1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45
46 struct pt_regs_offset {
47 const char *name;
48 int offset;
49 };
50
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55
56 static const struct pt_regs_offset regoffset_table[] = {
57 GPR_OFFSET_NAME(0),
58 GPR_OFFSET_NAME(1),
59 GPR_OFFSET_NAME(2),
60 GPR_OFFSET_NAME(3),
61 GPR_OFFSET_NAME(4),
62 GPR_OFFSET_NAME(5),
63 GPR_OFFSET_NAME(6),
64 GPR_OFFSET_NAME(7),
65 GPR_OFFSET_NAME(8),
66 GPR_OFFSET_NAME(9),
67 GPR_OFFSET_NAME(10),
68 GPR_OFFSET_NAME(11),
69 GPR_OFFSET_NAME(12),
70 GPR_OFFSET_NAME(13),
71 GPR_OFFSET_NAME(14),
72 GPR_OFFSET_NAME(15),
73 GPR_OFFSET_NAME(16),
74 GPR_OFFSET_NAME(17),
75 GPR_OFFSET_NAME(18),
76 GPR_OFFSET_NAME(19),
77 GPR_OFFSET_NAME(20),
78 GPR_OFFSET_NAME(21),
79 GPR_OFFSET_NAME(22),
80 GPR_OFFSET_NAME(23),
81 GPR_OFFSET_NAME(24),
82 GPR_OFFSET_NAME(25),
83 GPR_OFFSET_NAME(26),
84 GPR_OFFSET_NAME(27),
85 GPR_OFFSET_NAME(28),
86 GPR_OFFSET_NAME(29),
87 GPR_OFFSET_NAME(30),
88 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 REG_OFFSET_NAME(sp),
90 REG_OFFSET_NAME(pc),
91 REG_OFFSET_NAME(pstate),
92 REG_OFFSET_END,
93 };
94
95 /**
96 * regs_query_register_offset() - query register offset from its name
97 * @name: the name of a register
98 *
99 * regs_query_register_offset() returns the offset of a register in struct
100 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101 */
regs_query_register_offset(const char * name)102 int regs_query_register_offset(const char *name)
103 {
104 const struct pt_regs_offset *roff;
105
106 for (roff = regoffset_table; roff->name != NULL; roff++)
107 if (!strcmp(roff->name, name))
108 return roff->offset;
109 return -EINVAL;
110 }
111
112 /**
113 * regs_within_kernel_stack() - check the address in the stack
114 * @regs: pt_regs which contains kernel stack pointer.
115 * @addr: address which is checked.
116 *
117 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118 * If @addr is within the kernel stack, it returns true. If not, returns false.
119 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 return ((addr & ~(THREAD_SIZE - 1)) ==
123 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 on_irq_stack(addr, sizeof(unsigned long));
125 }
126
127 /**
128 * regs_get_kernel_stack_nth() - get Nth entry of the stack
129 * @regs: pt_regs which contains kernel stack pointer.
130 * @n: stack entry number.
131 *
132 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134 * this returns 0.
135 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139
140 addr += n;
141 if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 return *addr;
143 else
144 return 0;
145 }
146
147 /*
148 * TODO: does not yet catch signals sent when the child dies.
149 * in exit.c or in signal.c.
150 */
151
152 /*
153 * Called by kernel/ptrace.c when detaching..
154 */
ptrace_disable(struct task_struct * child)155 void ptrace_disable(struct task_struct *child)
156 {
157 /*
158 * This would be better off in core code, but PTRACE_DETACH has
159 * grown its fair share of arch-specific worts and changing it
160 * is likely to cause regressions on obscure architectures.
161 */
162 user_disable_single_step(child);
163 }
164
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167 * Handle hitting a HW-breakpoint.
168 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)169 static void ptrace_hbptriggered(struct perf_event *bp,
170 struct perf_sample_data *data,
171 struct pt_regs *regs)
172 {
173 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 const char *desc = "Hardware breakpoint trap (ptrace)";
175
176 #ifdef CONFIG_COMPAT
177 if (is_compat_task()) {
178 int si_errno = 0;
179 int i;
180
181 for (i = 0; i < ARM_MAX_BRP; ++i) {
182 if (current->thread.debug.hbp_break[i] == bp) {
183 si_errno = (i << 1) + 1;
184 break;
185 }
186 }
187
188 for (i = 0; i < ARM_MAX_WRP; ++i) {
189 if (current->thread.debug.hbp_watch[i] == bp) {
190 si_errno = -((i << 1) + 1);
191 break;
192 }
193 }
194 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 desc);
196 return;
197 }
198 #endif
199 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201
202 /*
203 * Unregister breakpoints from this task and reset the pointers in
204 * the thread_struct.
205 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 int i;
209 struct thread_struct *t = &tsk->thread;
210
211 for (i = 0; i < ARM_MAX_BRP; i++) {
212 if (t->debug.hbp_break[i]) {
213 unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 t->debug.hbp_break[i] = NULL;
215 }
216 }
217
218 for (i = 0; i < ARM_MAX_WRP; i++) {
219 if (t->debug.hbp_watch[i]) {
220 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 t->debug.hbp_watch[i] = NULL;
222 }
223 }
224 }
225
ptrace_hw_copy_thread(struct task_struct * tsk)226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230
ptrace_hbp_get_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx)231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 struct task_struct *tsk,
233 unsigned long idx)
234 {
235 struct perf_event *bp = ERR_PTR(-EINVAL);
236
237 switch (note_type) {
238 case NT_ARM_HW_BREAK:
239 if (idx >= ARM_MAX_BRP)
240 goto out;
241 idx = array_index_nospec(idx, ARM_MAX_BRP);
242 bp = tsk->thread.debug.hbp_break[idx];
243 break;
244 case NT_ARM_HW_WATCH:
245 if (idx >= ARM_MAX_WRP)
246 goto out;
247 idx = array_index_nospec(idx, ARM_MAX_WRP);
248 bp = tsk->thread.debug.hbp_watch[idx];
249 break;
250 }
251
252 out:
253 return bp;
254 }
255
ptrace_hbp_set_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx,struct perf_event * bp)256 static int ptrace_hbp_set_event(unsigned int note_type,
257 struct task_struct *tsk,
258 unsigned long idx,
259 struct perf_event *bp)
260 {
261 int err = -EINVAL;
262
263 switch (note_type) {
264 case NT_ARM_HW_BREAK:
265 if (idx >= ARM_MAX_BRP)
266 goto out;
267 idx = array_index_nospec(idx, ARM_MAX_BRP);
268 tsk->thread.debug.hbp_break[idx] = bp;
269 err = 0;
270 break;
271 case NT_ARM_HW_WATCH:
272 if (idx >= ARM_MAX_WRP)
273 goto out;
274 idx = array_index_nospec(idx, ARM_MAX_WRP);
275 tsk->thread.debug.hbp_watch[idx] = bp;
276 err = 0;
277 break;
278 }
279
280 out:
281 return err;
282 }
283
ptrace_hbp_create(unsigned int note_type,struct task_struct * tsk,unsigned long idx)284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 struct task_struct *tsk,
286 unsigned long idx)
287 {
288 struct perf_event *bp;
289 struct perf_event_attr attr;
290 int err, type;
291
292 switch (note_type) {
293 case NT_ARM_HW_BREAK:
294 type = HW_BREAKPOINT_X;
295 break;
296 case NT_ARM_HW_WATCH:
297 type = HW_BREAKPOINT_RW;
298 break;
299 default:
300 return ERR_PTR(-EINVAL);
301 }
302
303 ptrace_breakpoint_init(&attr);
304
305 /*
306 * Initialise fields to sane defaults
307 * (i.e. values that will pass validation).
