1 /* 2 * Based on arch/arm/kernel/process.c 3 * 4 * Original Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <stdarg.h> 22 23 #include <linux/compat.h> 24 #include <linux/efi.h> 25 #include <linux/export.h> 26 #include <linux/sched.h> 27 #include <linux/sched/debug.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/task_stack.h> 30 #include <linux/kernel.h> 31 #include <linux/mm.h> 32 #include <linux/stddef.h> 33 #include <linux/unistd.h> 34 #include <linux/user.h> 35 #include <linux/delay.h> 36 #include <linux/reboot.h> 37 #include <linux/interrupt.h> 38 #include <linux/init.h> 39 #include <linux/cpu.h> 40 #include <linux/elfcore.h> 41 #include <linux/pm.h> 42 #include <linux/tick.h> 43 #include <linux/utsname.h> 44 #include <linux/uaccess.h> 45 #include <linux/random.h> 46 #include <linux/hw_breakpoint.h> 47 #include <linux/personality.h> 48 #include <linux/notifier.h> 49 #include <trace/events/power.h> 50 #include <linux/percpu.h> 51 #include <linux/thread_info.h> 52 53 #include <asm/alternative.h> 54 #include <asm/arch_gicv3.h> 55 #include <asm/compat.h> 56 #include <asm/cacheflush.h> 57 #include <asm/exec.h> 58 #include <asm/fpsimd.h> 59 #include <asm/mmu_context.h> 60 #include <asm/processor.h> 61 #include <asm/pointer_auth.h> 62 #include <asm/stacktrace.h> 63 64 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 65 #include <linux/stackprotector.h> 66 unsigned long __stack_chk_guard __read_mostly; 67 EXPORT_SYMBOL(__stack_chk_guard); 68 #endif 69 70 /* 71 * Function pointers to optional machine specific functions 72 */ 73 void (*pm_power_off)(void); 74 EXPORT_SYMBOL_GPL(pm_power_off); 75 76 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 77 78 static void __cpu_do_idle(void) 79 { 80 dsb(sy); 81 wfi(); 82 } 83 84 static void __cpu_do_idle_irqprio(void) 85 { 86 unsigned long pmr; 87 unsigned long daif_bits; 88 89 daif_bits = read_sysreg(daif); 90 write_sysreg(daif_bits | PSR_I_BIT, daif); 91 92 /* 93 * Unmask PMR before going idle to make sure interrupts can 94 * be raised. 95 */ 96 pmr = gic_read_pmr(); 97 gic_write_pmr(GIC_PRIO_IRQON); 98 99 __cpu_do_idle(); 100 101 gic_write_pmr(pmr); 102 write_sysreg(daif_bits, daif); 103 } 104 105 /* 106 * cpu_do_idle() 107 * 108 * Idle the processor (wait for interrupt). 109 * 110 * If the CPU supports priority masking we must do additional work to 111 * ensure that interrupts are not masked at the PMR (because the core will 112 * not wake up if we block the wake up signal in the interrupt controller). 113 */ 114 void cpu_do_idle(void) 115 { 116 if (system_uses_irq_prio_masking()) 117 __cpu_do_idle_irqprio(); 118 else 119 __cpu_do_idle(); 120 } 121 122 /* 123 * This is our default idle handler. 124 */ 125 void arch_cpu_idle(void) 126 { 127 /* 128 * This should do all the clock switching and wait for interrupt 129 * tricks 130 */ 131 trace_cpu_idle_rcuidle(1, smp_processor_id()); 132 cpu_do_idle(); 133 local_irq_enable(); 134 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 135 } 136 137 #ifdef CONFIG_HOTPLUG_CPU 138 void arch_cpu_idle_dead(void) 139 { 140 cpu_die(); 141 } 142 #endif 143 144 /* 145 * Called by kexec, immediately prior to machine_kexec(). 