1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <stdarg.h> 11 12 #include <linux/compat.h> 13 #include <linux/efi.h> 14 #include <linux/elf.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/sched/debug.h> 18 #include <linux/sched/task.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/kernel.h> 21 #include <linux/mman.h> 22 #include <linux/mm.h> 23 #include <linux/nospec.h> 24 #include <linux/stddef.h> 25 #include <linux/sysctl.h> 26 #include <linux/unistd.h> 27 #include <linux/user.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/interrupt.h> 31 #include <linux/init.h> 32 #include <linux/cpu.h> 33 #include <linux/elfcore.h> 34 #include <linux/pm.h> 35 #include <linux/tick.h> 36 #include <linux/utsname.h> 37 #include <linux/uaccess.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/personality.h> 41 #include <linux/notifier.h> 42 #include <trace/events/power.h> 43 #include <linux/percpu.h> 44 #include <linux/thread_info.h> 45 #include <linux/prctl.h> 46 47 #include <asm/alternative.h> 48 #include <asm/compat.h> 49 #include <asm/cpufeature.h> 50 #include <asm/cacheflush.h> 51 #include <asm/exec.h> 52 #include <asm/fpsimd.h> 53 #include <asm/mmu_context.h> 54 #include <asm/mte.h> 55 #include <asm/processor.h> 56 #include <asm/pointer_auth.h> 57 #include <asm/stacktrace.h> 58 #include <asm/switch_to.h> 59 #include <asm/system_misc.h> 60 61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 62 #include <linux/stackprotector.h> 63 unsigned long __stack_chk_guard __read_mostly; 64 EXPORT_SYMBOL(__stack_chk_guard); 65 #endif 66 67 /* 68 * Function pointers to optional machine specific functions 69 */ 70 void (*pm_power_off)(void); 71 EXPORT_SYMBOL_GPL(pm_power_off); 72 73 #ifdef CONFIG_HOTPLUG_CPU 74 void arch_cpu_idle_dead(void) 75 { 76 cpu_die(); 77 } 78 #endif 79 80 /* 81 * Called by kexec, immediately prior to machine_kexec(). 82 * 83 * This must completely disable all secondary CPUs; simply causing those CPUs 84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 85 * kexec'd kernel to use any and all RAM as it sees fit, without having to 86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 88 */ 89 void machine_shutdown(void) 90 { 91 smp_shutdown_nonboot_cpus(reboot_cpu); 92 } 93 94 /* 95 * Halting simply requires that the secondary CPUs stop performing any 96 * activity (executing tasks, handling interrupts). smp_send_stop() 97 * achieves this. 98 */ 99 void machine_halt(void) 100 { 101 local_irq_disable(); 102 smp_send_stop(); 103 while (1); 104 } 105 106 /* 107 * Power-off simply requires that the secondary CPUs stop performing any 108 * activity (executing tasks, handling interrupts). smp_send_stop() 109 * achieves this. When the system power is turned off, it will take all CPUs 110 * with it. 111 */ 112 void machine_power_off(void) 113 { 114 local_irq_disable(); 115 smp_send_stop(); 116 if (pm_power_off) 117 pm_power_off(); 118 } 119 120 /* 121 * Restart requires that the secondary CPUs stop performing any activity 122 * while the primary CPU resets the system. Systems with multiple CPUs must 123 * provide a HW restart implementation, to ensure that all CPUs reset at once. 124 * This is required so that any code running after reset on the primary CPU 125 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 126 * executing pre-reset code, and using RAM that the primary CPU's code wishes 127 * to use. Implementing such co-ordination would be essentially impossible. 128 */ 129 void machine_restart(char *cmd) 130 { 131 /* Disable interrupts first */ 132 local_irq_disable(); 133 smp_send_stop(); 134 135 /* 136 * UpdateCapsule() depends on the system being reset via 137 * ResetSystem(). 138 */ 139 if (efi_enabled(EFI_RUNTIME_SERVICES)) 140 efi_reboot(reboot_mode, NULL); 141 142 /* Now call the architecture specific reboot code. */ 143 do_kernel_restart(cmd); 144 145 /* 146 * Whoops - the architecture was unable to reboot. 