308 */
309 attr.bp_addr = 0;
310 attr.bp_len = HW_BREAKPOINT_LEN_4;
311 attr.bp_type = type;
312 attr.disabled = 1;
313
314 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 if (IS_ERR(bp))
316 return bp;
317
318 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 if (err)
320 return ERR_PTR(err);
321
322 return bp;
323 }
324
ptrace_hbp_fill_attr_ctrl(unsigned int note_type,struct arch_hw_breakpoint_ctrl ctrl,struct perf_event_attr * attr)325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 struct arch_hw_breakpoint_ctrl ctrl,
327 struct perf_event_attr *attr)
328 {
329 int err, len, type, offset, disabled = !ctrl.enabled;
330
331 attr->disabled = disabled;
332 if (disabled)
333 return 0;
334
335 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 if (err)
337 return err;
338
339 switch (note_type) {
340 case NT_ARM_HW_BREAK:
341 if ((type & HW_BREAKPOINT_X) != type)
342 return -EINVAL;
343 break;
344 case NT_ARM_HW_WATCH:
345 if ((type & HW_BREAKPOINT_RW) != type)
346 return -EINVAL;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 attr->bp_len = len;
353 attr->bp_type = type;
354 attr->bp_addr += offset;
355
356 return 0;
357 }
358
ptrace_hbp_get_resource_info(unsigned int note_type,u32 * info)359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 u8 num;
362 u32 reg = 0;
363
364 switch (note_type) {
365 case NT_ARM_HW_BREAK:
366 num = hw_breakpoint_slots(TYPE_INST);
367 break;
368 case NT_ARM_HW_WATCH:
369 num = hw_breakpoint_slots(TYPE_DATA);
370 break;
371 default:
372 return -EINVAL;
373 }
374
375 reg |= debug_monitors_arch();
376 reg <<= 8;
377 reg |= num;
378
379 *info = reg;
380 return 0;
381 }
382
ptrace_hbp_get_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 * ctrl)383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 struct task_struct *tsk,
385 unsigned long idx,
386 u32 *ctrl)
387 {
388 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389
390 if (IS_ERR(bp))
391 return PTR_ERR(bp);
392
393 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 return 0;
395 }
396
ptrace_hbp_get_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 * addr)397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 struct task_struct *tsk,
399 unsigned long idx,
400 u64 *addr)
401 {
402 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403
404 if (IS_ERR(bp))
405 return PTR_ERR(bp);
406
407 *addr = bp ? counter_arch_bp(bp)->address : 0;
408 return 0;
409 }
410
ptrace_hbp_get_initialised_bp(unsigned int note_type,struct task_struct * tsk,unsigned long idx)411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 struct task_struct *tsk,
413 unsigned long idx)
414 {
415 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416
417 if (!bp)
418 bp = ptrace_hbp_create(note_type, tsk, idx);
419
420 return bp;
421 }
422
ptrace_hbp_set_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 uctrl)423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 struct task_struct *tsk,
425 unsigned long idx,
426 u32 uctrl)
427 {
428 int err;
429 struct perf_event *bp;
430 struct perf_event_attr attr;
431 struct arch_hw_breakpoint_ctrl ctrl;
432
433 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 if (IS_ERR(bp)) {
435 err = PTR_ERR(bp);
436 return err;
437 }
438
439 attr = bp->attr;
440 decode_ctrl_reg(uctrl, &ctrl);
441 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 if (err)
443 return err;
444
445 return modify_user_hw_breakpoint(bp, &attr);
446 }
447
ptrace_hbp_set_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 addr)448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 struct task_struct *tsk,
450 unsigned long idx,
451 u64 addr)
452 {
453 int err;
454 struct perf_event *bp;
455 struct perf_event_attr attr;
456
457 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 if (IS_ERR(bp)) {
459 err = PTR_ERR(bp);
460 return err;
461 }
462
463 attr = bp->attr;
464 attr.bp_addr = addr;
465 err = modify_user_hw_breakpoint(bp, &attr);
466 return err;
467 }
468
469 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ sizeof(u32)
472
hw_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)473 static int hw_break_get(struct task_struct *target,
474 const struct user_regset *regset,
475 struct membuf to)
476 {
477 unsigned int note_type = regset->core_note_type;
478 int ret, idx = 0;
479 u32 info, ctrl;
480 u64 addr;
481
482 /* Resource info */
483 ret = ptrace_hbp_get_resource_info(note_type, &info);
484 if (ret)
485 return ret;
486
487 membuf_write(&to, &info, sizeof(info));
488 membuf_zero(&to, sizeof(u32));
489 /* (address, ctrl) registers */
490 while (to.left) {
491 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 if (ret)
493 return ret;
494 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 if (ret)
496 return ret;
497 membuf_store(&to, addr);
498 membuf_store(&to, ctrl);
499 membuf_zero(&to, sizeof(u32));
500 idx++;
501 }
502 return 0;
503 }
504
hw_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)505 static int hw_break_set(struct task_struct *target,
506 const struct user_regset *regset,
507 unsigned int pos, unsigned int count,
508 const void *kbuf, const void __user *ubuf)
509 {
510 unsigned int note_type = regset->core_note_type;
511 int ret, idx = 0, offset, limit;
512 u32 ctrl;
513 u64 addr;
514
515 /* Resource info and pad */
516 offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518
519 /* (address, ctrl) registers */
520 limit = regset->n * regset->size;
521 while (count && offset < limit) {
522 if (count < PTRACE_HBP_ADDR_SZ)
523 return -EINVAL;
524 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525 offset, offset + PTRACE_HBP_ADDR_SZ);
526 if (ret)
527 return ret;
528 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529 if (ret)
530 return ret;
531 offset += PTRACE_HBP_ADDR_SZ;
532
533 if (!count)
534 break;
535 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536 offset, offset + PTRACE_HBP_CTRL_SZ);
537 if (ret)
538 return ret;
539 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540 if (ret)
541 return ret;
542 offset += PTRACE_HBP_CTRL_SZ;
543
544 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545 offset, offset + PTRACE_HBP_PAD_SZ);
546 offset += PTRACE_HBP_PAD_SZ;
547 idx++;
548 }
549
550 return 0;
551 }
552 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
553
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)554 static int gpr_get(struct task_struct *target,
555 const struct user_regset *regset,
556 struct membuf to)
557 {
558 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559 return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563 unsigned int pos, unsigned int count,
564 const void *kbuf, const void __user *ubuf)
565 {
566 int ret;
567 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568
569 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570 if (ret)
571 return ret;
572
573 if (!valid_user_regs(&newregs, target))
574 return -EINVAL;
575
576 task_pt_regs(target)->user_regs = newregs;
577 return 0;
578 }
579
fpr_active(struct task_struct * target,const struct user_regset * regset)580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582 if (!system_supports_fpsimd())
583 return -ENODEV;
584 return regset->n;
585 }
586
587 /*
588 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589 */
__fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)590 static int __fpr_get(struct task_struct *target,
591 const struct user_regset *regset,
592 struct membuf to)
593 {
594 struct user_fpsimd_state *uregs;
595
596 sve_sync_to_fpsimd(target);
597
598 uregs = &target->thread.uw.fpsimd_state;
599
600 return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602
fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604 struct membuf to)
605 {
606 if (!system_supports_fpsimd())
607 return -EINVAL;
608
609 if (target == current)
610 fpsimd_preserve_current_state();
611
612 return __fpr_get(target, regset, to);
613 }
614
__fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned int start_pos)615 static int __fpr_set(struct task_struct *target,
616 const struct user_regset *regset,
617 unsigned int pos, unsigned int count,
618 const void *kbuf, const void __user *ubuf,
619 unsigned int start_pos)
620 {
621 int ret;
622 struct user_fpsimd_state newstate;
623
624 /*
625 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626 * short copyin can't resurrect stale data.
