xref: /openbmc/linux/arch/arm64/kernel/process.c (revision af958a38)
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <stdarg.h>
22 
23 #include <linux/compat.h>
24 #include <linux/export.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/stddef.h>
29 #include <linux/unistd.h>
30 #include <linux/user.h>
31 #include <linux/delay.h>
32 #include <linux/reboot.h>
33 #include <linux/interrupt.h>
34 #include <linux/kallsyms.h>
35 #include <linux/init.h>
36 #include <linux/cpu.h>
37 #include <linux/elfcore.h>
38 #include <linux/pm.h>
39 #include <linux/tick.h>
40 #include <linux/utsname.h>
41 #include <linux/uaccess.h>
42 #include <linux/random.h>
43 #include <linux/hw_breakpoint.h>
44 #include <linux/personality.h>
45 #include <linux/notifier.h>
46 
47 #include <asm/compat.h>
48 #include <asm/cacheflush.h>
49 #include <asm/fpsimd.h>
50 #include <asm/mmu_context.h>
51 #include <asm/processor.h>
52 #include <asm/stacktrace.h>
53 
54 #ifdef CONFIG_CC_STACKPROTECTOR
55 #include <linux/stackprotector.h>
56 unsigned long __stack_chk_guard __read_mostly;
57 EXPORT_SYMBOL(__stack_chk_guard);
58 #endif
59 
60 static void setup_restart(void)
61 {
62 	/*
63 	 * Tell the mm system that we are going to reboot -
64 	 * we may need it to insert some 1:1 mappings so that
65 	 * soft boot works.
66 	 */
67 	setup_mm_for_reboot();
68 
69 	/* Clean and invalidate caches */
70 	flush_cache_all();
71 
72 	/* Turn D-cache off */
73 	cpu_cache_off();
74 
75 	/* Push out any further dirty data, and ensure cache is empty */
76 	flush_cache_all();
77 }
78 
79 void soft_restart(unsigned long addr)
80 {
81 	typedef void (*phys_reset_t)(unsigned long);
82 	phys_reset_t phys_reset;
83 
84 	setup_restart();
85 
86 	/* Switch to the identity mapping */
87 	phys_reset = (phys_reset_t)virt_to_phys(cpu_reset);
88 	phys_reset(addr);
89 
90 	/* Should never get here */
91 	BUG();
92 }
93 
94 /*
95  * Function pointers to optional machine specific functions
96  */
97 void (*pm_power_off)(void);
98 EXPORT_SYMBOL_GPL(pm_power_off);
99 
100 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
101 EXPORT_SYMBOL_GPL(arm_pm_restart);
102 
103 /*
104  * This is our default idle handler.
105  */
106 void arch_cpu_idle(void)
107 {
108 	/*
109 	 * This should do all the clock switching and wait for interrupt
110 	 * tricks
111 	 */
112 	cpu_do_idle();
113 	local_irq_enable();
114 }
115 
116 #ifdef CONFIG_HOTPLUG_CPU
117 void arch_cpu_idle_dead(void)
118 {
119        cpu_die();
120 }
121 #endif
122 
123 /*
124  * Called by kexec, immediately prior to machine_kexec().
125  *
126  * This must completely disable all secondary CPUs; simply causing those CPUs
127  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
128  * kexec'd kernel to use any and all RAM as it sees fit, without having to
129  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
130  * functionality embodied in disable_nonboot_cpus() to achieve this.
131  */
132 void machine_shutdown(void)
133 {
134 	disable_nonboot_cpus();
135 }
136 
137 /*
138  * Halting simply requires that the secondary CPUs stop performing any
139  * activity (executing tasks, handling interrupts). smp_send_stop()
140  * achieves this.
141  */
142 void machine_halt(void)
143 {
144 	local_irq_disable();
145 	smp_send_stop();
146 	while (1);
147 }
148 
149 /*
150  * Power-off simply requires that the secondary CPUs stop performing any
151  * activity (executing tasks, handling interrupts). smp_send_stop()
152  * achieves this. When the system power is turned off, it will take all CPUs
153  * with it.