147 */ 148 printk("Reboot failed -- System halted\n"); 149 while (1); 150 } 151 152 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 153 static const char *const btypes[] = { 154 bstr(NONE, "--"), 155 bstr( JC, "jc"), 156 bstr( C, "-c"), 157 bstr( J , "j-") 158 }; 159 #undef bstr 160 161 static void print_pstate(struct pt_regs *regs) 162 { 163 u64 pstate = regs->pstate; 164 165 if (compat_user_mode(regs)) { 166 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 167 pstate, 168 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 169 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 170 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 171 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 172 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 173 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 174 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 175 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 176 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 177 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 178 } else { 179 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 180 PSR_BTYPE_SHIFT]; 181 182 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n", 183 pstate, 184 pstate & PSR_N_BIT ? 'N' : 'n', 185 pstate & PSR_Z_BIT ? 'Z' : 'z', 186 pstate & PSR_C_BIT ? 'C' : 'c', 187 pstate & PSR_V_BIT ? 'V' : 'v', 188 pstate & PSR_D_BIT ? 'D' : 'd', 189 pstate & PSR_A_BIT ? 'A' : 'a', 190 pstate & PSR_I_BIT ? 'I' : 'i', 191 pstate & PSR_F_BIT ? 'F' : 'f', 192 pstate & PSR_PAN_BIT ? '+' : '-', 193 pstate & PSR_UAO_BIT ? '+' : '-', 194 pstate & PSR_TCO_BIT ? '+' : '-', 195 btype_str); 196 } 197 } 198 199 void __show_regs(struct pt_regs *regs) 200 { 201 int i, top_reg; 202 u64 lr, sp; 203 204 if (compat_user_mode(regs)) { 205 lr = regs->compat_lr; 206 sp = regs->compat_sp; 207 top_reg = 12; 208 } else { 209 lr = regs->regs[30]; 210 sp = regs->sp; 211 top_reg = 29; 212 } 213 214 show_regs_print_info(KERN_DEFAULT); 215 print_pstate(regs); 216 217 if (!user_mode(regs)) { 218 printk("pc : %pS\n", (void *)regs->pc); 219 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 220 } else { 221 printk("pc : %016llx\n", regs->pc); 222 printk("lr : %016llx\n", lr); 223 } 224 225 printk("sp : %016llx\n", sp); 226 227 if (system_uses_irq_prio_masking()) 228 printk("pmr_save: %08llx\n", regs->pmr_save); 229 230 i = top_reg; 231 232 while (i >= 0) { 233 printk("x%-2d: %016llx", i, regs->regs[i]); 234 235 while (i-- % 3) 236 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 237 238 pr_cont("\n"); 239 } 240 } 241 242 void show_regs(struct pt_regs *regs) 243 { 244 __show_regs(regs); 245 dump_backtrace(regs, NULL, KERN_DEFAULT); 246 } 247 248 static void tls_thread_flush(void) 249 { 250 write_sysreg(0, tpidr_el0); 251 252 if (is_compat_task()) { 253 current->thread.uw.tp_value = 0; 254 255 /* 256 * We need to ensure ordering between the shadow state and the 257 * hardware state, so that we don't corrupt the hardware state 258 * with a stale shadow state during context switch. 259 */ 260 barrier(); 261 write_sysreg(0, tpidrro_el0); 262 } 263 } 264 265 static void flush_tagged_addr_state(void) 266 { 267 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 268 clear_thread_flag(TIF_TAGGED_ADDR); 269 } 270 271 void flush_thread(void) 272 { 273 fpsimd_flush_thread(); 274 tls_thread_flush(); 275 flush_ptrace_hw_breakpoint(current); 276 flush_tagged_addr_state(); 277 } 278 279 void release_thread(struct task_struct *dead_task) 280 { 281 } 282 283 void arch_release_task_struct(struct task_struct *tsk) 284 { 285 fpsimd_release_task(tsk); 286 } 287 288 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 289 { 290 if (current->mm) 291 fpsimd_preserve_current_state(); 292 *dst = *src; 293 294 /* We rely on the above assignment to initialize dst's thread_flags: */ 295 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 296 297 /* 298 * Detach src's sve_state (if any) from dst so that it does not 299 * get erroneously used or freed prematurely. dst's sve_state 300 * will be allocated on demand later on if dst uses SVE. 301 * For consistency, also clear TIF_SVE here: this could be done 302 * later in copy_process(), but to avoid tripping up future 303 * maintainers it is best not to leave TIF_SVE and sve_state in 304 * an inconsistent state, even temporarily. 