xref: /openbmc/linux/arch/arm64/kernel/process.c (revision bf070bb0)
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <stdarg.h>
22 
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/sched/debug.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/user.h>
35 #include <linux/delay.h>
36 #include <linux/reboot.h>
37 #include <linux/interrupt.h>
38 #include <linux/kallsyms.h>
39 #include <linux/init.h>
40 #include <linux/cpu.h>
41 #include <linux/elfcore.h>
42 #include <linux/pm.h>
43 #include <linux/tick.h>
44 #include <linux/utsname.h>
45 #include <linux/uaccess.h>
46 #include <linux/random.h>
47 #include <linux/hw_breakpoint.h>
48 #include <linux/personality.h>
49 #include <linux/notifier.h>
50 #include <trace/events/power.h>
51 #include <linux/percpu.h>
52 #include <linux/thread_info.h>
53 
54 #include <asm/alternative.h>
55 #include <asm/compat.h>
56 #include <asm/cacheflush.h>
57 #include <asm/exec.h>
58 #include <asm/fpsimd.h>
59 #include <asm/mmu_context.h>
60 #include <asm/processor.h>
61 #include <asm/stacktrace.h>
62 
63 #ifdef CONFIG_CC_STACKPROTECTOR
64 #include <linux/stackprotector.h>
65 unsigned long __stack_chk_guard __read_mostly;
66 EXPORT_SYMBOL(__stack_chk_guard);
67 #endif
68 
69 /*
70  * Function pointers to optional machine specific functions
71  */
72 void (*pm_power_off)(void);
73 EXPORT_SYMBOL_GPL(pm_power_off);
74 
75 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
76 
77 /*
78  * This is our default idle handler.
79  */
80 void arch_cpu_idle(void)
81 {
82 	/*
83 	 * This should do all the clock switching and wait for interrupt
84 	 * tricks
85 	 */
86 	trace_cpu_idle_rcuidle(1, smp_processor_id());
87 	cpu_do_idle();
88 	local_irq_enable();
89 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
90 }
91 
92 #ifdef CONFIG_HOTPLUG_CPU
93 void arch_cpu_idle_dead(void)
94 {
95        cpu_die();
96 }
97 #endif
98 
99 /*
100  * Called by kexec, immediately prior to machine_kexec().
101  *
102  * This must completely disable all secondary CPUs; simply causing those CPUs
103  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
104  * kexec'd kernel to use any and all RAM as it sees fit, without having to
105  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
106  * functionality embodied in disable_nonboot_cpus() to achieve this.
107  */
108 void machine_shutdown(void)
109 {
110 	disable_nonboot_cpus();
111 }
112 
113 /*
114  * Halting simply requires that the secondary CPUs stop performing any
115  * activity (executing tasks, handling interrupts). smp_send_stop()
116  * achieves this.
117  */
118 void machine_halt(void)
119 {
120 	local_irq_disable();
121 	smp_send_stop();
122 	while (1);
123 }
124 
125 /*
126  * Power-off simply requires that the secondary CPUs stop performing any
127  * activity (executing tasks, handling interrupts). smp_send_stop()
128  * achieves this. When the system power is turned off, it will take all CPUs
129  * with it.
130  */
131 void machine_power_off(void)
132 {
133 	local_irq_disable();
134 	smp_send_stop();
135 	if (pm_power_off)
136 		pm_power_off();
137 }
138 
139 /*
140  * Restart requires that the secondary CPUs stop performing any activity
141  * while the primary CPU resets the system. Systems with multiple CPUs must
142  * provide a HW restart implementation, to ensure that all CPUs reset at once.
143  * This is required so that any code running after reset on the primary CPU
144  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
145  * executing pre-reset code, and using RAM that the primary CPU's code wishes
146  * to use. Implementing such co-ordination would be essentially impossible.
147  */
148 void machine_restart(char *cmd)
149 {
150 	/* Disable interrupts first */
151 	local_irq_disable();
152 	smp_send_stop();
153 
154 	/*
155 	 * UpdateCapsule() depends on the system being reset via
156 	 * ResetSystem().
157 	 */
158 	if (efi_enabled(EFI_RUNTIME_SERVICES))
159 		efi_reboot(reboot_mode, NULL);
160 
161 	/* Now call the architecture specific reboot code. */
162 	if (arm_pm_restart)
163 		arm_pm_restart(reboot_mode, cmd);
164 	else
165 		do_kernel_restart(cmd);
166 
167 	/*
168 	 * Whoops - the architecture was unable to reboot.
