xref: /openbmc/linux/arch/arm64/kernel/process.c (revision 9adc8050)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/sched/task.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/user.h>
24 #include <linux/delay.h>
25 #include <linux/reboot.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/cpu.h>
29 #include <linux/elfcore.h>
30 #include <linux/pm.h>
31 #include <linux/tick.h>
32 #include <linux/utsname.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include <linux/hw_breakpoint.h>
36 #include <linux/personality.h>
37 #include <linux/notifier.h>
38 #include <trace/events/power.h>
39 #include <linux/percpu.h>
40 #include <linux/thread_info.h>
41 
42 #include <asm/alternative.h>
43 #include <asm/arch_gicv3.h>
44 #include <asm/compat.h>
45 #include <asm/cacheflush.h>
46 #include <asm/exec.h>
47 #include <asm/fpsimd.h>
48 #include <asm/mmu_context.h>
49 #include <asm/processor.h>
50 #include <asm/pointer_auth.h>
51 #include <asm/stacktrace.h>
52 
53 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
54 #include <linux/stackprotector.h>
55 unsigned long __stack_chk_guard __read_mostly;
56 EXPORT_SYMBOL(__stack_chk_guard);
57 #endif
58 
59 /*
60  * Function pointers to optional machine specific functions
61  */
62 void (*pm_power_off)(void);
63 EXPORT_SYMBOL_GPL(pm_power_off);
64 
65 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
66 
67 static void __cpu_do_idle(void)
68 {
69 	dsb(sy);
70 	wfi();
71 }
72 
73 static void __cpu_do_idle_irqprio(void)
74 {
75 	unsigned long pmr;
76 	unsigned long daif_bits;
77 
78 	daif_bits = read_sysreg(daif);
79 	write_sysreg(daif_bits | PSR_I_BIT, daif);
80 
81 	/*
82 	 * Unmask PMR before going idle to make sure interrupts can
83 	 * be raised.
84 	 */
85 	pmr = gic_read_pmr();
86 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
87 
88 	__cpu_do_idle();
89 
90 	gic_write_pmr(pmr);
91 	write_sysreg(daif_bits, daif);
92 }
93 
94 /*
95  *	cpu_do_idle()
96  *
97  *	Idle the processor (wait for interrupt).
98  *
99  *	If the CPU supports priority masking we must do additional work to
100  *	ensure that interrupts are not masked at the PMR (because the core will
101  *	not wake up if we block the wake up signal in the interrupt controller).
102  */
103 void cpu_do_idle(void)
104 {
105 	if (system_uses_irq_prio_masking())
106 		__cpu_do_idle_irqprio();
107 	else
108 		__cpu_do_idle();
109 }
110 
111 /*
112  * This is our default idle handler.
113  */
114 void arch_cpu_idle(void)
115 {
116 	/*
117 	 * This should do all the clock switching and wait for interrupt
118 	 * tricks
119 	 */
120 	trace_cpu_idle_rcuidle(1, smp_processor_id());
121 	cpu_do_idle();
122 	local_irq_enable();
123 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
124 }
125 
126 #ifdef CONFIG_HOTPLUG_CPU
127 void arch_cpu_idle_dead(void)
128 {
129        cpu_die();
130 }
131 #endif
132 
133 /*
134  * Called by kexec, immediately prior to machine_kexec().
135  *
136  * This must completely disable all secondary CPUs; simply causing those CPUs
137  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
138  * kexec'd kernel to use any and all RAM as it sees fit, without having to
139  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
140  * functionality embodied in disable_nonboot_cpus() to achieve this.
141  */
142 void machine_shutdown(void)
143 {
144 	disable_nonboot_cpus();
145 }
146 
147 /*
148  * Halting simply requires that the secondary CPUs stop performing any
149  * activity (executing tasks, handling interrupts). smp_send_stop()
150  * achieves this.
151  */
152 void machine_halt(void)
153 {
154 	local_irq_disable();
155 	smp_send_stop();
156 	while (1);
157 }
158 
159 /*
160  * Power-off simply requires that the secondary CPUs stop performing any
161  * activity (executing tasks, handling interrupts). smp_send_stop()
162  * achieves this. When the system power is turned off, it will take all CPUs
163  * with it.