305 */ 306 dst->thread.sve_state = NULL; 307 clear_tsk_thread_flag(dst, TIF_SVE); 308 309 /* clear any pending asynchronous tag fault raised by the parent */ 310 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 311 312 return 0; 313 } 314 315 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 316 317 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 318 unsigned long stk_sz, struct task_struct *p, unsigned long tls) 319 { 320 struct pt_regs *childregs = task_pt_regs(p); 321 322 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 323 324 /* 325 * In case p was allocated the same task_struct pointer as some 326 * other recently-exited task, make sure p is disassociated from 327 * any cpu that may have run that now-exited task recently. 328 * Otherwise we could erroneously skip reloading the FPSIMD 329 * registers for p. 330 */ 331 fpsimd_flush_task_state(p); 332 333 ptrauth_thread_init_kernel(p); 334 335 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) { 336 *childregs = *current_pt_regs(); 337 childregs->regs[0] = 0; 338 339 /* 340 * Read the current TLS pointer from tpidr_el0 as it may be 341 * out-of-sync with the saved value. 342 */ 343 *task_user_tls(p) = read_sysreg(tpidr_el0); 344 345 if (stack_start) { 346 if (is_compat_thread(task_thread_info(p))) 347 childregs->compat_sp = stack_start; 348 else 349 childregs->sp = stack_start; 350 } 351 352 /* 353 * If a TLS pointer was passed to clone, use it for the new 354 * thread. 355 */ 356 if (clone_flags & CLONE_SETTLS) 357 p->thread.uw.tp_value = tls; 358 } else { 359 /* 360 * A kthread has no context to ERET to, so ensure any buggy 361 * ERET is treated as an illegal exception return. 362 * 363 * When a user task is created from a kthread, childregs will 364 * be initialized by start_thread() or start_compat_thread(). 365 */ 366 memset(childregs, 0, sizeof(struct pt_regs)); 367 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 368 369 p->thread.cpu_context.x19 = stack_start; 370 p->thread.cpu_context.x20 = stk_sz; 371 } 372 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 373 p->thread.cpu_context.sp = (unsigned long)childregs; 374 /* 375 * For the benefit of the unwinder, set up childregs->stackframe 376 * as the final frame for the new task. 377 */ 378 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 379 380 ptrace_hw_copy_thread(p); 381 382 return 0; 383 } 384 385 void tls_preserve_current_state(void) 386 { 387 *task_user_tls(current) = read_sysreg(tpidr_el0); 388 } 389 390 static void tls_thread_switch(struct task_struct *next) 391 { 392 tls_preserve_current_state(); 393 394 if (is_compat_thread(task_thread_info(next))) 395 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 396 else if (!arm64_kernel_unmapped_at_el0()) 397 write_sysreg(0, tpidrro_el0); 398 399 write_sysreg(*task_user_tls(next), tpidr_el0); 400 } 401 402 /* 403 * Force SSBS state on context-switch, since it may be lost after migrating 404 * from a CPU which treats the bit as RES0 in a heterogeneous system. 405 */ 406 static void ssbs_thread_switch(struct task_struct *next) 407 { 408 /* 409 * Nothing to do for kernel threads, but 'regs' may be junk 410 * (e.g. idle task) so check the flags and bail early. 