1 /* 2 * Based on arch/arm/kernel/process.c 3 * 4 * Original Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <stdarg.h> 22 23 #include <linux/compat.h> 24 #include <linux/efi.h> 25 #include <linux/export.h> 26 #include <linux/sched.h> 27 #include <linux/sched/debug.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/task_stack.h> 30 #include <linux/kernel.h> 31 #include <linux/mm.h> 32 #include <linux/stddef.h> 33 #include <linux/unistd.h> 34 #include <linux/user.h> 35 #include <linux/delay.h> 36 #include <linux/reboot.h> 37 #include <linux/interrupt.h> 38 #include <linux/init.h> 39 #include <linux/cpu.h> 40 #include <linux/elfcore.h> 41 #include <linux/pm.h> 42 #include <linux/tick.h> 43 #include <linux/utsname.h> 44 #include <linux/uaccess.h> 45 #include <linux/random.h> 46 #include <linux/hw_breakpoint.h> 47 #include <linux/personality.h> 48 #include <linux/notifier.h> 49 #include <trace/events/power.h> 50 #include <linux/percpu.h> 51 #include <linux/thread_info.h> 52 53 #include <asm/alternative.h> 54 #include <asm/compat.h> 55 #include <asm/cacheflush.h> 56 #include <asm/exec.h> 57 #include <asm/fpsimd.h> 58 #include <asm/mmu_context.h> 59 #include <asm/processor.h> 60 #include <asm/stacktrace.h> 61 62 #ifdef CONFIG_STACKPROTECTOR 63 #include <linux/stackprotector.h> 64 unsigned long __stack_chk_guard __read_mostly; 65 EXPORT_SYMBOL(__stack_chk_guard); 66 #endif 67 68 /* 69 * Function pointers to optional machine specific functions 70 */ 71 void (*pm_power_off)(void); 72 EXPORT_SYMBOL_GPL(pm_power_off); 73 74 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 75 76 /* 77 * This is our default idle handler. 78 */ 79 void arch_cpu_idle(void) 80 { 81 /* 82 * This should do all the clock switching and wait for interrupt 83 * tricks 84 */ 85 trace_cpu_idle_rcuidle(1, smp_processor_id()); 86 cpu_do_idle(); 87 local_irq_enable(); 88 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 89 } 90 91 #ifdef CONFIG_HOTPLUG_CPU 92 void arch_cpu_idle_dead(void) 93 { 94 cpu_die(); 95 } 96 #endif 97 98 /* 99 * Called by kexec, immediately prior to machine_kexec(). 100 * 101 * This must completely disable all secondary CPUs; simply causing those CPUs 102 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 103 * kexec'd kernel to use any and all RAM as it sees fit, without having to 104 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 105 * functionality embodied in disable_nonboot_cpus() to achieve this. 106 */ 107 void machine_shutdown(void) 108 { 109 disable_nonboot_cpus(); 110 } 111 112 /* 113 * Halting simply requires that the secondary CPUs stop performing any 114 * activity (executing tasks, handling interrupts). smp_send_stop() 115 * achieves this. 116 */ 117 void machine_halt(void) 118 { 119 local_irq_disable(); 120 smp_send_stop(); 121 while (1); 122 } 123 124 /* 125 * Power-off simply requires that the secondary CPUs stop performing any 126 * activity (executing tasks, handling interrupts). smp_send_stop() 127 * achieves this. When the system power is turned off, it will take all CPUs 128 * with it. 129 */ 130 void machine_power_off(void) 131 { 132 local_irq_disable(); 133 smp_send_stop(); 134 if (pm_power_off) 135 pm_power_off(); 136 } 137 138 /* 139 * Restart requires that the secondary CPUs stop performing any activity 140 * while the primary CPU resets the system. Systems with multiple CPUs must 141 * provide a HW restart implementation, to ensure that all CPUs reset at once. 142 * This is required so that any code running after reset on the primary CPU 143 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 144 * executing pre-reset code, and using RAM that the primary CPU's code wishes 145 * to use. Implementing such co-ordination would be essentially impossible. 146 */ 147 void machine_restart(char *cmd) 148 { 149 /* Disable interrupts first */ 150 local_irq_disable(); 151 smp_send_stop(); 152 153 /* 154 * UpdateCapsule() depends on the system being reset via 155 * ResetSystem(). 156 */ 157 if (efi_enabled(EFI_RUNTIME_SERVICES)) 158 efi_reboot(reboot_mode, NULL); 159 160 /* Now call the architecture specific reboot code. */ 161 if (arm_pm_restart) 162 arm_pm_restart(reboot_mode, cmd); 163 else 164 do_kernel_restart(cmd); 165 166 /* 167 * Whoops - the architecture was unable to reboot. 