164  */
165 void machine_power_off(void)
166 {
167 	local_irq_disable();
168 	smp_send_stop();
169 	if (pm_power_off)
170 		pm_power_off();
171 }
172 
173 /*
174  * Restart requires that the secondary CPUs stop performing any activity
175  * while the primary CPU resets the system. Systems with multiple CPUs must
176  * provide a HW restart implementation, to ensure that all CPUs reset at once.
177  * This is required so that any code running after reset on the primary CPU
178  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
179  * executing pre-reset code, and using RAM that the primary CPU's code wishes
180  * to use. Implementing such co-ordination would be essentially impossible.
181  */
182 void machine_restart(char *cmd)
183 {
184 	/* Disable interrupts first */
185 	local_irq_disable();
186 	smp_send_stop();
187 
188 	/*
189 	 * UpdateCapsule() depends on the system being reset via
190 	 * ResetSystem().
191 	 */
192 	if (efi_enabled(EFI_RUNTIME_SERVICES))
193 		efi_reboot(reboot_mode, NULL);
194 
195 	/* Now call the architecture specific reboot code. */
196 	if (arm_pm_restart)
197 		arm_pm_restart(reboot_mode, cmd);
198 	else
199 		do_kernel_restart(cmd);
200 
201 	/*
202 	 * Whoops - the architecture was unable to reboot.
203 	 */
204 	printk("Reboot failed -- System halted\n");
205 	while (1);
206 }
207 
208 static void print_pstate(struct pt_regs *regs)
209 {
210 	u64 pstate = regs->pstate;
211 
212 	if (compat_user_mode(regs)) {
213 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
214 			pstate,
215 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
216 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
217 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
218 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
219 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
220 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
221 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
222 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
223 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
224 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
225 	} else {
226 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
227 			pstate,
228 			pstate & PSR_N_BIT ? 'N' : 'n',
229 			pstate & PSR_Z_BIT ? 'Z' : 'z',
230 			pstate & PSR_C_BIT ? 'C' : 'c',
231 			pstate & PSR_V_BIT ? 'V' : 'v',
232 			pstate & PSR_D_BIT ? 'D' : 'd',
233 			pstate & PSR_A_BIT ? 'A' : 'a',
234 			pstate & PSR_I_BIT ? 'I' : 'i',
235 			pstate & PSR_F_BIT ? 'F' : 'f',
236 			pstate & PSR_PAN_BIT ? '+' : '-',
237 			pstate & PSR_UAO_BIT ? '+' : '-');
238 	}
239 }
240 
241 void __show_regs(struct pt_regs *regs)
242 {
243 	int i, top_reg;
244 	u64 lr, sp;
245 
246 	if (compat_user_mode(regs)) {
247 		lr = regs->compat_lr;
248 		sp = regs->compat_sp;
249 		top_reg = 12;
250 	} else {
251 		lr = regs->regs[30];
252 		sp = regs->sp;
253 		top_reg = 29;
254 	}
255 
256 	show_regs_print_info(KERN_DEFAULT);
257 	print_pstate(regs);
258 
259 	if (!user_mode(regs)) {
260 		printk("pc : %pS\n", (void *)regs->pc);
261 		printk("lr : %pS\n", (void *)lr);
262 	} else {
263 		printk("pc : %016llx\n", regs->pc);
264 		printk("lr : %016llx\n", lr);
265 	}
266 
267 	printk("sp : %016llx\n", sp);
268 
269 	if (system_uses_irq_prio_masking())
270 		printk("pmr_save: %08llx\n", regs->pmr_save);
271 
272 	i = top_reg;
273 
274 	while (i >= 0) {
275 		printk("x%-2d: %016llx ", i, regs->regs[i]);
276 		i--;
277 
278 		if (i % 2 == 0) {
279 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
280 			i--;
281 		}
282 
283 		pr_cont("\n");
284 	}
285 }
286 
287 void show_regs(struct pt_regs * regs)
288 {
289 	__show_regs(regs);
290 	dump_backtrace(regs, NULL);
291 }
292 
293 static void tls_thread_flush(void)
294 {
295 	write_sysreg(0, tpidr_el0);
296 
297 	if (is_compat_task()) {
298 		current->thread.uw.tp_value = 0;
299 
300 		/*
301 		 * We need to ensure ordering between the shadow state and the
302 		 * hardware state, so that we don't corrupt the hardware state
303 		 * with a stale shadow state during context switch.
