1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <stdarg.h> 11 12 #include <linux/compat.h> 13 #include <linux/efi.h> 14 #include <linux/export.h> 15 #include <linux/sched.h> 16 #include <linux/sched/debug.h> 17 #include <linux/sched/task.h> 18 #include <linux/sched/task_stack.h> 19 #include <linux/kernel.h> 20 #include <linux/lockdep.h> 21 #include <linux/mm.h> 22 #include <linux/stddef.h> 23 #include <linux/sysctl.h> 24 #include <linux/unistd.h> 25 #include <linux/user.h> 26 #include <linux/delay.h> 27 #include <linux/reboot.h> 28 #include <linux/interrupt.h> 29 #include <linux/init.h> 30 #include <linux/cpu.h> 31 #include <linux/elfcore.h> 32 #include <linux/pm.h> 33 #include <linux/tick.h> 34 #include <linux/utsname.h> 35 #include <linux/uaccess.h> 36 #include <linux/random.h> 37 #include <linux/hw_breakpoint.h> 38 #include <linux/personality.h> 39 #include <linux/notifier.h> 40 #include <trace/events/power.h> 41 #include <linux/percpu.h> 42 #include <linux/thread_info.h> 43 #include <linux/prctl.h> 44 45 #include <asm/alternative.h> 46 #include <asm/arch_gicv3.h> 47 #include <asm/compat.h> 48 #include <asm/cpufeature.h> 49 #include <asm/cacheflush.h> 50 #include <asm/exec.h> 51 #include <asm/fpsimd.h> 52 #include <asm/mmu_context.h> 53 #include <asm/processor.h> 54 #include <asm/pointer_auth.h> 55 #include <asm/stacktrace.h> 56 57 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 58 #include <linux/stackprotector.h> 59 unsigned long __stack_chk_guard __read_mostly; 60 EXPORT_SYMBOL(__stack_chk_guard); 61 #endif 62 63 /* 64 * Function pointers to optional machine specific functions 65 */ 66 void (*pm_power_off)(void); 67 EXPORT_SYMBOL_GPL(pm_power_off); 68 69 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 70 71 static void __cpu_do_idle(void) 72 { 73 dsb(sy); 74 wfi(); 75 } 76 77 static void __cpu_do_idle_irqprio(void) 78 { 79 unsigned long pmr; 80 unsigned long daif_bits; 81 82 daif_bits = read_sysreg(daif); 83 write_sysreg(daif_bits | PSR_I_BIT, daif); 84 85 /* 86 * Unmask PMR before going idle to make sure interrupts can 87 * be raised. 88 */ 89 pmr = gic_read_pmr(); 90 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 91 92 __cpu_do_idle(); 93 94 gic_write_pmr(pmr); 95 write_sysreg(daif_bits, daif); 96 } 97 98 /* 99 * cpu_do_idle() 100 * 101 * Idle the processor (wait for interrupt). 102 * 103 * If the CPU supports priority masking we must do additional work to 104 * ensure that interrupts are not masked at the PMR (because the core will 105 * not wake up if we block the wake up signal in the interrupt controller). 106 */ 107 void cpu_do_idle(void) 108 { 109 if (system_uses_irq_prio_masking()) 110 __cpu_do_idle_irqprio(); 111 else 112 __cpu_do_idle(); 113 } 114 115 /* 116 * This is our default idle handler. 117 */ 118 void arch_cpu_idle(void) 119 { 120 /* 121 * This should do all the clock switching and wait for interrupt 122 * tricks 123 */ 124 trace_cpu_idle_rcuidle(1, smp_processor_id()); 125 cpu_do_idle(); 126 local_irq_enable(); 127 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 128 } 129 130 #ifdef CONFIG_HOTPLUG_CPU 131 void arch_cpu_idle_dead(void) 132 { 133 cpu_die(); 134 } 135 #endif 136 137 /* 138 * Called by kexec, immediately prior to machine_kexec(). 139 * 140 * This must completely disable all secondary CPUs; simply causing those CPUs 141 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 142 * kexec'd kernel to use any and all RAM as it sees fit, without having to 143 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 144 * functionality embodied in disable_nonboot_cpus() to achieve this. 145 */ 146 void machine_shutdown(void) 147 { 148 disable_nonboot_cpus(); 149 } 150 151 /* 152 * Halting simply requires that the secondary CPUs stop performing any 153 * activity (executing tasks, handling interrupts). smp_send_stop() 154 * achieves this. 155 */ 156 void machine_halt(void) 157 { 158 local_irq_disable(); 159 smp_send_stop(); 160 while (1); 161 } 162 163 /* 164 * Power-off simply requires that the secondary CPUs stop performing any 165 * activity (executing tasks, handling interrupts). smp_send_stop() 166 * achieves this. When the system power is turned off, it will take all CPUs 167 * with it. 168 */ 169 void machine_power_off(void) 170 { 171 local_irq_disable(); 172 smp_send_stop(); 173 if (pm_power_off) 174 pm_power_off(); 175 } 176 177 /* 178 * Restart requires that the secondary CPUs stop performing any activity 179 * while the primary CPU resets the system. Systems with multiple CPUs must 180 * provide a HW restart implementation, to ensure that all CPUs reset at once. 181 * This is required so that any code running after reset on the primary CPU 182 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 183 * executing pre-reset code, and using RAM that the primary CPU's code wishes 184 * to use. Implementing such co-ordination would be essentially impossible. 