154  */
155 void machine_power_off(void)
156 {
157 	local_irq_disable();
158 	smp_send_stop();
159 	if (pm_power_off)
160 		pm_power_off();
161 }
162 
163 /*
164  * Restart requires that the secondary CPUs stop performing any activity
165  * while the primary CPU resets the system. Systems with a single CPU can
166  * use soft_restart() as their machine descriptor's .restart hook, since that
167  * will cause the only available CPU to reset. Systems with multiple CPUs must
168  * provide a HW restart implementation, to ensure that all CPUs reset at once.
169  * This is required so that any code running after reset on the primary CPU
170  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
171  * executing pre-reset code, and using RAM that the primary CPU's code wishes
172  * to use. Implementing such co-ordination would be essentially impossible.
173  */
174 void machine_restart(char *cmd)
175 {
176 	/* Disable interrupts first */
177 	local_irq_disable();
178 	smp_send_stop();
179 
180 	/* Now call the architecture specific reboot code. */
181 	if (arm_pm_restart)
182 		arm_pm_restart(reboot_mode, cmd);
183 
184 	/*
185 	 * Whoops - the architecture was unable to reboot.
186 	 */
187 	printk("Reboot failed -- System halted\n");
188 	while (1);
189 }
190 
191 void __show_regs(struct pt_regs *regs)
192 {
193 	int i, top_reg;
194 	u64 lr, sp;
195 
196 	if (compat_user_mode(regs)) {
197 		lr = regs->compat_lr;
198 		sp = regs->compat_sp;
199 		top_reg = 12;
200 	} else {
201 		lr = regs->regs[30];
202 		sp = regs->sp;
203 		top_reg = 29;
204 	}
205 
206 	show_regs_print_info(KERN_DEFAULT);
207 	print_symbol("PC is at %s\n", instruction_pointer(regs));
208 	print_symbol("LR is at %s\n", lr);
209 	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
210 	       regs->pc, lr, regs->pstate);
211 	printk("sp : %016llx\n", sp);
212 	for (i = top_reg; i >= 0; i--) {
213 		printk("x%-2d: %016llx ", i, regs->regs[i]);
214 		if (i % 2 == 0)
215 			printk("\n");
216 	}
217 	printk("\n");
218 }
219 
220 void show_regs(struct pt_regs * regs)
221 {
222 	printk("\n");
223 	__show_regs(regs);
224 }
225 
226 /*
227  * Free current thread data structures etc..
228  */
229 void exit_thread(void)
230 {
231 }
232 
233 static void tls_thread_flush(void)
234 {
235 	asm ("msr tpidr_el0, xzr");
236 
237 	if (is_compat_task()) {
238 		current->thread.tp_value = 0;
239 
240 		/*
241 		 * We need to ensure ordering between the shadow state and the
242 		 * hardware state, so that we don't corrupt the hardware state
243 		 * with a stale shadow state during context switch.
244 		 */
245 		barrier();
246 		asm ("msr tpidrro_el0, xzr");
247 	}
248 }
249 
250 void flush_thread(void)
251 {
252 	fpsimd_flush_thread();
253 	tls_thread_flush();
254 	flush_ptrace_hw_breakpoint(current);
255 }
256 
257 void release_thread(struct task_struct *dead_task)
258 {
259 }
260 
261 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
262 {
263 	fpsimd_preserve_current_state();
264 	*dst = *src;
265 	return 0;
266 }
267 
268 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
269 
270 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
271 		unsigned long stk_sz, struct task_struct *p)
272 {
273 	struct pt_regs *childregs = task_pt_regs(p);
274 	unsigned long tls = p->thread.tp_value;
275 
276 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
277 
278 	if (likely(!(p->flags & PF_KTHREAD))) {
279 		*childregs = *current_pt_regs();
280 		childregs->regs[0] = 0;
281 		if (is_compat_thread(task_thread_info(p))) {
282 			if (stack_start)
283 				childregs->compat_sp = stack_start;
284 		} else {
285 			/*
286 			 * Read the current TLS pointer from tpidr_el0 as it may be
287 			 * out-of-sync with the saved value.