304 		 */
305 		barrier();
306 		write_sysreg(0, tpidrro_el0);
307 	}
308 }
309 
310 void flush_thread(void)
311 {
312 	fpsimd_flush_thread();
313 	tls_thread_flush();
314 	flush_ptrace_hw_breakpoint(current);
315 }
316 
317 void release_thread(struct task_struct *dead_task)
318 {
319 }
320 
321 void arch_release_task_struct(struct task_struct *tsk)
322 {
323 	fpsimd_release_task(tsk);
324 }
325 
326 /*
327  * src and dst may temporarily have aliased sve_state after task_struct
328  * is copied.  We cannot fix this properly here, because src may have
329  * live SVE state and dst's thread_info may not exist yet, so tweaking
330  * either src's or dst's TIF_SVE is not safe.
331  *
332  * The unaliasing is done in copy_thread() instead.  This works because
333  * dst is not schedulable or traceable until both of these functions
334  * have been called.
335  */
336 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
337 {
338 	if (current->mm)
339 		fpsimd_preserve_current_state();
340 	*dst = *src;
341 
342 	return 0;
343 }
344 
345 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
346 
347 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
348 		unsigned long stk_sz, struct task_struct *p)
349 {
350 	struct pt_regs *childregs = task_pt_regs(p);
351 
352 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
353 
354 	/*
355 	 * Unalias p->thread.sve_state (if any) from the parent task
356 	 * and disable discard SVE state for p:
357 	 */
358 	clear_tsk_thread_flag(p, TIF_SVE);
359 	p->thread.sve_state = NULL;
360 
361 	/*
362 	 * In case p was allocated the same task_struct pointer as some
363 	 * other recently-exited task, make sure p is disassociated from
364 	 * any cpu that may have run that now-exited task recently.
365 	 * Otherwise we could erroneously skip reloading the FPSIMD
366 	 * registers for p.
367 	 */
368 	fpsimd_flush_task_state(p);
369 
370 	if (likely(!(p->flags & PF_KTHREAD))) {
371 		*childregs = *current_pt_regs();
372 		childregs->regs[0] = 0;
373 
374 		/*
375 		 * Read the current TLS pointer from tpidr_el0 as it may be
376 		 * out-of-sync with the saved value.
377 		 */
378 		*task_user_tls(p) = read_sysreg(tpidr_el0);
379 
380 		if (stack_start) {
381 			if (is_compat_thread(task_thread_info(p)))
382 				childregs->compat_sp = stack_start;
383 			else
384 				childregs->sp = stack_start;
385 		}
386 
387 		/*
388 		 * If a TLS pointer was passed to clone (4th argument), use it
389 		 * for the new thread.
390 		 */
391 		if (clone_flags & CLONE_SETTLS)
392 			p->thread.uw.tp_value = childregs->regs[3];
393 	} else {
394 		memset(childregs, 0, sizeof(struct pt_regs));
395 		childregs->pstate = PSR_MODE_EL1h;
396 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
397 		    cpus_have_const_cap(ARM64_HAS_UAO))
398 			childregs->pstate |= PSR_UAO_BIT;
399 
400 		if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
401 			set_ssbs_bit(childregs);
402 
403 		if (system_uses_irq_prio_masking())
404 			childregs->pmr_save = GIC_PRIO_IRQON;
405 
406 		p->thread.cpu_context.x19 = stack_start;
407 		p->thread.cpu_context.x20 = stk_sz;
408 	}
409 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
410 	p->thread.cpu_context.sp = (unsigned long)childregs;
411 
412 	ptrace_hw_copy_thread(p);
413 
414 	return 0;
415 }
416 
417 void tls_preserve_current_state(void)
418 {
419 	*task_user_tls(current) = read_sysreg(tpidr_el0);
420 }
421 
422 static void tls_thread_switch(struct task_struct *next)
423 {
424 	tls_preserve_current_state();
425 
426 	if (is_compat_thread(task_thread_info(next)))
427 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
428 	else if (!arm64_kernel_unmapped_at_el0())
429 		write_sysreg(0, tpidrro_el0);
430 
431 	write_sysreg(*task_user_tls(next), tpidr_el0);
432 }
433 
434 /* Restore the UAO state depending on next's addr_limit */
435 void uao_thread_switch(struct task_struct *next)
436 {
437 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
438 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
439 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
440 		else
441 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
442 	}
443 }
444 
445 /*
446  * Force SSBS state on context-switch, since it may be lost after migrating
447  * from a CPU which treats the bit as RES0 in a heterogeneous system.