411 */ 412 if (unlikely(next->flags & PF_KTHREAD)) 413 return; 414 415 /* 416 * If all CPUs implement the SSBS extension, then we just need to 417 * context-switch the PSTATE field. 418 */ 419 if (cpus_have_const_cap(ARM64_SSBS)) 420 return; 421 422 spectre_v4_enable_task_mitigation(next); 423 } 424 425 /* 426 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 427 * shadow copy so that we can restore this upon entry from userspace. 428 * 429 * This is *only* for exception entry from EL0, and is not valid until we 430 * __switch_to() a user task. 431 */ 432 DEFINE_PER_CPU(struct task_struct *, __entry_task); 433 434 static void entry_task_switch(struct task_struct *next) 435 { 436 __this_cpu_write(__entry_task, next); 437 } 438 439 /* 440 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 441 * Assuming the virtual counter is enabled at the beginning of times: 442 * 443 * - disable access when switching from a 64bit task to a 32bit task 444 * - enable access when switching from a 32bit task to a 64bit task 445 */ 446 static void erratum_1418040_thread_switch(struct task_struct *prev, 447 struct task_struct *next) 448 { 449 bool prev32, next32; 450 u64 val; 451 452 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040)) 453 return; 454 455 prev32 = is_compat_thread(task_thread_info(prev)); 456 next32 = is_compat_thread(task_thread_info(next)); 457 458 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 459 return; 460 461 val = read_sysreg(cntkctl_el1); 462 463 if (!next32) 464 val |= ARCH_TIMER_USR_VCT_ACCESS_EN; 465 else 466 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN; 467 468 write_sysreg(val, cntkctl_el1); 469 } 470 471 static void compat_thread_switch(struct task_struct *next) 472 { 473 if (!is_compat_thread(task_thread_info(next))) 474 return; 475 476 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 477 set_tsk_thread_flag(next, TIF_NOTIFY_RESUME); 478 } 479 480 static void update_sctlr_el1(u64 sctlr) 481 { 482 /* 483 * EnIA must not be cleared while in the kernel as this is necessary for 484 * in-kernel PAC. It will be cleared on kernel exit if needed. 485 */ 486 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 487 488 /* ISB required for the kernel uaccess routines when setting TCF0. */ 489 isb(); 490 } 491 492 void set_task_sctlr_el1(u64 sctlr) 493 { 494 /* 495 * __switch_to() checks current->thread.sctlr as an 496 * optimisation. Disable preemption so that it does not see 497 * the variable update before the SCTLR_EL1 one. 498 */ 499 preempt_disable(); 500 current->thread.sctlr_user = sctlr; 501 update_sctlr_el1(sctlr); 502 preempt_enable(); 503 } 504 505 /* 506 * Thread switching. 507 */ 508 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 509 struct task_struct *next) 510 { 511 struct task_struct *last; 512 513 fpsimd_thread_switch(next); 514 tls_thread_switch(next); 515 hw_breakpoint_thread_switch(next); 516 contextidr_thread_switch(next); 517 entry_task_switch(next); 518 ssbs_thread_switch(next); 519 erratum_1418040_thread_switch(prev, next); 520 ptrauth_thread_switch_user(next); 521 compat_thread_switch(next); 522 523 /* 524 * Complete any pending TLB or cache maintenance on this CPU in case 525 * the thread migrates to a different CPU. 526 * This full barrier is also required by the membarrier system 527 * call. 528 */ 529 dsb(ish); 530 531 /* 532 * MTE thread switching must happen after the DSB above to ensure that 533 * any asynchronous tag check faults have been logged in the TFSR*_EL1 534 * registers. 