xref: /openbmc/linux/arch/arm64/kernel/process.c (revision 83f865d7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/lockdep.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/nospec.h>
25 #include <linux/stddef.h>
26 #include <linux/sysctl.h>
27 #include <linux/unistd.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/elfcore.h>
35 #include <linux/pm.h>
36 #include <linux/tick.h>
37 #include <linux/utsname.h>
38 #include <linux/uaccess.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/personality.h>
42 #include <linux/notifier.h>
43 #include <trace/events/power.h>
44 #include <linux/percpu.h>
45 #include <linux/thread_info.h>
46 #include <linux/prctl.h>
47 
48 #include <asm/alternative.h>
49 #include <asm/arch_gicv3.h>
50 #include <asm/compat.h>
51 #include <asm/cpufeature.h>
52 #include <asm/cacheflush.h>
53 #include <asm/exec.h>
54 #include <asm/fpsimd.h>
55 #include <asm/mmu_context.h>
56 #include <asm/mte.h>
57 #include <asm/processor.h>
58 #include <asm/pointer_auth.h>
59 #include <asm/stacktrace.h>
60 
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __read_mostly;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
66 
67 /*
68  * Function pointers to optional machine specific functions
69  */
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
72 
73 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
74 
75 static void __cpu_do_idle(void)
76 {
77 	dsb(sy);
78 	wfi();
79 }
80 
81 static void __cpu_do_idle_irqprio(void)
82 {
83 	unsigned long pmr;
84 	unsigned long daif_bits;
85 
86 	daif_bits = read_sysreg(daif);
87 	write_sysreg(daif_bits | PSR_I_BIT, daif);
88 
89 	/*
90 	 * Unmask PMR before going idle to make sure interrupts can
91 	 * be raised.
92 	 */
93 	pmr = gic_read_pmr();
94 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
95 
96 	__cpu_do_idle();
97 
98 	gic_write_pmr(pmr);
99 	write_sysreg(daif_bits, daif);
100 }
101 
102 /*
103  *	cpu_do_idle()
104  *
105  *	Idle the processor (wait for interrupt).
106  *
107  *	If the CPU supports priority masking we must do additional work to
108  *	ensure that interrupts are not masked at the PMR (because the core will
109  *	not wake up if we block the wake up signal in the interrupt controller).
110  */
111 void cpu_do_idle(void)
112 {
113 	if (system_uses_irq_prio_masking())
114 		__cpu_do_idle_irqprio();
115 	else
116 		__cpu_do_idle();
117 }
118 
119 /*
120  * This is our default idle handler.
121  */
122 void arch_cpu_idle(void)
123 {
124 	/*
125 	 * This should do all the clock switching and wait for interrupt
126 	 * tricks
127 	 */
128 	cpu_do_idle();
129 	local_irq_enable();
130 }
131 
132 #ifdef CONFIG_HOTPLUG_CPU
133 void arch_cpu_idle_dead(void)
134 {
135        cpu_die();
136 }
137 #endif
138 
139 /*
140  * Called by kexec, immediately prior to machine_kexec().
141  *
142  * This must completely disable all secondary CPUs; simply causing those CPUs
143  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
144  * kexec'd kernel to use any and all RAM as it sees fit, without having to
145  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
146  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
147  */
148 void machine_shutdown(void)
149 {
150 	smp_shutdown_nonboot_cpus(reboot_cpu);
151 }
152 
153 /*
154  * Halting simply requires that the secondary CPUs stop performing any
155  * activity (executing tasks, handling interrupts). smp_send_stop()
156  * achieves this.
157  */
158 void machine_halt(void)
159 {
160 	local_irq_disable();
161 	smp_send_stop();
162 	while (1);
163 }
164 
165 /*
166  * Power-off simply requires that the secondary CPUs stop performing any
167  * activity (executing tasks, handling interrupts). smp_send_stop()
168  * achieves this. When the system power is turned off, it will take all CPUs
169  * with it.
170  */
171 void machine_power_off(void)
172 {
173 	local_irq_disable();
174 	smp_send_stop();
175 	if (pm_power_off)
176 		pm_power_off();
177 }
178 
179 /*
180  * Restart requires that the secondary CPUs stop performing any activity
181  * while the primary CPU resets the system. Systems with multiple CPUs must
182  * provide a HW restart implementation, to ensure that all CPUs reset at once.