448  */
449 static void ssbs_thread_switch(struct task_struct *next)
450 {
451 	struct pt_regs *regs = task_pt_regs(next);
452 
453 	/*
454 	 * Nothing to do for kernel threads, but 'regs' may be junk
455 	 * (e.g. idle task) so check the flags and bail early.
456 	 */
457 	if (unlikely(next->flags & PF_KTHREAD))
458 		return;
459 
460 	/* If the mitigation is enabled, then we leave SSBS clear. */
461 	if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
462 	    test_tsk_thread_flag(next, TIF_SSBD))
463 		return;
464 
465 	if (compat_user_mode(regs))
466 		set_compat_ssbs_bit(regs);
467 	else if (user_mode(regs))
468 		set_ssbs_bit(regs);
469 }
470 
471 /*
472  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
473  * shadow copy so that we can restore this upon entry from userspace.
474  *
475  * This is *only* for exception entry from EL0, and is not valid until we
476  * __switch_to() a user task.
477  */
478 DEFINE_PER_CPU(struct task_struct *, __entry_task);
479 
480 static void entry_task_switch(struct task_struct *next)
481 {
482 	__this_cpu_write(__entry_task, next);
483 }
484 
485 /*
486  * Thread switching.
487  */
488 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
489 				struct task_struct *next)
490 {
491 	struct task_struct *last;
492 
493 	fpsimd_thread_switch(next);
494 	tls_thread_switch(next);
495 	hw_breakpoint_thread_switch(next);
496 	contextidr_thread_switch(next);
497 	entry_task_switch(next);
498 	uao_thread_switch(next);
499 	ptrauth_thread_switch(next);
500 	ssbs_thread_switch(next);
501 
502 	/*
503 	 * Complete any pending TLB or cache maintenance on this CPU in case
504 	 * the thread migrates to a different CPU.
505 	 * This full barrier is also required by the membarrier system
506 	 * call.
507 	 */
508 	dsb(ish);
509 
510 	/* the actual thread switch */
511 	last = cpu_switch_to(prev, next);
512 
513 	return last;
514 }
515 
516 unsigned long get_wchan(struct task_struct *p)
517 {
518 	struct stackframe frame;
519 	unsigned long stack_page, ret = 0;
520 	int count = 0;
521 	if (!p || p == current || p->state == TASK_RUNNING)
522 		return 0;
523 
524 	stack_page = (unsigned long)try_get_task_stack(p);
525 	if (!stack_page)
526 		return 0;
527 
528 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
529 
530 	do {
531 		if (unwind_frame(p, &frame))
532 			goto out;
533 		if (!in_sched_functions(frame.pc)) {
534 			ret = frame.pc;
535 			goto out;
536 		}
537 	} while (count ++ < 16);
538 
539 out:
540 	put_task_stack(p);
541 	return ret;
542 }
543 
544 unsigned long arch_align_stack(unsigned long sp)
545 {
546 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
547 		sp -= get_random_int() & ~PAGE_MASK;
548 	return sp & ~0xf;
549 }
550 
551 unsigned long arch_randomize_brk(struct mm_struct *mm)
552 {
553 	if (is_compat_task())
554 		return randomize_page(mm->brk, SZ_32M);
555 	else
556 		return randomize_page(mm->brk, SZ_1G);
557 }
558 
559 /*
560  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
561  */
562 void arch_setup_new_exec(void)
563 {
564 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
565 
566 	ptrauth_thread_init_user(current);
567 }
568