627 */
628 sve_sync_to_fpsimd(target);
629
630 newstate = target->thread.uw.fpsimd_state;
631
632 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633 start_pos, start_pos + sizeof(newstate));
634 if (ret)
635 return ret;
636
637 target->thread.uw.fpsimd_state = newstate;
638
639 return ret;
640 }
641
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643 unsigned int pos, unsigned int count,
644 const void *kbuf, const void __user *ubuf)
645 {
646 int ret;
647
648 if (!system_supports_fpsimd())
649 return -EINVAL;
650
651 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652 if (ret)
653 return ret;
654
655 sve_sync_from_fpsimd_zeropad(target);
656 fpsimd_flush_task_state(target);
657
658 return ret;
659 }
660
tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662 struct membuf to)
663 {
664 int ret;
665
666 if (target == current)
667 tls_preserve_current_state();
668
669 ret = membuf_store(&to, target->thread.uw.tp_value);
670 if (system_supports_tpidr2())
671 ret = membuf_store(&to, target->thread.tpidr2_el0);
672 else
673 ret = membuf_zero(&to, sizeof(u64));
674
675 return ret;
676 }
677
tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 unsigned int pos, unsigned int count,
680 const void *kbuf, const void __user *ubuf)
681 {
682 int ret;
683 unsigned long tls[2];
684
685 tls[0] = target->thread.uw.tp_value;
686 if (system_supports_tpidr2())
687 tls[1] = target->thread.tpidr2_el0;
688
689 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690 if (ret)
691 return ret;
692
693 target->thread.uw.tp_value = tls[0];
694 if (system_supports_tpidr2())
695 target->thread.tpidr2_el0 = tls[1];
696
697 return ret;
698 }
699
system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)700 static int system_call_get(struct task_struct *target,
701 const struct user_regset *regset,
702 struct membuf to)
703 {
704 return membuf_store(&to, task_pt_regs(target)->syscallno);
705 }
706
system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)707 static int system_call_set(struct task_struct *target,
708 const struct user_regset *regset,
709 unsigned int pos, unsigned int count,
710 const void *kbuf, const void __user *ubuf)
711 {
712 int syscallno = task_pt_regs(target)->syscallno;
713 int ret;
714
715 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
716 if (ret)
717 return ret;
718
719 task_pt_regs(target)->syscallno = syscallno;
720 return ret;
721 }
722
723 #ifdef CONFIG_ARM64_SVE
724
sve_init_header_from_task(struct user_sve_header * header,struct task_struct * target,enum vec_type type)725 static void sve_init_header_from_task(struct user_sve_header *header,
726 struct task_struct *target,
727 enum vec_type type)
728 {
729 unsigned int vq;
730 bool active;
731 enum vec_type task_type;
732
733 memset(header, 0, sizeof(*header));
734
735 /* Check if the requested registers are active for the task */
736 if (thread_sm_enabled(&target->thread))
737 task_type = ARM64_VEC_SME;
738 else
739 task_type = ARM64_VEC_SVE;
740 active = (task_type == type);
741
742 switch (type) {
743 case ARM64_VEC_SVE:
744 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
745 header->flags |= SVE_PT_VL_INHERIT;
746 break;
747 case ARM64_VEC_SME:
748 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
749 header->flags |= SVE_PT_VL_INHERIT;
750 break;
751 default:
752 WARN_ON_ONCE(1);
753 return;
754 }
755
756 if (active) {
757 if (target->thread.fp_type == FP_STATE_FPSIMD) {
758 header->flags |= SVE_PT_REGS_FPSIMD;
759 } else {
760 header->flags |= SVE_PT_REGS_SVE;
761 }
762 }
763
764 header->vl = task_get_vl(target, type);
765 vq = sve_vq_from_vl(header->vl);
766
767 header->max_vl = vec_max_vl(type);
768 header->size = SVE_PT_SIZE(vq, header->flags);
769 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
770 SVE_PT_REGS_SVE);
771 }
772
sve_size_from_header(struct user_sve_header const * header)773 static unsigned int sve_size_from_header(struct user_sve_header const *header)
774 {
775 return ALIGN(header->size, SVE_VQ_BYTES);
776 }
777
sve_get_common(struct task_struct * target,const struct user_regset * regset,struct membuf to,enum vec_type type)778 static int sve_get_common(struct task_struct *target,
779 const struct user_regset *regset,
780 struct membuf to,
781 enum vec_type type)
782 {
783 struct user_sve_header header;
784 unsigned int vq;
785 unsigned long start, end;
786
787 /* Header */
788 sve_init_header_from_task(&header, target, type);
789 vq = sve_vq_from_vl(header.vl);
790
791 membuf_write(&to, &header, sizeof(header));
792
793 if (target == current)
794 fpsimd_preserve_current_state();
795
796 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
797 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
798
799 switch ((header.flags & SVE_PT_REGS_MASK)) {
800 case SVE_PT_REGS_FPSIMD:
801 return __fpr_get(target, regset, to);
802
803 case SVE_PT_REGS_SVE:
804 start = SVE_PT_SVE_OFFSET;
805 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
806 membuf_write(&to, target->thread.sve_state, end - start);
807
808 start = end;
809 end = SVE_PT_SVE_FPSR_OFFSET(vq);
810 membuf_zero(&to, end - start);
811
812 /*
813 * Copy fpsr, and fpcr which must follow contiguously in
814 * struct fpsimd_state:
815 */
816 start = end;
817 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
818 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
819 end - start);
820
821 start = end;
822 end = sve_size_from_header(&header);
823 return membuf_zero(&to, end - start);
824
825 default:
826 return 0;
827 }
828 }
829
sve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)830 static int sve_get(struct task_struct *target,
831 const struct user_regset *regset,
832 struct membuf to)
833 {
834 if (!system_supports_sve())
835 return -EINVAL;
836
837 return sve_get_common(target, regset, to, ARM64_VEC_SVE);
838 }
839
sve_set_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,enum vec_type type)840 static int sve_set_common(struct task_struct *target,
841 const struct user_regset *regset,
842 unsigned int pos, unsigned int count,
843 const void *kbuf, const void __user *ubuf,
844 enum vec_type type)
845 {
846 int ret;
847 struct user_sve_header header;
848 unsigned int vq;
849 unsigned long start, end;
850
851 /* Header */
852 if (count < sizeof(header))
853 return -EINVAL;
854 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
855 0, sizeof(header));
856 if (ret)
857 goto out;
858
859 /*
860 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
861 * vec_set_vector_length(), which will also validate them for us:
862 */
863 ret = vec_set_vector_length(target, type, header.vl,
864 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
865 if (ret)
866 goto out;
867
868 /* Actual VL set may be less than the user asked for: */
869 vq = sve_vq_from_vl(task_get_vl(target, type));
870
871 /* Enter/exit streaming mode */
872 if (system_supports_sme()) {
873 u64 old_svcr = target->thread.svcr;
874
875 switch (type) {
876 case ARM64_VEC_SVE:
877 target->thread.svcr &= ~SVCR_SM_MASK;
878 break;
879 case ARM64_VEC_SME:
880 target->thread.svcr |= SVCR_SM_MASK;
881
882 /*
883 * Disable traps and ensure there is SME storage but
884 * preserve any currently set values in ZA/ZT.
885 */
886 sme_alloc(target, false);
887 set_tsk_thread_flag(target, TIF_SME);
888 break;
889 default:
890 WARN_ON_ONCE(1);
891 ret = -EINVAL;
892 goto out;
893 }
894
895 /*
896 * If we switched then invalidate any existing SVE
897 * state and ensure there's storage.
898 */
899 if (target->thread.svcr != old_svcr)
900 sve_alloc(target, true);
901 }
902
903 /* Registers: FPSIMD-only case */
904
905 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
906 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
907 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
908 SVE_PT_FPSIMD_OFFSET);
909 clear_tsk_thread_flag(target, TIF_SVE);
910 target->thread.fp_type = FP_STATE_FPSIMD;
911 goto out;
912 }
913
914 /*
915 * Otherwise: no registers or full SVE case. For backwards
916 * compatibility reasons we treat empty flags as SVE registers.
917 */
918
919 /*
920 * If setting a different VL from the requested VL and there is
921 * register data, the data layout will be wrong: don't even
922 * try to set the registers in this case.
923 */
924 if (count && vq != sve_vq_from_vl(header.vl)) {
925 ret = -EIO;
926 goto out;
927 }
928
929 sve_alloc(target, true);
930 if (!target->thread.sve_state) {
931 ret = -ENOMEM;
932 clear_tsk_thread_flag(target, TIF_SVE);
933 target->thread.fp_type = FP_STATE_FPSIMD;
934 goto out;
935 }
936
937 /*
938 * Ensure target->thread.sve_state is up to date with target's
939 * FPSIMD regs, so that a short copyin leaves trailing
940 * registers unmodified. Only enable SVE if we are
941 * configuring normal SVE, a system with streaming SVE may not
942 * have normal SVE.