185 */ 186 void machine_restart(char *cmd) 187 { 188 /* Disable interrupts first */ 189 local_irq_disable(); 190 smp_send_stop(); 191 192 /* 193 * UpdateCapsule() depends on the system being reset via 194 * ResetSystem(). 195 */ 196 if (efi_enabled(EFI_RUNTIME_SERVICES)) 197 efi_reboot(reboot_mode, NULL); 198 199 /* Now call the architecture specific reboot code. */ 200 if (arm_pm_restart) 201 arm_pm_restart(reboot_mode, cmd); 202 else 203 do_kernel_restart(cmd); 204 205 /* 206 * Whoops - the architecture was unable to reboot. 207 */ 208 printk("Reboot failed -- System halted\n"); 209 while (1); 210 } 211 212 static void print_pstate(struct pt_regs *regs) 213 { 214 u64 pstate = regs->pstate; 215 216 if (compat_user_mode(regs)) { 217 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 218 pstate, 219 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 220 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 221 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 222 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 223 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 224 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 225 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 226 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 227 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 228 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 229 } else { 230 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n", 231 pstate, 232 pstate & PSR_N_BIT ? 'N' : 'n', 233 pstate & PSR_Z_BIT ? 'Z' : 'z', 234 pstate & PSR_C_BIT ? 'C' : 'c', 235 pstate & PSR_V_BIT ? 'V' : 'v', 236 pstate & PSR_D_BIT ? 'D' : 'd', 237 pstate & PSR_A_BIT ? 'A' : 'a', 238 pstate & PSR_I_BIT ? 'I' : 'i', 239 pstate & PSR_F_BIT ? 'F' : 'f', 240 pstate & PSR_PAN_BIT ? '+' : '-', 241 pstate & PSR_UAO_BIT ? '+' : '-'); 242 } 243 } 244 245 void __show_regs(struct pt_regs *regs) 246 { 247 int i, top_reg; 248 u64 lr, sp; 249 250 if (compat_user_mode(regs)) { 251 lr = regs->compat_lr; 252 sp = regs->compat_sp; 253 top_reg = 12; 254 } else { 255 lr = regs->regs[30]; 256 sp = regs->sp; 257 top_reg = 29; 258 } 259 260 show_regs_print_info(KERN_DEFAULT); 261 print_pstate(regs); 262 263 if (!user_mode(regs)) { 264 printk("pc : %pS\n", (void *)regs->pc); 265 printk("lr : %pS\n", (void *)lr); 266 } else { 267 printk("pc : %016llx\n", regs->pc); 268 printk("lr : %016llx\n", lr); 269 } 270 271 printk("sp : %016llx\n", sp); 272 273 if (system_uses_irq_prio_masking()) 274 printk("pmr_save: %08llx\n", regs->pmr_save); 275 276 i = top_reg; 277 278 while (i >= 0) { 279 printk("x%-2d: %016llx ", i, regs->regs[i]); 280 i--; 281 282 if (i % 2 == 0) { 283 pr_cont("x%-2d: %016llx ", i, regs->regs[i]); 284 i--; 285 } 286 287 pr_cont("\n"); 288 } 289 } 290 291 void show_regs(struct pt_regs * regs) 292 { 293 __show_regs(regs); 294 dump_backtrace(regs, NULL); 295 } 296 297 static void tls_thread_flush(void) 298 { 299 write_sysreg(0, tpidr_el0); 300 301 if (is_compat_task()) { 302 current->thread.uw.tp_value = 0; 303 304 /* 305 * We need to ensure ordering between the shadow state and the 306 * hardware state, so that we don't corrupt the hardware state 307 * with a stale shadow state during context switch. 