183  * This is required so that any code running after reset on the primary CPU
184  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
185  * executing pre-reset code, and using RAM that the primary CPU's code wishes
186  * to use. Implementing such co-ordination would be essentially impossible.
187  */
188 void machine_restart(char *cmd)
189 {
190 	/* Disable interrupts first */
191 	local_irq_disable();
192 	smp_send_stop();
193 
194 	/*
195 	 * UpdateCapsule() depends on the system being reset via
196 	 * ResetSystem().
197 	 */
198 	if (efi_enabled(EFI_RUNTIME_SERVICES))
199 		efi_reboot(reboot_mode, NULL);
200 
201 	/* Now call the architecture specific reboot code. */
202 	if (arm_pm_restart)
203 		arm_pm_restart(reboot_mode, cmd);
204 	else
205 		do_kernel_restart(cmd);
206 
207 	/*
208 	 * Whoops - the architecture was unable to reboot.
209 	 */
210 	printk("Reboot failed -- System halted\n");
211 	while (1);
212 }
213 
214 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
215 static const char *const btypes[] = {
216 	bstr(NONE, "--"),
217 	bstr(  JC, "jc"),
218 	bstr(   C, "-c"),
219 	bstr(  J , "j-")
220 };
221 #undef bstr
222 
223 static void print_pstate(struct pt_regs *regs)
224 {
225 	u64 pstate = regs->pstate;
226 
227 	if (compat_user_mode(regs)) {
228 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
229 			pstate,
230 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
231 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
232 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
233 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
234 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
235 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
236 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
237 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
238 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
239 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
240 	} else {
241 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
242 					       PSR_BTYPE_SHIFT];
243 
244 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
245 			pstate,
246 			pstate & PSR_N_BIT ? 'N' : 'n',
247 			pstate & PSR_Z_BIT ? 'Z' : 'z',
248 			pstate & PSR_C_BIT ? 'C' : 'c',
249 			pstate & PSR_V_BIT ? 'V' : 'v',
250 			pstate & PSR_D_BIT ? 'D' : 'd',
251 			pstate & PSR_A_BIT ? 'A' : 'a',
252 			pstate & PSR_I_BIT ? 'I' : 'i',
253 			pstate & PSR_F_BIT ? 'F' : 'f',
254 			pstate & PSR_PAN_BIT ? '+' : '-',
255 			pstate & PSR_UAO_BIT ? '+' : '-',
256 			pstate & PSR_TCO_BIT ? '+' : '-',
257 			btype_str);
258 	}
259 }
260 
261 void __show_regs(struct pt_regs *regs)
262 {
263 	int i, top_reg;
264 	u64 lr, sp;
265 
266 	if (compat_user_mode(regs)) {
267 		lr = regs->compat_lr;
268 		sp = regs->compat_sp;
269 		top_reg = 12;
270 	} else {
271 		lr = regs->regs[30];
272 		sp = regs->sp;
273 		top_reg = 29;
274 	}
275 
276 	show_regs_print_info(KERN_DEFAULT);
277 	print_pstate(regs);
278 
279 	if (!user_mode(regs)) {
280 		printk("pc : %pS\n", (void *)regs->pc);
281 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
282 	} else {
283 		printk("pc : %016llx\n", regs->pc);
284 		printk("lr : %016llx\n", lr);
285 	}
286 
287 	printk("sp : %016llx\n", sp);
288 
289 	if (system_uses_irq_prio_masking())
290 		printk("pmr_save: %08llx\n", regs->pmr_save);
291 
292 	i = top_reg;
293 
294 	while (i >= 0) {
295 		printk("x%-2d: %016llx ", i, regs->regs[i]);
296 		i--;
297 
298 		if (i % 2 == 0) {
299 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
300 			i--;
301 		}
302 
303 		pr_cont("\n");
304 	}
305 }
306 
307 void show_regs(struct pt_regs * regs)
308 {
309 	__show_regs(regs);
310 	dump_backtrace(regs, NULL, KERN_DEFAULT);
311 }
312 
313 static void tls_thread_flush(void)
314 {
315 	write_sysreg(0, tpidr_el0);
316 
317 	if (is_compat_task()) {
318 		current->thread.uw.tp_value = 0;
319 
320 		/*
321 		 * We need to ensure ordering between the shadow state and the
322 		 * hardware state, so that we don't corrupt the hardware state
323 		 * with a stale shadow state during context switch.