943 */
944 fpsimd_sync_to_sve(target);
945 if (type == ARM64_VEC_SVE)
946 set_tsk_thread_flag(target, TIF_SVE);
947 target->thread.fp_type = FP_STATE_SVE;
948
949 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
950 start = SVE_PT_SVE_OFFSET;
951 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
952 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
953 target->thread.sve_state,
954 start, end);
955 if (ret)
956 goto out;
957
958 start = end;
959 end = SVE_PT_SVE_FPSR_OFFSET(vq);
960 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
961
962 /*
963 * Copy fpsr, and fpcr which must follow contiguously in
964 * struct fpsimd_state:
965 */
966 start = end;
967 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
968 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
969 &target->thread.uw.fpsimd_state.fpsr,
970 start, end);
971
972 out:
973 fpsimd_flush_task_state(target);
974 return ret;
975 }
976
sve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)977 static int sve_set(struct task_struct *target,
978 const struct user_regset *regset,
979 unsigned int pos, unsigned int count,
980 const void *kbuf, const void __user *ubuf)
981 {
982 if (!system_supports_sve())
983 return -EINVAL;
984
985 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
986 ARM64_VEC_SVE);
987 }
988
989 #endif /* CONFIG_ARM64_SVE */
990
991 #ifdef CONFIG_ARM64_SME
992
ssve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)993 static int ssve_get(struct task_struct *target,
994 const struct user_regset *regset,
995 struct membuf to)
996 {
997 if (!system_supports_sme())
998 return -EINVAL;
999
1000 return sve_get_common(target, regset, to, ARM64_VEC_SME);
1001 }
1002
ssve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1003 static int ssve_set(struct task_struct *target,
1004 const struct user_regset *regset,
1005 unsigned int pos, unsigned int count,
1006 const void *kbuf, const void __user *ubuf)
1007 {
1008 if (!system_supports_sme())
1009 return -EINVAL;
1010
1011 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1012 ARM64_VEC_SME);
1013 }
1014
za_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1015 static int za_get(struct task_struct *target,
1016 const struct user_regset *regset,
1017 struct membuf to)
1018 {
1019 struct user_za_header header;
1020 unsigned int vq;
1021 unsigned long start, end;
1022
1023 if (!system_supports_sme())
1024 return -EINVAL;
1025
1026 /* Header */
1027 memset(&header, 0, sizeof(header));
1028
1029 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1030 header.flags |= ZA_PT_VL_INHERIT;
1031
1032 header.vl = task_get_sme_vl(target);
1033 vq = sve_vq_from_vl(header.vl);
1034 header.max_vl = sme_max_vl();
1035 header.max_size = ZA_PT_SIZE(vq);
1036
1037 /* If ZA is not active there is only the header */
1038 if (thread_za_enabled(&target->thread))
1039 header.size = ZA_PT_SIZE(vq);
1040 else
1041 header.size = ZA_PT_ZA_OFFSET;
1042
1043 membuf_write(&to, &header, sizeof(header));
1044
1045 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1046 end = ZA_PT_ZA_OFFSET;
1047
1048 if (target == current)
1049 fpsimd_preserve_current_state();
1050
1051 /* Any register data to include? */
1052 if (thread_za_enabled(&target->thread)) {
1053 start = end;
1054 end = ZA_PT_SIZE(vq);
1055 membuf_write(&to, target->thread.sme_state, end - start);
1056 }
1057
1058 /* Zero any trailing padding */
1059 start = end;
1060 end = ALIGN(header.size, SVE_VQ_BYTES);
1061 return membuf_zero(&to, end - start);
1062 }
1063
za_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1064 static int za_set(struct task_struct *target,
1065 const struct user_regset *regset,
1066 unsigned int pos, unsigned int count,
1067 const void *kbuf, const void __user *ubuf)
1068 {
1069 int ret;
1070 struct user_za_header header;
1071 unsigned int vq;
1072 unsigned long start, end;
1073
1074 if (!system_supports_sme())
1075 return -EINVAL;
1076
1077 /* Header */
1078 if (count < sizeof(header))
1079 return -EINVAL;
1080 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1081 0, sizeof(header));
1082 if (ret)
1083 goto out;
1084
1085 /*
1086 * All current ZA_PT_* flags are consumed by
1087 * vec_set_vector_length(), which will also validate them for
1088 * us:
1089 */
1090 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1091 ((unsigned long)header.flags) << 16);
1092 if (ret)
1093 goto out;
1094
1095 /* Actual VL set may be less than the user asked for: */
1096 vq = sve_vq_from_vl(task_get_sme_vl(target));
1097
1098 /* Ensure there is some SVE storage for streaming mode */
1099 if (!target->thread.sve_state) {
1100 sve_alloc(target, false);
1101 if (!target->thread.sve_state) {
1102 ret = -ENOMEM;
1103 goto out;
1104 }
1105 }
1106
1107 /*
1108 * Only flush the storage if PSTATE.ZA was not already set,
1109 * otherwise preserve any existing data.
1110 */
1111 sme_alloc(target, !thread_za_enabled(&target->thread));
1112 if (!target->thread.sme_state)
1113 return -ENOMEM;
1114
1115 /* If there is no data then disable ZA */
1116 if (!count) {
1117 target->thread.svcr &= ~SVCR_ZA_MASK;
1118 goto out;
1119 }
1120
1121 /*
1122 * If setting a different VL from the requested VL and there is
1123 * register data, the data layout will be wrong: don't even
1124 * try to set the registers in this case.
1125 */
1126 if (vq != sve_vq_from_vl(header.vl)) {
1127 ret = -EIO;
1128 goto out;
1129 }
1130
1131 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1132 start = ZA_PT_ZA_OFFSET;
1133 end = ZA_PT_SIZE(vq);
1134 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1135 target->thread.sme_state,
1136 start, end);
1137 if (ret)
1138 goto out;
1139
1140 /* Mark ZA as active and let userspace use it */
1141 set_tsk_thread_flag(target, TIF_SME);
1142 target->thread.svcr |= SVCR_ZA_MASK;
1143
1144 out:
1145 fpsimd_flush_task_state(target);
1146 return ret;
1147 }
1148
zt_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1149 static int zt_get(struct task_struct *target,
1150 const struct user_regset *regset,
1151 struct membuf to)
1152 {
1153 if (!system_supports_sme2())
1154 return -EINVAL;
1155
1156 /*
1157 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1158 * enabled so report the current register value as zero.
1159 */
1160 if (thread_za_enabled(&target->thread))
1161 membuf_write(&to, thread_zt_state(&target->thread),
1162 ZT_SIG_REG_BYTES);
1163 else
1164 membuf_zero(&to, ZT_SIG_REG_BYTES);
1165
1166 return 0;
1167 }
1168
zt_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1169 static int zt_set(struct task_struct *target,
1170 const struct user_regset *regset,
1171 unsigned int pos, unsigned int count,
1172 const void *kbuf, const void __user *ubuf)
1173 {
1174 int ret;
1175
1176 if (!system_supports_sme2())
1177 return -EINVAL;
1178
1179 /* Ensure SVE storage in case this is first use of SME */
1180 sve_alloc(target, false);
1181 if (!target->thread.sve_state)
1182 return -ENOMEM;
1183
1184 if (!thread_za_enabled(&target->thread)) {
1185 sme_alloc(target, true);
1186 if (!target->thread.sme_state)
1187 return -ENOMEM;
1188 }
1189
1190 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1191 thread_zt_state(&target->thread),
1192 0, ZT_SIG_REG_BYTES);
1193 if (ret == 0) {
1194 target->thread.svcr |= SVCR_ZA_MASK;
1195 set_tsk_thread_flag(target, TIF_SME);
1196 }
1197
1198 fpsimd_flush_task_state(target);
1199
1200 return ret;
1201 }
1202
1203 #endif /* CONFIG_ARM64_SME */
1204
1205 #ifdef CONFIG_ARM64_PTR_AUTH
pac_mask_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1206 static int pac_mask_get(struct task_struct *target,
1207 const struct user_regset *regset,
1208 struct membuf to)
1209 {
1210 /*
1211 * The PAC bits can differ across data and instruction pointers
1212 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1213 * we expose separate masks.