535 */ 536 mte_thread_switch(next); 537 /* avoid expensive SCTLR_EL1 accesses if no change */ 538 if (prev->thread.sctlr_user != next->thread.sctlr_user) 539 update_sctlr_el1(next->thread.sctlr_user); 540 541 /* the actual thread switch */ 542 last = cpu_switch_to(prev, next); 543 544 return last; 545 } 546 547 unsigned long get_wchan(struct task_struct *p) 548 { 549 struct stackframe frame; 550 unsigned long stack_page, ret = 0; 551 int count = 0; 552 if (!p || p == current || task_is_running(p)) 553 return 0; 554 555 stack_page = (unsigned long)try_get_task_stack(p); 556 if (!stack_page) 557 return 0; 558 559 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 560 561 do { 562 if (unwind_frame(p, &frame)) 563 goto out; 564 if (!in_sched_functions(frame.pc)) { 565 ret = frame.pc; 566 goto out; 567 } 568 } while (count++ < 16); 569 570 out: 571 put_task_stack(p); 572 return ret; 573 } 574 575 unsigned long arch_align_stack(unsigned long sp) 576 { 577 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 578 sp -= get_random_int() & ~PAGE_MASK; 579 return sp & ~0xf; 580 } 581 582 /* 583 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 584 */ 585 void arch_setup_new_exec(void) 586 { 587 unsigned long mmflags = 0; 588 589 if (is_compat_task()) { 590 mmflags = MMCF_AARCH32; 591 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 592 set_tsk_thread_flag(current, TIF_NOTIFY_RESUME); 593 } 594 595 current->mm->context.flags = mmflags; 596 ptrauth_thread_init_user(); 597 mte_thread_init_user(); 598 599 if (task_spec_ssb_noexec(current)) { 600 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 601 PR_SPEC_ENABLE); 602 } 603 } 604 605 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 606 /* 607 * Control the relaxed ABI allowing tagged user addresses into the kernel. 608 */ 609 static unsigned int tagged_addr_disabled; 610 611 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 612 { 613 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 614 struct thread_info *ti = task_thread_info(task); 615 616 if (is_compat_thread(ti)) 617 return -EINVAL; 618 619 if (system_supports_mte()) 620 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK; 621 622 if (arg & ~valid_mask) 623 return -EINVAL; 624 625 /* 626 * Do not allow the enabling of the tagged address ABI if globally 627 * disabled via sysctl abi.tagged_addr_disabled. 628 */ 629 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 630 return -EINVAL; 631 632 if (set_mte_ctrl(task, arg) != 0) 633 return -EINVAL; 634 635 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 636 637 return 0; 638 } 639 640 long get_tagged_addr_ctrl(struct task_struct *task) 641 { 642 long ret = 0; 643 struct thread_info *ti = task_thread_info(task); 644 645 if (is_compat_thread(ti)) 646 return -EINVAL; 647 648 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 649 ret = PR_TAGGED_ADDR_ENABLE; 650 651 ret |= get_mte_ctrl(task); 652 653 return ret; 654 } 655 656 /* 657 * Global sysctl to disable the tagged user addresses support. This control 658 * only prevents the tagged address ABI enabling via prctl() and does not 659 * disable it for tasks that already opted in to the relaxed ABI. 660 */ 661 662 static struct ctl_table tagged_addr_sysctl_table[] = { 663 { 664 .procname = "tagged_addr_disabled", 665 .mode = 0644, 666 .data = &tagged_addr_disabled, 667 .maxlen = sizeof(int), 668 .proc_handler = proc_dointvec_minmax, 669 .extra1 = SYSCTL_ZERO, 670 .extra2 = SYSCTL_ONE, 671 }, 672 { } 673 }; 674 675 static int __init tagged_addr_init(void) 676 { 677 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 678 return -EINVAL; 679 return 0; 680 } 681 682 core_initcall(tagged_addr_init); 683 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 684 685 #ifdef CONFIG_BINFMT_ELF 686 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 687 bool has_interp, bool is_interp) 688 { 689 /* 690 * For dynamically linked executables the interpreter is 691 * responsible for setting PROT_BTI on everything except 692 * itself. 693 */ 694 if (is_interp != has_interp) 695 return prot; 696 697 if (!(state->flags & ARM64_ELF_BTI)) 698 return prot; 699 700 if (prot & PROT_EXEC) 701 prot |= PROT_BTI; 702 703 return prot; 704 } 705 #endif 706