
1938 		regs->pstate &= ~DBG_SPSR_SS;
1939 
1940 	if (is_compat_thread(task_thread_info(task)))
1941 		return valid_compat_regs(regs);
1942 	else
1943 		return valid_native_regs(regs);
1944 }
1945