1214 */
1215 unsigned long mask = ptrauth_user_pac_mask();
1216 struct user_pac_mask uregs = {
1217 .data_mask = mask,
1218 .insn_mask = mask,
1219 };
1220
1221 if (!system_supports_address_auth())
1222 return -EINVAL;
1223
1224 return membuf_write(&to, &uregs, sizeof(uregs));
1225 }
1226
pac_enabled_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1227 static int pac_enabled_keys_get(struct task_struct *target,
1228 const struct user_regset *regset,
1229 struct membuf to)
1230 {
1231 long enabled_keys = ptrauth_get_enabled_keys(target);
1232
1233 if (IS_ERR_VALUE(enabled_keys))
1234 return enabled_keys;
1235
1236 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1237 }
1238
pac_enabled_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1239 static int pac_enabled_keys_set(struct task_struct *target,
1240 const struct user_regset *regset,
1241 unsigned int pos, unsigned int count,
1242 const void *kbuf, const void __user *ubuf)
1243 {
1244 int ret;
1245 long enabled_keys = ptrauth_get_enabled_keys(target);
1246
1247 if (IS_ERR_VALUE(enabled_keys))
1248 return enabled_keys;
1249
1250 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1251 sizeof(long));
1252 if (ret)
1253 return ret;
1254
1255 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1256 enabled_keys);
1257 }
1258
1259 #ifdef CONFIG_CHECKPOINT_RESTORE
pac_key_to_user(const struct ptrauth_key * key)1260 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1261 {
1262 return (__uint128_t)key->hi << 64 | key->lo;
1263 }
1264
pac_key_from_user(__uint128_t ukey)1265 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1266 {
1267 struct ptrauth_key key = {
1268 .lo = (unsigned long)ukey,
1269 .hi = (unsigned long)(ukey >> 64),
1270 };
1271
1272 return key;
1273 }
1274
pac_address_keys_to_user(struct user_pac_address_keys * ukeys,const struct ptrauth_keys_user * keys)1275 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1276 const struct ptrauth_keys_user *keys)
1277 {
1278 ukeys->apiakey = pac_key_to_user(&keys->apia);
1279 ukeys->apibkey = pac_key_to_user(&keys->apib);
1280 ukeys->apdakey = pac_key_to_user(&keys->apda);
1281 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1282 }
1283
pac_address_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_address_keys * ukeys)1284 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1285 const struct user_pac_address_keys *ukeys)
1286 {
1287 keys->apia = pac_key_from_user(ukeys->apiakey);
1288 keys->apib = pac_key_from_user(ukeys->apibkey);
1289 keys->apda = pac_key_from_user(ukeys->apdakey);
1290 keys->apdb = pac_key_from_user(ukeys->apdbkey);
1291 }
1292
pac_address_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1293 static int pac_address_keys_get(struct task_struct *target,
1294 const struct user_regset *regset,
1295 struct membuf to)
1296 {
1297 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1298 struct user_pac_address_keys user_keys;
1299
1300 if (!system_supports_address_auth())
1301 return -EINVAL;
1302
1303 pac_address_keys_to_user(&user_keys, keys);
1304
1305 return membuf_write(&to, &user_keys, sizeof(user_keys));
1306 }
1307
pac_address_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1308 static int pac_address_keys_set(struct task_struct *target,
1309 const struct user_regset *regset,
1310 unsigned int pos, unsigned int count,
1311 const void *kbuf, const void __user *ubuf)
1312 {
1313 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1314 struct user_pac_address_keys user_keys;
1315 int ret;
1316
1317 if (!system_supports_address_auth())
1318 return -EINVAL;
1319
1320 pac_address_keys_to_user(&user_keys, keys);
1321 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1322 &user_keys, 0, -1);
1323 if (ret)
1324 return ret;
1325 pac_address_keys_from_user(keys, &user_keys);
1326
1327 return 0;
1328 }
1329
pac_generic_keys_to_user(struct user_pac_generic_keys * ukeys,const struct ptrauth_keys_user * keys)1330 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1331 const struct ptrauth_keys_user *keys)
1332 {
1333 ukeys->apgakey = pac_key_to_user(&keys->apga);
1334 }
1335
pac_generic_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_generic_keys * ukeys)1336 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1337 const struct user_pac_generic_keys *ukeys)
1338 {
1339 keys->apga = pac_key_from_user(ukeys->apgakey);
1340 }
1341
pac_generic_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1342 static int pac_generic_keys_get(struct task_struct *target,
1343 const struct user_regset *regset,
1344 struct membuf to)
1345 {
1346 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1347 struct user_pac_generic_keys user_keys;
1348
1349 if (!system_supports_generic_auth())
1350 return -EINVAL;
1351
1352 pac_generic_keys_to_user(&user_keys, keys);
1353
1354 return membuf_write(&to, &user_keys, sizeof(user_keys));
1355 }
1356
pac_generic_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1357 static int pac_generic_keys_set(struct task_struct *target,
1358 const struct user_regset *regset,
1359 unsigned int pos, unsigned int count,
1360 const void *kbuf, const void __user *ubuf)
1361 {
1362 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1363 struct user_pac_generic_keys user_keys;
1364 int ret;
1365
1366 if (!system_supports_generic_auth())
1367 return -EINVAL;
1368
1369 pac_generic_keys_to_user(&user_keys, keys);
1370 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1371 &user_keys, 0, -1);
1372 if (ret)
1373 return ret;
1374 pac_generic_keys_from_user(keys, &user_keys);
1375
1376 return 0;
1377 }
1378 #endif /* CONFIG_CHECKPOINT_RESTORE */
1379 #endif /* CONFIG_ARM64_PTR_AUTH */
1380
1381 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
tagged_addr_ctrl_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1382 static int tagged_addr_ctrl_get(struct task_struct *target,
1383 const struct user_regset *regset,
1384 struct membuf to)
1385 {
1386 long ctrl = get_tagged_addr_ctrl(target);
1387
1388 if (IS_ERR_VALUE(ctrl))
1389 return ctrl;
1390
1391 return membuf_write(&to, &ctrl, sizeof(ctrl));
1392 }
1393
tagged_addr_ctrl_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1394 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1395 user_regset *regset, unsigned int pos,
1396 unsigned int count, const void *kbuf, const
1397 void __user *ubuf)
1398 {
1399 int ret;
1400 long ctrl;
1401
1402 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1403 if (ret)
1404 return ret;
1405
1406 return set_tagged_addr_ctrl(target, ctrl);
1407 }
1408 #endif
1409
1410 enum aarch64_regset {
1411 REGSET_GPR,
1412 REGSET_FPR,
1413 REGSET_TLS,
1414 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1415 REGSET_HW_BREAK,
1416 REGSET_HW_WATCH,
1417 #endif
1418 REGSET_SYSTEM_CALL,
1419 #ifdef CONFIG_ARM64_SVE
1420 REGSET_SVE,
1421 #endif
1422 #ifdef CONFIG_ARM64_SME
1423 REGSET_SSVE,
1424 REGSET_ZA,
1425 REGSET_ZT,
1426 #endif
1427 #ifdef CONFIG_ARM64_PTR_AUTH
1428 REGSET_PAC_MASK,
1429 REGSET_PAC_ENABLED_KEYS,
1430 #ifdef CONFIG_CHECKPOINT_RESTORE
1431 REGSET_PACA_KEYS,
1432 REGSET_PACG_KEYS,
1433 #endif
1434 #endif
1435 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1436 REGSET_TAGGED_ADDR_CTRL,
1437 #endif
1438 };
1439
1440 static const struct user_regset aarch64_regsets[] = {
1441 [REGSET_GPR] = {
1442 .core_note_type = NT_PRSTATUS,
1443 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1444 .size = sizeof(u64),
1445 .align = sizeof(u64),
1446 .regset_get = gpr_get,
1447 .set = gpr_set
1448 },
1449 [REGSET_FPR] = {
1450 .core_note_type = NT_PRFPREG,
1451 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1452 /*
1453 * We pretend we have 32-bit registers because the fpsr and
1454 * fpcr are 32-bits wide.
1455 */
1456 .size = sizeof(u32),
1457 .align = sizeof(u32),
1458 .active = fpr_active,
1459 .regset_get = fpr_get,
1460 .set = fpr_set
1461 },
1462 [REGSET_TLS] = {
1463 .core_note_type = NT_ARM_TLS,
1464 .n = 2,
1465 .size = sizeof(void *),
1466 .align = sizeof(void *),
1467 .regset_get = tls_get,
1468 .set = tls_set,
1469 },
1470 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1471 [REGSET_HW_BREAK] = {
1472 .core_note_type = NT_ARM_HW_BREAK,
1473 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1474 .size = sizeof(u32),
1475 .align = sizeof(u32),
1476 .regset_get = hw_break_get,
1477 .set = hw_break_set,
1478 },
1479 [REGSET_HW_WATCH] = {
1480 .core_note_type = NT_ARM_HW_WATCH,
1481 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1482 .size = sizeof(u32),
1483 .align = sizeof(u32),
1484 .regset_get = hw_break_get,
1485 .set = hw_break_set,
1486 },
1487 #endif
1488 [REGSET_SYSTEM_CALL] = {
1489 .core_note_type = NT_ARM_SYSTEM_CALL,
1490 .n = 1,
1491 .size = sizeof(int),
1492 .align = sizeof(int),
1493 .regset_get = system_call_get,
1494 .set = system_call_set,
1495 },
1496 #ifdef CONFIG_ARM64_SVE
1497 [REGSET_SVE] = { /* Scalable Vector Extension */
1498 .core_note_type = NT_ARM_SVE,
1499 .n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1500 SVE_PT_REGS_SVE),
1501 SVE_VQ_BYTES),
1502 .size = SVE_VQ_BYTES,
1503 .align = SVE_VQ_BYTES,
1504 .regset_get = sve_get,
1505 .set = sve_set,
1506 },
1507 #endif
1508 #ifdef CONFIG_ARM64_SME
1509 [REGSET_SSVE] = { /* Streaming mode SVE */
1510 .core_note_type = NT_ARM_SSVE,
1511 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1512 SVE_VQ_BYTES),
1513 .size = SVE_VQ_BYTES,
1514 .align = SVE_VQ_BYTES,
1515 .regset_get = ssve_get,
1516 .set = ssve_set,
1517 },
1518 [REGSET_ZA] = { /* SME ZA */
1519 .core_note_type = NT_ARM_ZA,
1520 /*
1521 * ZA is a single register but it's variably sized and
1522 * the ptrace core requires that the size of any data
1523 * be an exact multiple of the configured register
1524 * size so report as though we had SVE_VQ_BYTES
1525 * registers. These values aren't exposed to
1526 * userspace.