288 			 */
289 			asm("mrs %0, tpidr_el0" : "=r" (tls));
290 			if (stack_start) {
291 				/* 16-byte aligned stack mandatory on AArch64 */
292 				if (stack_start & 15)
293 					return -EINVAL;
294 				childregs->sp = stack_start;
295 			}
296 		}
297 		/*
298 		 * If a TLS pointer was passed to clone (4th argument), use it
299 		 * for the new thread.
300 		 */
301 		if (clone_flags & CLONE_SETTLS)
302 			tls = childregs->regs[3];
303 	} else {
304 		memset(childregs, 0, sizeof(struct pt_regs));
305 		childregs->pstate = PSR_MODE_EL1h;
306 		p->thread.cpu_context.x19 = stack_start;
307 		p->thread.cpu_context.x20 = stk_sz;
308 	}
309 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
310 	p->thread.cpu_context.sp = (unsigned long)childregs;
311 	p->thread.tp_value = tls;
312 
313 	ptrace_hw_copy_thread(p);
314 
315 	return 0;
316 }
317 
318 static void tls_thread_switch(struct task_struct *next)
319 {
320 	unsigned long tpidr, tpidrro;
321 
322 	if (!is_compat_task()) {
323 		asm("mrs %0, tpidr_el0" : "=r" (tpidr));
324 		current->thread.tp_value = tpidr;
325 	}
326 
327 	if (is_compat_thread(task_thread_info(next))) {
328 		tpidr = 0;
329 		tpidrro = next->thread.tp_value;
330 	} else {
331 		tpidr = next->thread.tp_value;
332 		tpidrro = 0;
333 	}
334 
335 	asm(
336 	"	msr	tpidr_el0, %0\n"
337 	"	msr	tpidrro_el0, %1"
338 	: : "r" (tpidr), "r" (tpidrro));
339 }
340 
341 /*
342  * Thread switching.
343  */
344 struct task_struct *__switch_to(struct task_struct *prev,
345 				struct task_struct *next)
346 {
347 	struct task_struct *last;
348 
349 	fpsimd_thread_switch(next);
350 	tls_thread_switch(next);
351 	hw_breakpoint_thread_switch(next);
352 	contextidr_thread_switch(next);
353 
354 	/*
355 	 * Complete any pending TLB or cache maintenance on this CPU in case
356 	 * the thread migrates to a different CPU.
357 	 */
358 	dsb(ish);
359 
360 	/* the actual thread switch */
361 	last = cpu_switch_to(prev, next);
362 
363 	return last;
364 }
365 
366 unsigned long get_wchan(struct task_struct *p)
367 {
368 	struct stackframe frame;
369 	unsigned long stack_page;
370 	int count = 0;
371 	if (!p || p == current || p->state == TASK_RUNNING)
372 		return 0;
373 
374 	frame.fp = thread_saved_fp(p);
375 	frame.sp = thread_saved_sp(p);
376 	frame.pc = thread_saved_pc(p);
377 	stack_page = (unsigned long)task_stack_page(p);
378 	do {
379 		if (frame.sp < stack_page ||
380 		    frame.sp >= stack_page + THREAD_SIZE ||
381 		    unwind_frame(&frame))
382 			return 0;
383 		if (!in_sched_functions(frame.pc))
384 			return frame.pc;
385 	} while (count ++ < 16);
386 	return 0;
387 }
388 
389 unsigned long arch_align_stack(unsigned long sp)
390 {
391 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
392 		sp -= get_random_int() & ~PAGE_MASK;
393 	return sp & ~0xf;
394 }
395 
396 static unsigned long randomize_base(unsigned long base)
397 {
398 	unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
399 	return randomize_range(base, range_end, 0) ? : base;
400 }
401 
402 unsigned long arch_randomize_brk(struct mm_struct *mm)
403 {
404 	return randomize_base(mm->brk);
405 }
406 
407 unsigned long randomize_et_dyn(unsigned long base)
408 {
409 	return randomize_base(base);
410 }
411