169 	 */
170 	printk("Reboot failed -- System halted\n");
171 	while (1);
172 }
173 
174 static void print_pstate(struct pt_regs *regs)
175 {
176 	u64 pstate = regs->pstate;
177 
178 	if (compat_user_mode(regs)) {
179 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
180 			pstate,
181 			pstate & COMPAT_PSR_N_BIT ? 'N' : 'n',
182 			pstate & COMPAT_PSR_Z_BIT ? 'Z' : 'z',
183 			pstate & COMPAT_PSR_C_BIT ? 'C' : 'c',
184 			pstate & COMPAT_PSR_V_BIT ? 'V' : 'v',
185 			pstate & COMPAT_PSR_Q_BIT ? 'Q' : 'q',
186 			pstate & COMPAT_PSR_T_BIT ? "T32" : "A32",
187 			pstate & COMPAT_PSR_E_BIT ? "BE" : "LE",
188 			pstate & COMPAT_PSR_A_BIT ? 'A' : 'a',
189 			pstate & COMPAT_PSR_I_BIT ? 'I' : 'i',
190 			pstate & COMPAT_PSR_F_BIT ? 'F' : 'f');
191 	} else {
192 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
193 			pstate,
194 			pstate & PSR_N_BIT ? 'N' : 'n',
195 			pstate & PSR_Z_BIT ? 'Z' : 'z',
196 			pstate & PSR_C_BIT ? 'C' : 'c',
197 			pstate & PSR_V_BIT ? 'V' : 'v',
198 			pstate & PSR_D_BIT ? 'D' : 'd',
199 			pstate & PSR_A_BIT ? 'A' : 'a',
200 			pstate & PSR_I_BIT ? 'I' : 'i',
201 			pstate & PSR_F_BIT ? 'F' : 'f',
202 			pstate & PSR_PAN_BIT ? '+' : '-',
203 			pstate & PSR_UAO_BIT ? '+' : '-');
204 	}
205 }
206 
207 void __show_regs(struct pt_regs *regs)
208 {
209 	int i, top_reg;
210 	u64 lr, sp;
211 
212 	if (compat_user_mode(regs)) {
213 		lr = regs->compat_lr;
214 		sp = regs->compat_sp;
215 		top_reg = 12;
216 	} else {
217 		lr = regs->regs[30];
218 		sp = regs->sp;
219 		top_reg = 29;
220 	}
221 
222 	show_regs_print_info(KERN_DEFAULT);
223 	print_pstate(regs);
224 	print_symbol("pc : %s\n", regs->pc);
225 	print_symbol("lr : %s\n", lr);
226 	printk("sp : %016llx\n", sp);
227 
228 	i = top_reg;
229 
230 	while (i >= 0) {
231 		printk("x%-2d: %016llx ", i, regs->regs[i]);
232 		i--;
233 
234 		if (i % 2 == 0) {
235 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
236 			i--;
237 		}
238 
239 		pr_cont("\n");
240 	}
241 }
242 
243 void show_regs(struct pt_regs * regs)
244 {
245 	__show_regs(regs);
246 	dump_backtrace(regs, NULL);
247 }
248 
249 static void tls_thread_flush(void)
250 {
251 	write_sysreg(0, tpidr_el0);
252 
253 	if (is_compat_task()) {
254 		current->thread.tp_value = 0;
255 
256 		/*
257 		 * We need to ensure ordering between the shadow state and the
258 		 * hardware state, so that we don't corrupt the hardware state
259 		 * with a stale shadow state during context switch.
260 		 */
261 		barrier();
262 		write_sysreg(0, tpidrro_el0);
263 	}
264 }
265 
266 void flush_thread(void)
267 {
268 	fpsimd_flush_thread();
269 	tls_thread_flush();
270 	flush_ptrace_hw_breakpoint(current);
271 }
272 
273 void release_thread(struct task_struct *dead_task)
274 {
275 }
276 
277 void arch_release_task_struct(struct task_struct *tsk)
278 {
279 	fpsimd_release_task(tsk);
280 }
281 
282 /*
283  * src and dst may temporarily have aliased sve_state after task_struct
284  * is copied.  We cannot fix this properly here, because src may have
285  * live SVE state and dst's thread_info may not exist yet, so tweaking
286  * either src's or dst's TIF_SVE is not safe.
287  *
288  * The unaliasing is done in copy_thread() instead.  This works because
289  * dst is not schedulable or traceable until both of these functions
290  * have been called.
291  */
292 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
293 {
294 	if (current->mm)
295 		fpsimd_preserve_current_state();
296 	*dst = *src;
297 
298 	return 0;
299 }
300 
301 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
302 
303 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
304 		unsigned long stk_sz, struct task_struct *p)
305 {
306 	struct pt_regs *childregs = task_pt_regs(p);
307 
308 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
309 
310 	/*
311 	 * Unalias p->thread.sve_state (if any) from the parent task
312 	 * and disable discard SVE state for p:
313 	 */
314 	clear_tsk_thread_flag(p, TIF_SVE);
315 	p->thread.sve_state = NULL;
316 
317 	if (likely(!(p->flags & PF_KTHREAD))) {
318 		*childregs = *current_pt_regs();
319 		childregs->regs[0] = 0;
320 
321 		/*
322 		 * Read the current TLS pointer from tpidr_el0 as it may be
323 		 * out-of-sync with the saved value.