1527 */
1528 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1529 .size = SVE_VQ_BYTES,
1530 .align = SVE_VQ_BYTES,
1531 .regset_get = za_get,
1532 .set = za_set,
1533 },
1534 [REGSET_ZT] = { /* SME ZT */
1535 .core_note_type = NT_ARM_ZT,
1536 .n = 1,
1537 .size = ZT_SIG_REG_BYTES,
1538 .align = sizeof(u64),
1539 .regset_get = zt_get,
1540 .set = zt_set,
1541 },
1542 #endif
1543 #ifdef CONFIG_ARM64_PTR_AUTH
1544 [REGSET_PAC_MASK] = {
1545 .core_note_type = NT_ARM_PAC_MASK,
1546 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1547 .size = sizeof(u64),
1548 .align = sizeof(u64),
1549 .regset_get = pac_mask_get,
1550 /* this cannot be set dynamically */
1551 },
1552 [REGSET_PAC_ENABLED_KEYS] = {
1553 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1554 .n = 1,
1555 .size = sizeof(long),
1556 .align = sizeof(long),
1557 .regset_get = pac_enabled_keys_get,
1558 .set = pac_enabled_keys_set,
1559 },
1560 #ifdef CONFIG_CHECKPOINT_RESTORE
1561 [REGSET_PACA_KEYS] = {
1562 .core_note_type = NT_ARM_PACA_KEYS,
1563 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1564 .size = sizeof(__uint128_t),
1565 .align = sizeof(__uint128_t),
1566 .regset_get = pac_address_keys_get,
1567 .set = pac_address_keys_set,
1568 },
1569 [REGSET_PACG_KEYS] = {
1570 .core_note_type = NT_ARM_PACG_KEYS,
1571 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1572 .size = sizeof(__uint128_t),
1573 .align = sizeof(__uint128_t),
1574 .regset_get = pac_generic_keys_get,
1575 .set = pac_generic_keys_set,
1576 },
1577 #endif
1578 #endif
1579 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1580 [REGSET_TAGGED_ADDR_CTRL] = {
1581 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1582 .n = 1,
1583 .size = sizeof(long),
1584 .align = sizeof(long),
1585 .regset_get = tagged_addr_ctrl_get,
1586 .set = tagged_addr_ctrl_set,
1587 },
1588 #endif
1589 };
1590
1591 static const struct user_regset_view user_aarch64_view = {
1592 .name = "aarch64", .e_machine = EM_AARCH64,
1593 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1594 };
1595
1596 #ifdef CONFIG_COMPAT
1597 enum compat_regset {
1598 REGSET_COMPAT_GPR,
1599 REGSET_COMPAT_VFP,
1600 };
1601
compat_get_user_reg(struct task_struct * task,int idx)1602 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1603 {
1604 struct pt_regs *regs = task_pt_regs(task);
1605
1606 switch (idx) {
1607 case 15:
1608 return regs->pc;
1609 case 16:
1610 return pstate_to_compat_psr(regs->pstate);
1611 case 17:
1612 return regs->orig_x0;
1613 default:
1614 return regs->regs[idx];
1615 }
1616 }
1617
compat_gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1618 static int compat_gpr_get(struct task_struct *target,
1619 const struct user_regset *regset,
1620 struct membuf to)
1621 {
1622 int i = 0;
1623
1624 while (to.left)
1625 membuf_store(&to, compat_get_user_reg(target, i++));
1626 return 0;
1627 }
1628
compat_gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1629 static int compat_gpr_set(struct task_struct *target,
1630 const struct user_regset *regset,
1631 unsigned int pos, unsigned int count,
1632 const void *kbuf, const void __user *ubuf)
1633 {
1634 struct pt_regs newregs;
1635 int ret = 0;
1636 unsigned int i, start, num_regs;
1637
1638 /* Calculate the number of AArch32 registers contained in count */
1639 num_regs = count / regset->size;
1640
1641 /* Convert pos into an register number */
1642 start = pos / regset->size;
1643
1644 if (start + num_regs > regset->n)
1645 return -EIO;
1646
1647 newregs = *task_pt_regs(target);
1648
1649 for (i = 0; i < num_regs; ++i) {
1650 unsigned int idx = start + i;
1651 compat_ulong_t reg;
1652
1653 if (kbuf) {
1654 memcpy(®, kbuf, sizeof(reg));
1655 kbuf += sizeof(reg);
1656 } else {
1657 ret = copy_from_user(®, ubuf, sizeof(reg));
1658 if (ret) {
1659 ret = -EFAULT;
1660 break;
1661 }
1662
1663 ubuf += sizeof(reg);
1664 }
1665
1666 switch (idx) {
1667 case 15:
1668 newregs.pc = reg;
1669 break;
1670 case 16:
1671 reg = compat_psr_to_pstate(reg);
1672 newregs.pstate = reg;
1673 break;
1674 case 17:
1675 newregs.orig_x0 = reg;
1676 break;
1677 default:
1678 newregs.regs[idx] = reg;
1679 }
1680
1681 }
1682
1683 if (valid_user_regs(&newregs.user_regs, target))
1684 *task_pt_regs(target) = newregs;
1685 else
1686 ret = -EINVAL;
1687
1688 return ret;
1689 }
1690
compat_vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1691 static int compat_vfp_get(struct task_struct *target,
1692 const struct user_regset *regset,
1693 struct membuf to)
1694 {
1695 struct user_fpsimd_state *uregs;
1696 compat_ulong_t fpscr;
1697
1698 if (!system_supports_fpsimd())
1699 return -EINVAL;
1700
1701 uregs = &target->thread.uw.fpsimd_state;
1702
1703 if (target == current)
1704 fpsimd_preserve_current_state();
1705
1706 /*
1707 * The VFP registers are packed into the fpsimd_state, so they all sit
1708 * nicely together for us. We just need to create the fpscr separately.