324 		 */
325 		barrier();
326 		write_sysreg(0, tpidrro_el0);
327 	}
328 }
329 
330 static void flush_tagged_addr_state(void)
331 {
332 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
333 		clear_thread_flag(TIF_TAGGED_ADDR);
334 }
335 
336 void flush_thread(void)
337 {
338 	fpsimd_flush_thread();
339 	tls_thread_flush();
340 	flush_ptrace_hw_breakpoint(current);
341 	flush_tagged_addr_state();
342 	flush_mte_state();
343 }
344 
345 void release_thread(struct task_struct *dead_task)
346 {
347 }
348 
349 void arch_release_task_struct(struct task_struct *tsk)
350 {
351 	fpsimd_release_task(tsk);
352 }
353 
354 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
355 {
356 	if (current->mm)
357 		fpsimd_preserve_current_state();
358 	*dst = *src;
359 
360 	/* We rely on the above assignment to initialize dst's thread_flags: */
361 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
362 
363 	/*
364 	 * Detach src's sve_state (if any) from dst so that it does not
365 	 * get erroneously used or freed prematurely.  dst's sve_state
366 	 * will be allocated on demand later on if dst uses SVE.
367 	 * For consistency, also clear TIF_SVE here: this could be done
368 	 * later in copy_process(), but to avoid tripping up future
369 	 * maintainers it is best not to leave TIF_SVE and sve_state in
370 	 * an inconsistent state, even temporarily.
371 	 */
372 	dst->thread.sve_state = NULL;
373 	clear_tsk_thread_flag(dst, TIF_SVE);
374 
375 	/* clear any pending asynchronous tag fault raised by the parent */
376 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
377 
378 	return 0;
379 }
380 
381 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
382 
383 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
384 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
385 {
386 	struct pt_regs *childregs = task_pt_regs(p);
387 
388 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
389 
390 	/*
391 	 * In case p was allocated the same task_struct pointer as some
392 	 * other recently-exited task, make sure p is disassociated from
393 	 * any cpu that may have run that now-exited task recently.
394 	 * Otherwise we could erroneously skip reloading the FPSIMD
395 	 * registers for p.
396 	 */
397 	fpsimd_flush_task_state(p);
398 
399 	ptrauth_thread_init_kernel(p);
400 
401 	if (likely(!(p->flags & PF_KTHREAD))) {
402 		*childregs = *current_pt_regs();
403 		childregs->regs[0] = 0;
404 
405 		/*
406 		 * Read the current TLS pointer from tpidr_el0 as it may be
407 		 * out-of-sync with the saved value.
408 		 */
409 		*task_user_tls(p) = read_sysreg(tpidr_el0);
410 
411 		if (stack_start) {
412 			if (is_compat_thread(task_thread_info(p)))
413 				childregs->compat_sp = stack_start;
414 			else
415 				childregs->sp = stack_start;
416 		}
417 
418 		/*
419 		 * If a TLS pointer was passed to clone, use it for the new
420 		 * thread.
421 		 */
422 		if (clone_flags & CLONE_SETTLS)
423 			p->thread.uw.tp_value = tls;
424 	} else {
425 		memset(childregs, 0, sizeof(struct pt_regs));
426 		childregs->pstate = PSR_MODE_EL1h;
427 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
428 		    cpus_have_const_cap(ARM64_HAS_UAO))
429 			childregs->pstate |= PSR_UAO_BIT;
430 
431 		spectre_v4_enable_task_mitigation(p);
432 
433 		if (system_uses_irq_prio_masking())
434 			childregs->pmr_save = GIC_PRIO_IRQON;
435 
436 		p->thread.cpu_context.x19 = stack_start;
437 		p->thread.cpu_context.x20 = stk_sz;
438 	}
439 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
440 	p->thread.cpu_context.sp = (unsigned long)childregs;
441 
442 	ptrace_hw_copy_thread(p);
443 
444 	return 0;
445 }
446 
447 void tls_preserve_current_state(void)
448 {
449 	*task_user_tls(current) = read_sysreg(tpidr_el0);
450 }
451 
452 static void tls_thread_switch(struct task_struct *next)
453 {
454 	tls_preserve_current_state();
455 
456 	if (is_compat_thread(task_thread_info(next)))
457 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
458 	else if (!arm64_kernel_unmapped_at_el0())
459 		write_sysreg(0, tpidrro_el0);
460 
461 	write_sysreg(*task_user_tls(next), tpidr_el0);
462 }
463 
464 /* Restore the UAO state depending on next's addr_limit */
465 void uao_thread_switch(struct task_struct *next)
466 {
467 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
468 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
469 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
470 		else
471 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
472 	}
473 }
474 
475 /*
476  * Force SSBS state on context-switch, since it may be lost after migrating
477  * from a CPU which treats the bit as RES0 in a heterogeneous system.