168 */ 169 printk("Reboot failed -- System halted\n"); 170 while (1); 171 } 172 173 static void print_pstate(struct pt_regs *regs) 174 { 175 u64 pstate = regs->pstate; 176 177 if (compat_user_mode(regs)) { 178 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 179 pstate, 180 pstate & COMPAT_PSR_N_BIT ? 'N' : 'n', 181 pstate & COMPAT_PSR_Z_BIT ? 'Z' : 'z', 182 pstate & COMPAT_PSR_C_BIT ? 'C' : 'c', 183 pstate & COMPAT_PSR_V_BIT ? 'V' : 'v', 184 pstate & COMPAT_PSR_Q_BIT ? 'Q' : 'q', 185 pstate & COMPAT_PSR_T_BIT ? "T32" : "A32", 186 pstate & COMPAT_PSR_E_BIT ? "BE" : "LE", 187 pstate & COMPAT_PSR_A_BIT ? 'A' : 'a', 188 pstate & COMPAT_PSR_I_BIT ? 'I' : 'i', 189 pstate & COMPAT_PSR_F_BIT ? 'F' : 'f'); 190 } else { 191 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n", 192 pstate, 193 pstate & PSR_N_BIT ? 'N' : 'n', 194 pstate & PSR_Z_BIT ? 'Z' : 'z', 195 pstate & PSR_C_BIT ? 'C' : 'c', 196 pstate & PSR_V_BIT ? 'V' : 'v', 197 pstate & PSR_D_BIT ? 'D' : 'd', 198 pstate & PSR_A_BIT ? 'A' : 'a', 199 pstate & PSR_I_BIT ? 'I' : 'i', 200 pstate & PSR_F_BIT ? 'F' : 'f', 201 pstate & PSR_PAN_BIT ? '+' : '-', 202 pstate & PSR_UAO_BIT ? '+' : '-'); 203 } 204 } 205 206 void __show_regs(struct pt_regs *regs) 207 { 208 int i, top_reg; 209 u64 lr, sp; 210 211 if (compat_user_mode(regs)) { 212 lr = regs->compat_lr; 213 sp = regs->compat_sp; 214 top_reg = 12; 215 } else { 216 lr = regs->regs[30]; 217 sp = regs->sp; 218 top_reg = 29; 219 } 220 221 show_regs_print_info(KERN_DEFAULT); 222 print_pstate(regs); 223 224 if (!user_mode(regs)) { 225 printk("pc : %pS\n", (void *)regs->pc); 226 printk("lr : %pS\n", (void *)lr); 227 } else { 228 printk("pc : %016llx\n", regs->pc); 229 printk("lr : %016llx\n", lr); 230 } 231 232 printk("sp : %016llx\n", sp); 233 234 i = top_reg; 235 236 while (i >= 0) { 237 printk("x%-2d: %016llx ", i, regs->regs[i]); 238 i--; 239 240 if (i % 2 == 0) { 241 pr_cont("x%-2d: %016llx ", i, regs->regs[i]); 242 i--; 243 } 244 245 pr_cont("\n"); 246 } 247 } 248 249 void show_regs(struct pt_regs * regs) 250 { 251 __show_regs(regs); 252 dump_backtrace(regs, NULL); 253 } 254 255 static void tls_thread_flush(void) 256 { 257 write_sysreg(0, tpidr_el0); 258 259 if (is_compat_task()) { 260 current->thread.uw.tp_value = 0; 261 262 /* 263 * We need to ensure ordering between the shadow state and the 264 * hardware state, so that we don't corrupt the hardware state 265 * with a stale shadow state during context switch. 266 */ 267 barrier(); 268 write_sysreg(0, tpidrro_el0); 269 } 270 } 271 272 void flush_thread(void) 273 { 274 fpsimd_flush_thread(); 275 tls_thread_flush(); 276 flush_ptrace_hw_breakpoint(current); 277 } 278 279 void release_thread(struct task_struct *dead_task) 280 { 281 } 282 283 void arch_release_task_struct(struct task_struct *tsk) 284 { 285 fpsimd_release_task(tsk); 286 } 287 288 /* 289 * src and dst may temporarily have aliased sve_state after task_struct 290 * is copied. We cannot fix this properly here, because src may have 291 * live SVE state and dst's thread_info may not exist yet, so tweaking 292 * either src's or dst's TIF_SVE is not safe. 293 * 294 * The unaliasing is done in copy_thread() instead. This works because 295 * dst is not schedulable or traceable until both of these functions 296 * have been called. 297 */ 298 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 299 { 300 if (current->mm) 301 fpsimd_preserve_current_state(); 302 *dst = *src; 303 304 return 0; 305 } 306 307 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 308 309 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 310 unsigned long stk_sz, struct task_struct *p) 311 { 312 struct pt_regs *childregs = task_pt_regs(p); 313 314 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 315 316 /* 317 * Unalias p->thread.sve_state (if any) from the parent task 318 * and disable discard SVE state for p: 319 */ 320 clear_tsk_thread_flag(p, TIF_SVE); 321 p->thread.sve_state = NULL; 322 323 /* 324 * In case p was allocated the same task_struct pointer as some 325 * other recently-exited task, make sure p is disassociated from 326 * any cpu that may have run that now-exited task recently. 327 * Otherwise we could erroneously skip reloading the FPSIMD 328 * registers for p. 329 */ 330 fpsimd_flush_task_state(p); 331 332 if (likely(!