308 */ 309 barrier(); 310 write_sysreg(0, tpidrro_el0); 311 } 312 } 313 314 static void flush_tagged_addr_state(void) 315 { 316 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 317 clear_thread_flag(TIF_TAGGED_ADDR); 318 } 319 320 void flush_thread(void) 321 { 322 fpsimd_flush_thread(); 323 tls_thread_flush(); 324 flush_ptrace_hw_breakpoint(current); 325 flush_tagged_addr_state(); 326 } 327 328 void release_thread(struct task_struct *dead_task) 329 { 330 } 331 332 void arch_release_task_struct(struct task_struct *tsk) 333 { 334 fpsimd_release_task(tsk); 335 } 336 337 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 338 { 339 if (current->mm) 340 fpsimd_preserve_current_state(); 341 *dst = *src; 342 343 /* We rely on the above assignment to initialize dst's thread_flags: */ 344 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 345 346 /* 347 * Detach src's sve_state (if any) from dst so that it does not 348 * get erroneously used or freed prematurely. dst's sve_state 349 * will be allocated on demand later on if dst uses SVE. 350 * For consistency, also clear TIF_SVE here: this could be done 351 * later in copy_process(), but to avoid tripping up future 352 * maintainers it is best not to leave TIF_SVE and sve_state in 353 * an inconsistent state, even temporarily. 354 */ 355 dst->thread.sve_state = NULL; 356 clear_tsk_thread_flag(dst, TIF_SVE); 357 358 return 0; 359 } 360 361 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 362 363 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 364 unsigned long stk_sz, struct task_struct *p) 365 { 366 struct pt_regs *childregs = task_pt_regs(p); 367 368 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 369 370 /* 371 * In case p was allocated the same task_struct pointer as some 372 * other recently-exited task, make sure p is disassociated from 373 * any cpu that may have run that now-exited task recently. 374 * Otherwise we could erroneously skip reloading the FPSIMD 375 * registers for p. 376 */ 377 fpsimd_flush_task_state(p); 378 379 if (likely(!(p->flags & PF_KTHREAD))) { 380 *childregs = *current_pt_regs(); 381 childregs->regs[0] = 0; 382 383 /* 384 * Read the current TLS pointer from tpidr_el0 as it may be 385 * out-of-sync with the saved value. 386 */ 387 *task_user_tls(p) = read_sysreg(tpidr_el0); 388 389 if (stack_start) { 390 if (is_compat_thread(task_thread_info(p))) 391 childregs->compat_sp = stack_start; 392 else 393 childregs->sp = stack_start; 394 } 395 396 /* 397 * If a TLS pointer was passed to clone (4th argument), use it 398 * for the new thread. 399 */ 400 if (clone_flags & CLONE_SETTLS) 401 p->thread.uw.tp_value = childregs->regs[3]; 402 } else { 403 memset(childregs, 0, sizeof(struct pt_regs)); 404 childregs->pstate = PSR_MODE_EL1h; 405 if (IS_ENABLED(CONFIG_ARM64_UAO) && 406 cpus_have_const_cap(ARM64_HAS_UAO)) 407 childregs->pstate |= PSR_UAO_BIT; 408 409 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) 410 set_ssbs_bit(childregs); 411 412 if (system_uses_irq_prio_masking()) 413 childregs->pmr_save = GIC_PRIO_IRQON; 414 415 p->thread.cpu_context.x19 = stack_start; 416 p->thread.cpu_context.x20 = stk_sz; 417 } 418 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 419 p->thread.cpu_context.sp = (unsigned long)childregs; 420 421 ptrace_hw_copy_thread(p); 422 423 return 0; 424 } 425 426 void tls_preserve_current_state(void) 427 { 428 *task_user_tls(current) = read_sysreg(tpidr_el0); 429 } 430 431 static void tls_thread_switch(struct task_struct *next) 432 { 433 tls_preserve_current_state(); 434 435 if (is_compat_thread(task_thread_info(next))) 436 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 437 else if (!arm64_kernel_unmapped_at_el0()) 438 write_sysreg(0, tpidrro_el0); 439 440 write_sysreg(*task_user_tls(next), tpidr_el0); 441 } 442 443 /* Restore the UAO state depending on next's addr_limit */ 444 void uao_thread_switch(struct task_struct *next) 445 { 446 if (IS_ENABLED(CONFIG_ARM64_UAO)) { 447 if (task_thread_info(next)->addr_limit == KERNEL_DS) 448 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); 449 else 450 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); 451 } 452 } 453 454 /* 455 * Force SSBS state on context-switch, since it may be lost after migrating 456 * from a CPU which treats the bit as RES0 in a heterogeneous system. 457 */ 458 static void ssbs_thread_switch(struct task_struct *next) 459 { 460 struct pt_regs *regs = task_pt_regs(next); 461 462 /* 463 * Nothing to do for kernel threads, but 'regs' may be junk 464 * (e.g. idle task) so check the flags and bail early. 465 */ 466 if (unlikely(next->flags & PF_KTHREAD)) 467 return; 468 469 /* If the mitigation is enabled, then we leave SSBS clear. */ 470 if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) || 471 test_tsk_thread_flag(next, TIF_SSBD)) 472 return; 473 474 if (compat_user_mode(regs)) 475 set_compat_ssbs_bit(regs); 476 else if (user_mode(regs)) 477 set_ssbs_bit(regs); 478 } 479 480 /* 481 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 482 * shadow copy so that we can restore this upon entry from userspace. 