146 * 147 * This must completely disable all secondary CPUs; simply causing those CPUs 148 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 149 * kexec'd kernel to use any and all RAM as it sees fit, without having to 150 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 151 * functionality embodied in disable_nonboot_cpus() to achieve this. 152 */ 153 void machine_shutdown(void) 154 { 155 disable_nonboot_cpus(); 156 } 157 158 /* 159 * Halting simply requires that the secondary CPUs stop performing any 160 * activity (executing tasks, handling interrupts). smp_send_stop() 161 * achieves this. 162 */ 163 void machine_halt(void) 164 { 165 local_irq_disable(); 166 smp_send_stop(); 167 while (1); 168 } 169 170 /* 171 * Power-off simply requires that the secondary CPUs stop performing any 172 * activity (executing tasks, handling interrupts). smp_send_stop() 173 * achieves this. When the system power is turned off, it will take all CPUs 174 * with it. 175 */ 176 void machine_power_off(void) 177 { 178 local_irq_disable(); 179 smp_send_stop(); 180 if (pm_power_off) 181 pm_power_off(); 182 } 183 184 /* 185 * Restart requires that the secondary CPUs stop performing any activity 186 * while the primary CPU resets the system. Systems with multiple CPUs must 187 * provide a HW restart implementation, to ensure that all CPUs reset at once. 188 * This is required so that any code running after reset on the primary CPU 189 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 190 * executing pre-reset code, and using RAM that the primary CPU's code wishes 191 * to use. Implementing such co-ordination would be essentially impossible. 192 */ 193 void machine_restart(char *cmd) 194 { 195 /* Disable interrupts first */ 196 local_irq_disable(); 197 smp_send_stop(); 198 199 /* 200 * UpdateCapsule() depends on the system being reset via 201 * ResetSystem(). 202 */ 203 if (efi_enabled(EFI_RUNTIME_SERVICES)) 204 efi_reboot(reboot_mode, NULL); 205 206 /* Now call the architecture specific reboot code. */ 207 if (arm_pm_restart) 208 arm_pm_restart(reboot_mode, cmd); 209 else 210 do_kernel_restart(cmd); 211 212 /* 213 * Whoops - the architecture was unable to reboot. 214 */ 215 printk("Reboot failed -- System halted\n"); 216 while (1); 217 } 218 219 static void print_pstate(struct pt_regs *regs) 220 { 221 u64 pstate = regs->pstate; 222 223 if (compat_user_mode(regs)) { 224 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 225 pstate, 226 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 227 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 228 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 229 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 230 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 231 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 232 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 233 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 234 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 235 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 236 } else { 237 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n", 238 pstate, 239 pstate & PSR_N_BIT ? 'N' : 'n', 240 pstate & PSR_Z_BIT ? 'Z' : 'z', 241 pstate & PSR_C_BIT ? 'C' : 'c', 242 pstate & PSR_V_BIT ? 'V' : 'v', 243 pstate & PSR_D_BIT ? 'D' : 'd', 244 pstate & PSR_A_BIT ? 'A' : 'a', 245 pstate & PSR_I_BIT ? 'I' : 'i', 246 pstate & PSR_F_BIT ? 'F' : 'f', 247 pstate & PSR_PAN_BIT ? '+' : '-', 248 pstate & PSR_UAO_BIT ? '+' : '-'); 249 } 250 } 251 252 void __show_regs(struct pt_regs *regs) 253 { 254 int i, top_reg; 255 u64 lr, sp; 256 257 if (compat_user_mode(regs)) { 258 lr = regs->compat_lr; 259 sp = regs->compat_sp; 260 top_reg = 12; 261 } else { 262 lr = regs->regs[30]; 263 sp = regs->sp; 264 top_reg = 29; 265 } 266 267 show_regs_print_info(KERN_DEFAULT); 268 print_pstate(regs); 269 270 if (!user_mode(regs)) { 271 printk("pc : %pS\n", (void *)regs->pc); 272 printk("lr : %pS\n", (void *)lr); 273 } else { 274 printk("pc : %016llx\n", regs->pc); 275 printk("lr : %016llx\n", lr); 276 } 277 278 printk("sp : %016llx\n", sp); 279 280 if (system_uses_irq_prio_masking()) 281 printk("pmr_save: %08llx\n", regs->pmr_save); 282 283 i = top_reg; 284 285 while (i >= 0) { 286 printk("x%-2d: %016llx ", i, regs->regs[i]); 287 i--; 288 289 if (i % 2 == 0) { 290 pr_cont("x%-2d: %016llx ", i, regs->regs[i]); 291 i--; 292 } 293 294 pr_cont("\n"); 295 } 296 } 297 298 void show_regs(struct pt_regs * regs) 299 { 300 __show_regs(regs); 301 dump_backtrace(regs, NULL); 302 } 303 304 static void tls_thread_flush(void) 305 { 306 write_sysreg(0, tpidr_el0); 307 308 if (is_compat_task()) { 309 current->thread.uw.tp_value = 0; 310 311 /* 312 * We need to ensure ordering between the shadow state and the 313 * hardware state, so that we don't corrupt the hardware state 314 * with a stale shadow state during context switch. 315 */ 316 barrier(); 317 write_sysreg(0, tpidrro_el0); 318 } 319 } 320 321 void flush_thread(void) 322 { 323 fpsimd_flush_thread(); 324 tls_thread_flush(); 325 flush_ptrace_hw_breakpoint(current); 326 } 327 328 void release_thread(struct task_struct *dead_task) 329 { 330 } 331 332 void arch_release_task_struct(struct task_struct *tsk) 333 { 334 fpsimd_release_task(tsk); 335 } 336 337 /* 338 * src and dst may temporarily have aliased sve_state after task_struct 339 * is copied. We cannot fix this properly here, because src may have 340 * live SVE state and dst's thread_info may not exist yet, so tweaking 341 * either src's or dst's TIF_SVE is not safe. 342 * 343 * The unaliasing is done in copy_thread() instead. This works because 344 * dst is not schedulable or traceable until both of these functions 345 * have been called. 346 */ 347 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 348 { 349 if (current->mm) 350 fpsimd_preserve_current_state(); 351 *dst = *src; 352 353 return 0; 354 } 355 356 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 357 358 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 359 unsigned long stk_sz, struct task_struct *p) 360 { 361 struct pt_regs *childregs = task_pt_regs(p); 362 363 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 364 365 /* 366 * Unalias p->thread.sve_state (if any) from the parent task 367 * and disable discard SVE state for p: 368 */ 369 clear_tsk_thread_flag(p, TIF_SVE); 370 p->thread.sve_state = NULL; 371 372 /* 373 * In case p was allocated the same task_struct pointer as some 374 * other recently-exited task, make sure p is disassociated from 375 * any cpu that may have run that now-exited task recently. 376 * Otherwise we could erroneously skip reloading the FPSIMD 377 * registers for p. 378 */ 379 fpsimd_flush_task_state(p); 380 381 if (likely(!(p->flags & PF_KTHREAD))) { 382 *childregs = *current_pt_regs(); 383 childregs->regs[0] = 0; 384 385 /* 386 * Read the current TLS pointer from tpidr_el0 as it may be 387 * out-of-sync with the saved value. 388 */ 389 *task_user_tls(p) = read_sysreg(tpidr_el0); 390 391 if (stack_start) { 392 if (is_compat_thread(task_thread_info(p))) 393 childregs->compat_sp = stack_start; 394 else 395 childregs->sp = stack_start; 396 } 397 398 /* 399 * If a TLS pointer was passed to clone (4th argument), use it 400 * for the new thread. 