1709 */
1710 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1711 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1712 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1713 return membuf_store(&to, fpscr);
1714 }
1715
compat_vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1716 static int compat_vfp_set(struct task_struct *target,
1717 const struct user_regset *regset,
1718 unsigned int pos, unsigned int count,
1719 const void *kbuf, const void __user *ubuf)
1720 {
1721 struct user_fpsimd_state *uregs;
1722 compat_ulong_t fpscr;
1723 int ret, vregs_end_pos;
1724
1725 if (!system_supports_fpsimd())
1726 return -EINVAL;
1727
1728 uregs = &target->thread.uw.fpsimd_state;
1729
1730 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1731 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1732 vregs_end_pos);
1733
1734 if (count && !ret) {
1735 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1736 vregs_end_pos, VFP_STATE_SIZE);
1737 if (!ret) {
1738 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1739 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1740 }
1741 }
1742
1743 fpsimd_flush_task_state(target);
1744 return ret;
1745 }
1746
compat_tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1747 static int compat_tls_get(struct task_struct *target,
1748 const struct user_regset *regset,
1749 struct membuf to)
1750 {
1751 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1752 }
1753
compat_tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1754 static int compat_tls_set(struct task_struct *target,
1755 const struct user_regset *regset, unsigned int pos,
1756 unsigned int count, const void *kbuf,
1757 const void __user *ubuf)
1758 {
1759 int ret;
1760 compat_ulong_t tls = target->thread.uw.tp_value;
1761
1762 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1763 if (ret)
1764 return ret;
1765
1766 target->thread.uw.tp_value = tls;
1767 return ret;
1768 }
1769
1770 static const struct user_regset aarch32_regsets[] = {
1771 [REGSET_COMPAT_GPR] = {
1772 .core_note_type = NT_PRSTATUS,
1773 .n = COMPAT_ELF_NGREG,
1774 .size = sizeof(compat_elf_greg_t),
1775 .align = sizeof(compat_elf_greg_t),
1776 .regset_get = compat_gpr_get,
1777 .set = compat_gpr_set
1778 },
1779 [REGSET_COMPAT_VFP] = {
1780 .core_note_type = NT_ARM_VFP,
1781 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1782 .size = sizeof(compat_ulong_t),
1783 .align = sizeof(compat_ulong_t),
1784 .active = fpr_active,
1785 .regset_get = compat_vfp_get,
1786 .set = compat_vfp_set
1787 },
1788 };
1789
1790 static const struct user_regset_view user_aarch32_view = {
1791 .name = "aarch32", .e_machine = EM_ARM,
1792 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1793 };
1794
1795 static const struct user_regset aarch32_ptrace_regsets[] = {
1796 [REGSET_GPR] = {
1797 .core_note_type = NT_PRSTATUS,
1798 .n = COMPAT_ELF_NGREG,
1799 .size = sizeof(compat_elf_greg_t),
1800 .align = sizeof(compat_elf_greg_t),
1801 .regset_get = compat_gpr_get,
1802 .set = compat_gpr_set
1803 },
1804 [REGSET_FPR] = {
1805 .core_note_type = NT_ARM_VFP,
1806 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1807 .size = sizeof(compat_ulong_t),
1808 .align = sizeof(compat_ulong_t),
1809 .regset_get = compat_vfp_get,
1810 .set = compat_vfp_set
1811 },
1812 [REGSET_TLS] = {
1813 .core_note_type = NT_ARM_TLS,
1814 .n = 1,
1815 .size = sizeof(compat_ulong_t),
1816 .align = sizeof(compat_ulong_t),
1817 .regset_get = compat_tls_get,
1818 .set = compat_tls_set,
1819 },
1820 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1821 [REGSET_HW_BREAK] = {
1822 .core_note_type = NT_ARM_HW_BREAK,
1823 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1824 .size = sizeof(u32),
1825 .align = sizeof(u32),
1826 .regset_get = hw_break_get,
1827 .set = hw_break_set,
1828 },
1829 [REGSET_HW_WATCH] = {
1830 .core_note_type = NT_ARM_HW_WATCH,
1831 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1832 .size = sizeof(u32),
1833 .align = sizeof(u32),
1834 .regset_get = hw_break_get,
1835 .set = hw_break_set,
1836 },
1837 #endif
1838 [REGSET_SYSTEM_CALL] = {
1839 .core_note_type = NT_ARM_SYSTEM_CALL,
1840 .n = 1,
1841 .size = sizeof(int),
1842 .align = sizeof(int),
1843 .regset_get = system_call_get,
1844 .set = system_call_set,
1845 },
1846 };
1847
1848 static const struct user_regset_view user_aarch32_ptrace_view = {
1849 .name = "aarch32", .e_machine = EM_ARM,
1850 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1851 };
1852
compat_ptrace_read_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t __user * ret)1853 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1854 compat_ulong_t __user *ret)
1855 {
1856 compat_ulong_t tmp;
1857
1858 if (off & 3)
1859 return -EIO;
1860
1861 if (off == COMPAT_PT_TEXT_ADDR)
1862 tmp = tsk->mm->start_code;
1863 else if (off == COMPAT_PT_DATA_ADDR)
1864 tmp = tsk->mm->start_data;
1865 else if (off == COMPAT_PT_TEXT_END_ADDR)
1866 tmp = tsk->mm->end_code;
1867 else if (off < sizeof(compat_elf_gregset_t))
1868 tmp = compat_get_user_reg(tsk, off >> 2);
1869 else if (off >= COMPAT_USER_SZ)
1870 return -EIO;
1871 else
1872 tmp = 0;
1873
1874 return put_user(tmp, ret);
1875 }
1876
compat_ptrace_write_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t val)1877 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1878 compat_ulong_t val)
1879 {
1880 struct pt_regs newregs = *task_pt_regs(tsk);
1881 unsigned int idx = off / 4;
1882
1883 if (off & 3 || off >= COMPAT_USER_SZ)
1884 return -EIO;
1885
1886 if (off >= sizeof(compat_elf_gregset_t))
1887 return 0;
1888
1889 switch (idx) {
1890 case 15:
1891 newregs.pc = val;
1892 break;
1893 case 16:
1894 newregs.pstate = compat_psr_to_pstate(val);
1895 break;
1896 case 17:
1897 newregs.orig_x0 = val;
1898 break;
1899 default:
1900 newregs.regs[idx] = val;
1901 }
1902
1903 if (!valid_user_regs(&newregs.user_regs, tsk))
1904 return -EINVAL;
1905
1906 *task_pt_regs(tsk) = newregs;
1907 return 0;
1908 }
1909
1910 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1911
1912 /*
1913 * Convert a virtual register number into an index for a thread_info
1914 * breakpoint array. Breakpoints are identified using positive numbers
1915 * whilst watchpoints are negative. The registers are laid out as pairs
1916 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1917 * Register 0 is reserved for describing resource information.
1918 */
compat_ptrace_hbp_num_to_idx(compat_long_t num)1919 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1920 {
1921 return (abs(num) - 1) >> 1;
1922 }
1923
compat_ptrace_hbp_get_resource_info(u32 * kdata)1924 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1925 {
1926 u8 num_brps, num_wrps, debug_arch, wp_len;
1927 u32 reg = 0;
1928
1929 num_brps = hw_breakpoint_slots(TYPE_INST);
1930 num_wrps = hw_breakpoint_slots(TYPE_DATA);
1931
1932 debug_arch = debug_monitors_arch();
1933 wp_len = 8;
1934 reg |= debug_arch;
1935 reg <<= 8;
1936 reg |= wp_len;
1937 reg <<= 8;
1938 reg |= num_wrps;
1939 reg <<= 8;
1940 reg |= num_brps;
1941
1942 *kdata = reg;
1943 return 0;
1944 }
1945
compat_ptrace_hbp_get(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1946 static int compat_ptrace_hbp_get(unsigned int note_type,
1947 struct task_struct *tsk,
1948 compat_long_t num,
1949 u32 *kdata)
1950 {
1951 u64 addr = 0;
1952 u32 ctrl = 0;
1953
1954 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1955
1956 if (num & 1) {
1957 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1958 *kdata = (u32)addr;
1959 } else {
1960 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1961 *kdata = ctrl;
1962 }
1963
1964 return err;
1965 }
1966
compat_ptrace_hbp_set(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1967 static int compat_ptrace_hbp_set(unsigned int note_type,
1968 struct task_struct *tsk,
1969 compat_long_t num,
1970 u32 *kdata)
1971 {
1972 u64 addr;
1973 u32 ctrl;
1974
1975 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1976
1977 if (num & 1) {
1978 addr = *kdata;
1979 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1980 } else {
1981 ctrl = *kdata;
1982 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1983 }
1984
1985 return err;
1986 }
1987
compat_ptrace_gethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1988 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1989 compat_ulong_t __user *data)
1990 {
1991 int ret;
1992 u32 kdata;
1993
1994 /* Watchpoint */
1995 if (num < 0) {
1996 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1997 /* Resource info */
1998 } else if (num == 0) {
1999 ret = compat_ptrace_hbp_get_resource_info(&kdata);
2000 /* Breakpoint */
2001 } else {
2002 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2003 }
2004
2005 if (!ret)
2006 ret = put_user(kdata, data);
2007
2008 return ret;
2009 }
2010
compat_ptrace_sethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)2011 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2012 compat_ulong_t __user *data)
2013 {
2014 int ret;
2015 u32 kdata = 0;
2016
2017 if (num == 0)
2018 return 0;
2019
2020 ret = get_user(kdata, data);
2021 if (ret)
2022 return ret;
2023
2024 if (num < 0)
2025 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2026 else
2027 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2028
2029 return ret;
2030 }
2031 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2032
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)2033 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2034 compat_ulong_t caddr, compat_ulong_t cdata)
2035 {
2036 unsigned long addr = caddr;
2037 unsigned long data = cdata;
2038 void __user *datap = compat_ptr(data);
2039 int ret;
2040
2041 switch (request) {
2042 case PTRACE_PEEKUSR:
2043 ret = compat_ptrace_read_user(child, addr, datap);
2044 break;
2045
2046 case PTRACE_POKEUSR:
2047 ret = compat_ptrace_write_user(child, addr, data);
2048 break;
2049
2050 case COMPAT_PTRACE_GETREGS:
2051 ret = copy_regset_to_user(child,
2052 &user_aarch32_view,
2053 REGSET_COMPAT_GPR,
2054 0, sizeof(compat_elf_gregset_t),
2055 datap);
2056 break;
2057
2058 case COMPAT_PTRACE_SETREGS:
2059 ret = copy_regset_from_user(child,
2060 &user_aarch32_view,
2061 REGSET_COMPAT_GPR,
2062 0, sizeof(compat_elf_gregset_t),
2063 datap);
2064 break;
2065
2066 case COMPAT_PTRACE_GET_THREAD_AREA:
2067 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2068 (compat_ulong_t __user *)datap);
2069 break;
2070
2071 case COMPAT_PTRACE_SET_SYSCALL:
2072 task_pt_regs(child)->syscallno = data;
2073 ret = 0;
2074 break;
2075
2076 case COMPAT_PTRACE_GETVFPREGS:
2077 ret = copy_regset_to_user(child,
2078 &user_aarch32_view,
2079 REGSET_COMPAT_VFP,
2080 0, VFP_STATE_SIZE,
2081 datap);
2082 break;
2083
2084 case COMPAT_PTRACE_SETVFPREGS:
2085 ret = copy_regset_from_user(child,
2086 &user_aarch32_view,
2087 REGSET_COMPAT_VFP,
2088 0, VFP_STATE_SIZE,
2089 datap);
2090 break;
2091
2092 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2093 case COMPAT_PTRACE_GETHBPREGS:
2094 ret = compat_ptrace_gethbpregs(child, addr, datap);
2095 break;
2096
2097 case COMPAT_PTRACE_SETHBPREGS:
2098 ret = compat_ptrace_sethbpregs(child, addr, datap);
2099 break;
2100 #endif
2101
2102 default:
2103 ret = compat_ptrace_request(child, request, addr,
2104 data);
2105 break;
2106 }
2107
2108 return ret;
2109 }
2110 #endif /* CONFIG_COMPAT */
2111
task_user_regset_view(struct task_struct * task)2112 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2113 {
2114 #ifdef CONFIG_COMPAT
2115 /*
2116 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2117 * user_aarch32_view compatible with arm32. Native ptrace requests on
2118 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2119 * access to the TLS register.