(p->flags & PF_KTHREAD))) { 333 *childregs = *current_pt_regs(); 334 childregs->regs[0] = 0; 335 336 /* 337 * Read the current TLS pointer from tpidr_el0 as it may be 338 * out-of-sync with the saved value. 339 */ 340 *task_user_tls(p) = read_sysreg(tpidr_el0); 341 342 if (stack_start) { 343 if (is_compat_thread(task_thread_info(p))) 344 childregs->compat_sp = stack_start; 345 else 346 childregs->sp = stack_start; 347 } 348 349 /* 350 * If a TLS pointer was passed to clone (4th argument), use it 351 * for the new thread. 352 */ 353 if (clone_flags & CLONE_SETTLS) 354 p->thread.uw.tp_value = childregs->regs[3]; 355 } else { 356 memset(childregs, 0, sizeof(struct pt_regs)); 357 childregs->pstate = PSR_MODE_EL1h; 358 if (IS_ENABLED(CONFIG_ARM64_UAO) && 359 cpus_have_const_cap(ARM64_HAS_UAO)) 360 childregs->pstate |= PSR_UAO_BIT; 361 p->thread.cpu_context.x19 = stack_start; 362 p->thread.cpu_context.x20 = stk_sz; 363 } 364 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 365 p->thread.cpu_context.sp = (unsigned long)childregs; 366 367 ptrace_hw_copy_thread(p); 368 369 return 0; 370 } 371 372 void tls_preserve_current_state(void) 373 { 374 *task_user_tls(current) = read_sysreg(tpidr_el0); 375 } 376 377 static void tls_thread_switch(struct task_struct *next) 378 { 379 tls_preserve_current_state(); 380 381 if (is_compat_thread(task_thread_info(next))) 382 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 383 else if (!arm64_kernel_unmapped_at_el0()) 384 write_sysreg(0, tpidrro_el0); 385 386 write_sysreg(*task_user_tls(next), tpidr_el0); 387 } 388 389 /* Restore the UAO state depending on next's addr_limit */ 390 void uao_thread_switch(struct task_struct *next) 391 { 392 if (IS_ENABLED(CONFIG_ARM64_UAO)) { 393 if (task_thread_info(next)->addr_limit == KERNEL_DS) 394 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); 395 else 396 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); 397 } 398 } 399 400 /* 401 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 402 * shadow copy so that we can restore this upon entry from userspace. 403 * 404 * This is *only* for exception entry from EL0, and is not valid until we 405 * __switch_to() a user task. 406 */ 407 DEFINE_PER_CPU(struct task_struct *, __entry_task); 408 409 static void entry_task_switch(struct task_struct *next) 410 { 411 __this_cpu_write(__entry_task, next); 412 } 413 414 /* 415 * Thread switching. 416 */ 417 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 418 struct task_struct *next) 419 { 420 struct task_struct *last; 421 422 fpsimd_thread_switch(next); 423 tls_thread_switch(next); 424 hw_breakpoint_thread_switch(next); 425 contextidr_thread_switch(next); 426 entry_task_switch(next); 427 uao_thread_switch(next); 428 429 /* 430 * Complete any pending TLB or cache maintenance on this CPU in case 431 * the thread migrates to a different CPU. 432 * This full barrier is also required by the membarrier system 433 * call. 434 */ 435 dsb(ish); 436 437 /* the actual thread switch */ 438 last = cpu_switch_to(prev, next); 439 440 return last; 441 } 442 443 unsigned long get_wchan(struct task_struct *p) 444 { 445 struct stackframe frame; 446 unsigned long stack_page, ret = 0; 447 int count = 0; 448 if (!p || p == current || p->state == TASK_RUNNING) 449 return 0; 450 451 stack_page = (unsigned long)try_get_task_stack(p); 452 if (!stack_page) 453 return 0; 454 455 frame.fp = thread_saved_fp(p); 456 frame.pc = thread_saved_pc(p); 457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 458 frame.graph = p->curr_ret_stack; 459 #endif 460 do { 461 if (unwind_frame(p, &frame)) 462 goto out; 463 if (!in_sched_functions(frame.pc)) { 464 ret = frame.pc; 465 goto out; 466 } 467 } while (count ++ < 16); 468 469 out: 470 put_task_stack(p); 471 return ret; 472 } 473 474 unsigned long arch_align_stack(unsigned long sp) 475 { 476 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 477 sp -= get_random_int() & ~PAGE_MASK; 478 return sp & ~0xf; 479 } 480 481 unsigned long arch_randomize_brk(struct mm_struct *mm) 482 { 483 if (is_compat_task()) 484 return randomize_page(mm->brk, SZ_32M); 485 else 486 return randomize_page(mm->brk, SZ_1G); 487 } 488 489 /* 490 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 491 */ 492 void arch_setup_new_exec(void) 493 { 494 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; 495 } 496