401 */ 402 if (clone_flags & CLONE_SETTLS) 403 p->thread.uw.tp_value = childregs->regs[3]; 404 } else { 405 memset(childregs, 0, sizeof(struct pt_regs)); 406 childregs->pstate = PSR_MODE_EL1h; 407 if (IS_ENABLED(CONFIG_ARM64_UAO) && 408 cpus_have_const_cap(ARM64_HAS_UAO)) 409 childregs->pstate |= PSR_UAO_BIT; 410 411 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) 412 childregs->pstate |= PSR_SSBS_BIT; 413 414 if (system_uses_irq_prio_masking()) 415 childregs->pmr_save = GIC_PRIO_IRQON; 416 417 p->thread.cpu_context.x19 = stack_start; 418 p->thread.cpu_context.x20 = stk_sz; 419 } 420 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 421 p->thread.cpu_context.sp = (unsigned long)childregs; 422 423 ptrace_hw_copy_thread(p); 424 425 return 0; 426 } 427 428 void tls_preserve_current_state(void) 429 { 430 *task_user_tls(current) = read_sysreg(tpidr_el0); 431 } 432 433 static void tls_thread_switch(struct task_struct *next) 434 { 435 tls_preserve_current_state(); 436 437 if (is_compat_thread(task_thread_info(next))) 438 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 439 else if (!arm64_kernel_unmapped_at_el0()) 440 write_sysreg(0, tpidrro_el0); 441 442 write_sysreg(*task_user_tls(next), tpidr_el0); 443 } 444 445 /* Restore the UAO state depending on next's addr_limit */ 446 void uao_thread_switch(struct task_struct *next) 447 { 448 if (IS_ENABLED(CONFIG_ARM64_UAO)) { 449 if (task_thread_info(next)->addr_limit == KERNEL_DS) 450 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); 451 else 452 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); 453 } 454 } 455 456 /* 457 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 458 * shadow copy so that we can restore this upon entry from userspace. 459 * 460 * This is *only* for exception entry from EL0, and is not valid until we 461 * __switch_to() a user task. 462 */ 463 DEFINE_PER_CPU(struct task_struct *, __entry_task); 464 465 static void entry_task_switch(struct task_struct *next) 466 { 467 __this_cpu_write(__entry_task, next); 468 } 469 470 /* 471 * Thread switching. 472 */ 473 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 474 struct task_struct *next) 475 { 476 struct task_struct *last; 477 478 fpsimd_thread_switch(next); 479 tls_thread_switch(next); 480 hw_breakpoint_thread_switch(next); 481 contextidr_thread_switch(next); 482 entry_task_switch(next); 483 uao_thread_switch(next); 484 ptrauth_thread_switch(next); 485 486 /* 487 * Complete any pending TLB or cache maintenance on this CPU in case 488 * the thread migrates to a different CPU. 489 * This full barrier is also required by the membarrier system 490 * call. 491 */ 492 dsb(ish); 493 494 /* the actual thread switch */ 495 last = cpu_switch_to(prev, next); 496 497 return last; 498 } 499 500 unsigned long get_wchan(struct task_struct *p) 501 { 502 struct stackframe frame; 503 unsigned long stack_page, ret = 0; 504 int count = 0; 505 if (!p || p == current || p->state == TASK_RUNNING) 506 return 0; 507 508 stack_page = (unsigned long)try_get_task_stack(p); 509 if (!stack_page) 510 return 0; 511 512 frame.fp = thread_saved_fp(p); 513 frame.pc = thread_saved_pc(p); 514 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 515 frame.graph = 0; 516 #endif 517 do { 518 if (unwind_frame(p, &frame)) 519 goto out; 520 if (!in_sched_functions(frame.pc)) { 521 ret = frame.pc; 522 goto out; 523 } 524 } while (count ++ < 16); 525 526 out: 527 put_task_stack(p); 528 return ret; 529 } 530 531 unsigned long arch_align_stack(unsigned long sp) 532 { 533 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 534 sp -= get_random_int() & ~PAGE_MASK; 535 return sp & ~0xf; 536 } 537 538 unsigned long arch_randomize_brk(struct mm_struct *mm) 539 { 540 if (is_compat_task()) 541 return randomize_page(mm->brk, SZ_32M); 542 else 543 return randomize_page(mm->brk, SZ_1G); 544 } 545 546 /* 547 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 548 */ 549 void arch_setup_new_exec(void) 550 { 551 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; 552 553 ptrauth_thread_init_user(current); 554 } 555