478  */
479 static void ssbs_thread_switch(struct task_struct *next)
480 {
481 	/*
482 	 * Nothing to do for kernel threads, but 'regs' may be junk
483 	 * (e.g. idle task) so check the flags and bail early.
484 	 */
485 	if (unlikely(next->flags & PF_KTHREAD))
486 		return;
487 
488 	/*
489 	 * If all CPUs implement the SSBS extension, then we just need to
490 	 * context-switch the PSTATE field.
491 	 */
492 	if (cpus_have_const_cap(ARM64_SSBS))
493 		return;
494 
495 	spectre_v4_enable_task_mitigation(next);
496 }
497 
498 /*
499  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
500  * shadow copy so that we can restore this upon entry from userspace.
501  *
502  * This is *only* for exception entry from EL0, and is not valid until we
503  * __switch_to() a user task.
504  */
505 DEFINE_PER_CPU(struct task_struct *, __entry_task);
506 
507 static void entry_task_switch(struct task_struct *next)
508 {
509 	__this_cpu_write(__entry_task, next);
510 }
511 
512 /*
513  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
514  * Assuming the virtual counter is enabled at the beginning of times:
515  *
516  * - disable access when switching from a 64bit task to a 32bit task
517  * - enable access when switching from a 32bit task to a 64bit task
518  */
519 static void erratum_1418040_thread_switch(struct task_struct *prev,
520 					  struct task_struct *next)
521 {
522 	bool prev32, next32;
523 	u64 val;
524 
525 	if (!(IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
526 	      cpus_have_const_cap(ARM64_WORKAROUND_1418040)))
527 		return;
528 
529 	prev32 = is_compat_thread(task_thread_info(prev));
530 	next32 = is_compat_thread(task_thread_info(next));
531 
532 	if (prev32 == next32)
533 		return;
534 
535 	val = read_sysreg(cntkctl_el1);
536 
537 	if (!next32)
538 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
539 	else
540 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
541 
542 	write_sysreg(val, cntkctl_el1);
543 }
544 
545 /*
546  * Thread switching.
547  */
548 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
549 				struct task_struct *next)
550 {
551 	struct task_struct *last;
552 
553 	fpsimd_thread_switch(next);
554 	tls_thread_switch(next);
555 	hw_breakpoint_thread_switch(next);
556 	contextidr_thread_switch(next);
557 	entry_task_switch(next);
558 	uao_thread_switch(next);
559 	ssbs_thread_switch(next);
560 	erratum_1418040_thread_switch(prev, next);
561 
562 	/*
563 	 * Complete any pending TLB or cache maintenance on this CPU in case
564 	 * the thread migrates to a different CPU.
565 	 * This full barrier is also required by the membarrier system
566 	 * call.
567 	 */
568 	dsb(ish);
569 
570 	/*
571 	 * MTE thread switching must happen after the DSB above to ensure that
572 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
573 	 * registers.