483 * 484 * This is *only* for exception entry from EL0, and is not valid until we 485 * __switch_to() a user task. 486 */ 487 DEFINE_PER_CPU(struct task_struct *, __entry_task); 488 489 static void entry_task_switch(struct task_struct *next) 490 { 491 __this_cpu_write(__entry_task, next); 492 } 493 494 /* 495 * Thread switching. 496 */ 497 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 498 struct task_struct *next) 499 { 500 struct task_struct *last; 501 502 fpsimd_thread_switch(next); 503 tls_thread_switch(next); 504 hw_breakpoint_thread_switch(next); 505 contextidr_thread_switch(next); 506 entry_task_switch(next); 507 uao_thread_switch(next); 508 ptrauth_thread_switch(next); 509 ssbs_thread_switch(next); 510 511 /* 512 * Complete any pending TLB or cache maintenance on this CPU in case 513 * the thread migrates to a different CPU. 514 * This full barrier is also required by the membarrier system 515 * call. 516 */ 517 dsb(ish); 518 519 /* the actual thread switch */ 520 last = cpu_switch_to(prev, next); 521 522 return last; 523 } 524 525 unsigned long get_wchan(struct task_struct *p) 526 { 527 struct stackframe frame; 528 unsigned long stack_page, ret = 0; 529 int count = 0; 530 if (!p || p == current || p->state == TASK_RUNNING) 531 return 0; 532 533 stack_page = (unsigned long)try_get_task_stack(p); 534 if (!stack_page) 535 return 0; 536 537 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 538 539 do { 540 if (unwind_frame(p, &frame)) 541 goto out; 542 if (!in_sched_functions(frame.pc)) { 543 ret = frame.pc; 544 goto out; 545 } 546 } while (count ++ < 16); 547 548 out: 549 put_task_stack(p); 550 return ret; 551 } 552 553 unsigned long arch_align_stack(unsigned long sp) 554 { 555 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 556 sp -= get_random_int() & ~PAGE_MASK; 557 return sp & ~0xf; 558 } 559 560 /* 561 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 562 */ 563 void arch_setup_new_exec(void) 564 { 565 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; 566 567 ptrauth_thread_init_user(current); 568 } 569 570 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 571 /* 572 * Control the relaxed ABI allowing tagged user addresses into the kernel. 573 */ 574 static unsigned int tagged_addr_disabled; 575 576 long set_tagged_addr_ctrl(unsigned long arg) 577 { 578 if (is_compat_task()) 579 return -EINVAL; 580 if (arg & ~PR_TAGGED_ADDR_ENABLE) 581 return -EINVAL; 582 583 /* 584 * Do not allow the enabling of the tagged address ABI if globally 585 * disabled via sysctl abi.tagged_addr_disabled. 586 */ 587 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 588 return -EINVAL; 589 590 update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 591 592 return 0; 593 } 594 595 long get_tagged_addr_ctrl(void) 596 { 597 if (is_compat_task()) 598 return -EINVAL; 599 600 if (test_thread_flag(TIF_TAGGED_ADDR)) 601 return PR_TAGGED_ADDR_ENABLE; 602 603 return 0; 604 } 605 606 /* 607 * Global sysctl to disable the tagged user addresses support. This control 608 * only prevents the tagged address ABI enabling via prctl() and does not 609 * disable it for tasks that already opted in to the relaxed ABI. 610 */ 611 static int zero; 612 static int one = 1; 613 614 static struct ctl_table tagged_addr_sysctl_table[] = { 615 { 616 .procname = "tagged_addr_disabled", 617 .mode = 0644, 618 .data = &tagged_addr_disabled, 619 .maxlen = sizeof(int), 620 .proc_handler = proc_dointvec_minmax, 621 .extra1 = &zero, 622 .extra2 = &one, 623 }, 624 { } 625 }; 626 627 static int __init tagged_addr_init(void) 628 { 629 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 630 return -EINVAL; 631 return 0; 632 } 633 634 core_initcall(tagged_addr_init); 635 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 636 637 asmlinkage void __sched arm64_preempt_schedule_irq(void) 638 { 639 lockdep_assert_irqs_disabled(); 640 641 /* 642 * Preempting a task from an IRQ means we leave copies of PSTATE 643 * on the stack. cpufeature's enable calls may modify PSTATE, but 644 * resuming one of these preempted tasks would undo those changes. 645 * 646 * Only allow a task to be preempted once cpufeatures have been 647 * enabled. 648 */ 649 if (static_branch_likely(&arm64_const_caps_ready)) 650 preempt_schedule_irq(); 651 } 652