2120 */
2121 if (is_compat_task())
2122 return &user_aarch32_view;
2123 else if (is_compat_thread(task_thread_info(task)))
2124 return &user_aarch32_ptrace_view;
2125 #endif
2126 return &user_aarch64_view;
2127 }
2128
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)2129 long arch_ptrace(struct task_struct *child, long request,
2130 unsigned long addr, unsigned long data)
2131 {
2132 switch (request) {
2133 case PTRACE_PEEKMTETAGS:
2134 case PTRACE_POKEMTETAGS:
2135 return mte_ptrace_copy_tags(child, request, addr, data);
2136 }
2137
2138 return ptrace_request(child, request, addr, data);
2139 }
2140
2141 enum ptrace_syscall_dir {
2142 PTRACE_SYSCALL_ENTER = 0,
2143 PTRACE_SYSCALL_EXIT,
2144 };
2145
report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)2146 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2147 {
2148 int regno;
2149 unsigned long saved_reg;
2150
2151 /*
2152 * We have some ABI weirdness here in the way that we handle syscall
2153 * exit stops because we indicate whether or not the stop has been
2154 * signalled from syscall entry or syscall exit by clobbering a general
2155 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2156 * and restoring its old value after the stop. This means that:
2157 *
2158 * - Any writes by the tracer to this register during the stop are
2159 * ignored/discarded.
2160 *
2161 * - The actual value of the register is not available during the stop,
2162 * so the tracer cannot save it and restore it later.
2163 *
2164 * - Syscall stops behave differently to seccomp and pseudo-step traps
2165 * (the latter do not nobble any registers).
2166 */
2167 regno = (is_compat_task() ? 12 : 7);
2168 saved_reg = regs->regs[regno];
2169 regs->regs[regno] = dir;
2170
2171 if (dir == PTRACE_SYSCALL_ENTER) {
2172 if (ptrace_report_syscall_entry(regs))
2173 forget_syscall(regs);
2174 regs->regs[regno] = saved_reg;
2175 } else if (!test_thread_flag(TIF_SINGLESTEP)) {
2176 ptrace_report_syscall_exit(regs, 0);
2177 regs->regs[regno] = saved_reg;
2178 } else {
2179 regs->regs[regno] = saved_reg;
2180
2181 /*
2182 * Signal a pseudo-step exception since we are stepping but
2183 * tracer modifications to the registers may have rewound the
2184 * state machine.
2185 */
2186 ptrace_report_syscall_exit(regs, 1);
2187 }
2188 }
2189
syscall_trace_enter(struct pt_regs * regs)2190 int syscall_trace_enter(struct pt_regs *regs)
2191 {
2192 unsigned long flags = read_thread_flags();
2193
2194 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2195 report_syscall(regs, PTRACE_SYSCALL_ENTER);
2196 if (flags & _TIF_SYSCALL_EMU)
2197 return NO_SYSCALL;
2198 }
2199
2200 /* Do the secure computing after ptrace; failures should be fast. */
2201 if (secure_computing() == -1)
2202 return NO_SYSCALL;
2203
2204 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2205 trace_sys_enter(regs, regs->syscallno);
2206
2207 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2208 regs->regs[2], regs->regs[3]);
2209
2210 return regs->syscallno;
2211 }
2212
syscall_trace_exit(struct pt_regs * regs)2213 void syscall_trace_exit(struct pt_regs *regs)
2214 {
2215 unsigned long flags = read_thread_flags();
2216
2217 audit_syscall_exit(regs);
2218
2219 if (flags & _TIF_SYSCALL_TRACEPOINT)
2220 trace_sys_exit(regs, syscall_get_return_value(current, regs));
2221
2222 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2223 report_syscall(regs, PTRACE_SYSCALL_EXIT);
2224
2225 rseq_syscall(regs);
2226 }
2227
2228 /*
2229 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2230 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2231 * not described in ARM DDI 0487D.a.
2232 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2233 * be allocated an EL0 meaning in future.
2234 * Userspace cannot use these until they have an architectural meaning.
2235 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2236 * We also reserve IL for the kernel; SS is handled dynamically.
2237 */
2238 #define SPSR_EL1_AARCH64_RES0_BITS \
2239 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2240 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2241 #define SPSR_EL1_AARCH32_RES0_BITS \
2242 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2243
valid_compat_regs(struct user_pt_regs * regs)2244 static int valid_compat_regs(struct user_pt_regs *regs)
2245 {
2246 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2247
2248 if (!system_supports_mixed_endian_el0()) {
2249 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2250 regs->pstate |= PSR_AA32_E_BIT;
2251 else
2252 regs->pstate &= ~PSR_AA32_E_BIT;
2253 }
2254
2255 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2256 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2257 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2258 (regs->pstate & PSR_AA32_F_BIT) == 0) {
2259 return 1;
2260 }
2261
2262 /*
2263 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2264 * arch/arm.
2265 */
2266 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2267 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2268 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2269 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2270 PSR_AA32_T_BIT;
2271 regs->pstate |= PSR_MODE32_BIT;
2272
2273 return 0;
2274 }
2275
valid_native_regs(struct user_pt_regs * regs)2276 static int valid_native_regs(struct user_pt_regs *regs)
2277 {
2278 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2279
2280 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2281 (regs->pstate & PSR_D_BIT) == 0 &&
2282 (regs->pstate & PSR_A_BIT) == 0 &&
2283 (regs->pstate & PSR_I_BIT) == 0 &&
2284 (regs->pstate & PSR_F_BIT) == 0) {
2285 return 1;
2286 }
2287
2288 /* Force PSR to a valid 64-bit EL0t */
2289 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2290
2291 return 0;
2292 }
2293
2294 /*
2295 * Are the current registers suitable for user mode? (used to maintain
2296 * security in signal handlers)
2297 */
valid_user_regs(struct user_pt_regs * regs,struct task_struct * task)2298 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2299 {
2300 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2301 user_regs_reset_single_step(regs, task);
2302
2303 if (is_compat_thread(task_thread_info(task)))
2304 return valid_compat_regs(regs);
2305 else
2306 return valid_native_regs(regs);
2307 }
2308