574 	 */
575 	mte_thread_switch(next);
576 
577 	/* the actual thread switch */
578 	last = cpu_switch_to(prev, next);
579 
580 	return last;
581 }
582 
583 unsigned long get_wchan(struct task_struct *p)
584 {
585 	struct stackframe frame;
586 	unsigned long stack_page, ret = 0;
587 	int count = 0;
588 	if (!p || p == current || p->state == TASK_RUNNING)
589 		return 0;
590 
591 	stack_page = (unsigned long)try_get_task_stack(p);
592 	if (!stack_page)
593 		return 0;
594 
595 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
596 
597 	do {
598 		if (unwind_frame(p, &frame))
599 			goto out;
600 		if (!in_sched_functions(frame.pc)) {
601 			ret = frame.pc;
602 			goto out;
603 		}
604 	} while (count ++ < 16);
605 
606 out:
607 	put_task_stack(p);
608 	return ret;
609 }
610 
611 unsigned long arch_align_stack(unsigned long sp)
612 {
613 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
614 		sp -= get_random_int() & ~PAGE_MASK;
615 	return sp & ~0xf;
616 }
617 
618 /*
619  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
620  */
621 void arch_setup_new_exec(void)
622 {
623 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
624 
625 	ptrauth_thread_init_user(current);
626 
627 	if (task_spec_ssb_noexec(current)) {
628 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
629 					 PR_SPEC_ENABLE);
630 	}
631 }
632 
633 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
634 /*
635  * Control the relaxed ABI allowing tagged user addresses into the kernel.
636  */
637 static unsigned int tagged_addr_disabled;
638 
639 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
640 {
641 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
642 	struct thread_info *ti = task_thread_info(task);
643 
644 	if (is_compat_thread(ti))
645 		return -EINVAL;
646 
647 	if (system_supports_mte())
648 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
649 
650 	if (arg & ~valid_mask)
651 		return -EINVAL;
652 
653 	/*
654 	 * Do not allow the enabling of the tagged address ABI if globally
655 	 * disabled via sysctl abi.tagged_addr_disabled.
656 	 */
657 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
658 		return -EINVAL;
659 
660 	if (set_mte_ctrl(task, arg) != 0)
661 		return -EINVAL;
662 
663 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
664 
665 	return 0;
666 }
667 
668 long get_tagged_addr_ctrl(struct task_struct *task)
669 {
670 	long ret = 0;
671 	struct thread_info *ti = task_thread_info(task);
672 
673 	if (is_compat_thread(ti))
674 		return -EINVAL;
675 
676 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
677 		ret = PR_TAGGED_ADDR_ENABLE;
678 
679 	ret |= get_mte_ctrl(task);
680 
681 	return ret;
682 }
683 
684 /*
685  * Global sysctl to disable the tagged user addresses support. This control
686  * only prevents the tagged address ABI enabling via prctl() and does not
687  * disable it for tasks that already opted in to the relaxed ABI.
688  */
689 
690 static struct ctl_table tagged_addr_sysctl_table[] = {
691 	{
692 		.procname	= "tagged_addr_disabled",
693 		.mode		= 0644,
694 		.data		= &tagged_addr_disabled,
695 		.maxlen		= sizeof(int),
696 		.proc_handler	= proc_dointvec_minmax,
697 		.extra1		= SYSCTL_ZERO,
698 		.extra2		= SYSCTL_ONE,
699 	},
700 	{ }
701 };
702 
703 static int __init tagged_addr_init(void)
704 {
705 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
706 		return -EINVAL;
707 	return 0;
708 }
709 
710 core_initcall(tagged_addr_init);
711 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
712 
713 asmlinkage void __sched arm64_preempt_schedule_irq(void)
714 {
715 	lockdep_assert_irqs_disabled();
716 
717 	/*
718 	 * Preempting a task from an IRQ means we leave copies of PSTATE
719 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
720 	 * resuming one of these preempted tasks would undo those changes.
721 	 *
722 	 * Only allow a task to be preempted once cpufeatures have been
723 	 * enabled.
724 	 */
725 	if (system_capabilities_finalized())
726 		preempt_schedule_irq();
727 }
728 
729 #ifdef CONFIG_BINFMT_ELF
730 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
731 			 bool has_interp, bool is_interp)
732 {
733 	/*
734 	 * For dynamically linked executables the interpreter is
735 	 * responsible for setting PROT_BTI on everything except
736 	 * itself.
737 	 */
738 	if (is_interp != has_interp)
739 		return prot;
740 
741 	if (!(state->flags & ARM64_ELF_BTI))
742 		return prot;
743 
744 	if (prot & PROT_EXEC)
745 		prot |= PROT_BTI;
746 
747 	return prot;
748 }
749 #endif
750