324 		 */
325 		*task_user_tls(p) = read_sysreg(tpidr_el0);
326 
327 		if (stack_start) {
328 			if (is_compat_thread(task_thread_info(p)))
329 				childregs->compat_sp = stack_start;
330 			else
331 				childregs->sp = stack_start;
332 		}
333 
334 		/*
335 		 * If a TLS pointer was passed to clone (4th argument), use it
336 		 * for the new thread.
337 		 */
338 		if (clone_flags & CLONE_SETTLS)
339 			p->thread.tp_value = childregs->regs[3];
340 	} else {
341 		memset(childregs, 0, sizeof(struct pt_regs));
342 		childregs->pstate = PSR_MODE_EL1h;
343 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
344 		    cpus_have_const_cap(ARM64_HAS_UAO))
345 			childregs->pstate |= PSR_UAO_BIT;
346 		p->thread.cpu_context.x19 = stack_start;
347 		p->thread.cpu_context.x20 = stk_sz;
348 	}
349 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
350 	p->thread.cpu_context.sp = (unsigned long)childregs;
351 
352 	ptrace_hw_copy_thread(p);
353 
354 	return 0;
355 }
356 
357 void tls_preserve_current_state(void)
358 {
359 	*task_user_tls(current) = read_sysreg(tpidr_el0);
360 }
361 
362 static void tls_thread_switch(struct task_struct *next)
363 {
364 	unsigned long tpidr, tpidrro;
365 
366 	tls_preserve_current_state();
367 
368 	tpidr = *task_user_tls(next);
369 	tpidrro = is_compat_thread(task_thread_info(next)) ?
370 		  next->thread.tp_value : 0;
371 
372 	write_sysreg(tpidr, tpidr_el0);
373 	write_sysreg(tpidrro, tpidrro_el0);
374 }
375 
376 /* Restore the UAO state depending on next's addr_limit */
377 void uao_thread_switch(struct task_struct *next)
378 {
379 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
380 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
381 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
382 		else
383 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
384 	}
385 }
386 
387 /*
388  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
389  * shadow copy so that we can restore this upon entry from userspace.
390  *
391  * This is *only* for exception entry from EL0, and is not valid until we
392  * __switch_to() a user task.
393  */
394 DEFINE_PER_CPU(struct task_struct *, __entry_task);
395 
396 static void entry_task_switch(struct task_struct *next)
397 {
398 	__this_cpu_write(__entry_task, next);
399 }
400 
401 /*
402  * Thread switching.
403  */
404 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
405 				struct task_struct *next)
406 {
407 	struct task_struct *last;
408 
409 	fpsimd_thread_switch(next);
410 	tls_thread_switch(next);
411 	hw_breakpoint_thread_switch(next);
412 	contextidr_thread_switch(next);
413 	entry_task_switch(next);
414 	uao_thread_switch(next);
415 
416 	/*
417 	 * Complete any pending TLB or cache maintenance on this CPU in case
418 	 * the thread migrates to a different CPU.
419 	 * This full barrier is also required by the membarrier system
420 	 * call.
421 	 */
422 	dsb(ish);
423 
424 	/* the actual thread switch */
425 	last = cpu_switch_to(prev, next);
426 
427 	return last;
428 }
429 
430 unsigned long get_wchan(struct task_struct *p)
431 {
432 	struct stackframe frame;
433 	unsigned long stack_page, ret = 0;
434 	int count = 0;
435 	if (!p || p == current || p->state == TASK_RUNNING)
436 		return 0;
437 
438 	stack_page = (unsigned long)try_get_task_stack(p);
439 	if (!stack_page)
440 		return 0;
441 
442 	frame.fp = thread_saved_fp(p);
443 	frame.pc = thread_saved_pc(p);
444 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
445 	frame.graph = p->curr_ret_stack;
446 #endif
447 	do {
448 		if (unwind_frame(p, &frame))
449 			goto out;
450 		if (!in_sched_functions(frame.pc)) {
451 			ret = frame.pc;
452 			goto out;
453 		}
454 	} while (count ++ < 16);
455 
456 out:
457 	put_task_stack(p);
458 	return ret;
459 }
460 
461 unsigned long arch_align_stack(unsigned long sp)
462 {
463 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
464 		sp -= get_random_int() & ~PAGE_MASK;
465 	return sp & ~0xf;
466 }
467 
468 unsigned long arch_randomize_brk(struct mm_struct *mm)
469 {
470 	if (is_compat_task())
471 		return randomize_page(mm->brk, SZ_32M);
472 	else
473 		return randomize_page(mm->brk, SZ_1G);
474 }
475 
476 /*
477  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
478  */
479 void arch_setup_new_exec(void)
480 {
481 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
482 }
483