1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <stdarg.h> 11 12 #include <linux/compat.h> 13 #include <linux/efi.h> 14 #include <linux/elf.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/sched/debug.h> 18 #include <linux/sched/task.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/kernel.h> 21 #include <linux/lockdep.h> 22 #include <linux/mman.h> 23 #include <linux/mm.h> 24 #include <linux/nospec.h> 25 #include <linux/stddef.h> 26 #include <linux/sysctl.h> 27 #include <linux/unistd.h> 28 #include <linux/user.h> 29 #include <linux/delay.h> 30 #include <linux/reboot.h> 31 #include <linux/interrupt.h> 32 #include <linux/init.h> 33 #include <linux/cpu.h> 34 #include <linux/elfcore.h> 35 #include <linux/pm.h> 36 #include <linux/tick.h> 37 #include <linux/utsname.h> 38 #include <linux/uaccess.h> 39 #include <linux/random.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/personality.h> 42 #include <linux/notifier.h> 43 #include <trace/events/power.h> 44 #include <linux/percpu.h> 45 #include <linux/thread_info.h> 46 #include <linux/prctl.h> 47 48 #include <asm/alternative.h> 49 #include <asm/arch_gicv3.h> 50 #include <asm/compat.h> 51 #include <asm/cpufeature.h> 52 #include <asm/cacheflush.h> 53 #include <asm/exec.h> 54 #include <asm/fpsimd.h> 55 #include <asm/mmu_context.h> 56 #include <asm/mte.h> 57 #include <asm/processor.h> 58 #include <asm/pointer_auth.h> 59 #include <asm/stacktrace.h> 60 61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 62 #include <linux/stackprotector.h> 63 unsigned long __stack_chk_guard __read_mostly; 64 EXPORT_SYMBOL(__stack_chk_guard); 65 #endif 66 67 /* 68 * Function pointers to optional machine specific functions 69 */ 70 void (*pm_power_off)(void); 71 EXPORT_SYMBOL_GPL(pm_power_off); 72 73 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 74 75 static void noinstr __cpu_do_idle(void) 76 { 77 dsb(sy); 78 wfi(); 79 } 80 81 static void noinstr __cpu_do_idle_irqprio(void) 82 { 83 unsigned long pmr; 84 unsigned long daif_bits; 85 86 daif_bits = read_sysreg(daif); 87 write_sysreg(daif_bits | PSR_I_BIT, daif); 88 89 /* 90 * Unmask PMR before going idle to make sure interrupts can 91 * be raised. 92 */ 93 pmr = gic_read_pmr(); 94 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 95 96 __cpu_do_idle(); 97 98 gic_write_pmr(pmr); 99 write_sysreg(daif_bits, daif); 100 } 101 102 /* 103 * cpu_do_idle() 104 * 105 * Idle the processor (wait for interrupt). 106 * 107 * If the CPU supports priority masking we must do additional work to 108 * ensure that interrupts are not masked at the PMR (because the core will 109 * not wake up if we block the wake up signal in the interrupt controller). 110 */ 111 void noinstr cpu_do_idle(void) 112 { 113 if (system_uses_irq_prio_masking()) 114 __cpu_do_idle_irqprio(); 115 else 116 __cpu_do_idle(); 117 } 118 119 /* 120 * This is our default idle handler. 121 */ 122 void noinstr arch_cpu_idle(void) 123 { 124 /* 125 * This should do all the clock switching and wait for interrupt 126 * tricks 127 */ 128 cpu_do_idle(); 129 raw_local_irq_enable(); 130 } 131 132 #ifdef CONFIG_HOTPLUG_CPU 133 void arch_cpu_idle_dead(void) 134 { 135 cpu_die(); 136 } 137 #endif 138 139 /* 140 * Called by kexec, immediately prior to machine_kexec(). 141 * 142 * This must completely disable all secondary CPUs; simply causing those CPUs 143 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 144 * kexec'd kernel to use any and all RAM as it sees fit, without having to 145 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 146 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 147 */ 148 void machine_shutdown(void) 149 { 150 smp_shutdown_nonboot_cpus(reboot_cpu); 151 } 152 153 /* 154 * Halting simply requires that the secondary CPUs stop performing any 155 * activity (executing tasks, handling interrupts). smp_send_stop() 156 * achieves this. 157 */ 158 void machine_halt(void) 159 { 160 local_irq_disable(); 161 smp_send_stop(); 162 while (1); 163 } 164 165 /* 166 * Power-off simply requires that the secondary CPUs stop performing any 167 * activity (executing tasks, handling interrupts). smp_send_stop() 168 * achieves this. When the system power is turned off, it will take all CPUs 169 * with it. 170 */ 171 void machine_power_off(void) 172 { 173 local_irq_disable(); 174 smp_send_stop(); 175 if (pm_power_off) 176 pm_power_off(); 177 } 178 179 /* 180 * Restart requires that the secondary CPUs stop performing any activity 181 * while the primary CPU resets the system. Systems with multiple CPUs must 182 * provide a HW restart implementation, to ensure that all CPUs reset at once. 183 * This is required so that any code running after reset on the primary CPU 184 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 185 * executing pre-reset code, and using RAM that the primary CPU's code wishes 186 * to use. Implementing such co-ordination would be essentially impossible. 187 */ 188 void machine_restart(char *cmd) 189 { 190 /* Disable interrupts first */ 191 local_irq_disable(); 192 smp_send_stop(); 193 194 /* 195 * UpdateCapsule() depends on the system being reset via 196 * ResetSystem(). 197 */ 198 if (efi_enabled(EFI_RUNTIME_SERVICES)) 199 efi_reboot(reboot_mode, NULL); 200 201 /* Now call the architecture specific reboot code. */ 202 if (arm_pm_restart) 203 arm_pm_restart(reboot_mode, cmd); 204 else 205 do_kernel_restart(cmd); 206 207 /* 208 * Whoops - the architecture was unable to reboot. 209 */ 210 printk("Reboot failed -- System halted\n"); 211 while (1); 212 } 213 214 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 215 static const char *const btypes[] = { 216 bstr(NONE, "--"), 217 bstr( JC, "jc"), 218 bstr( C, "-c"), 219 bstr( J , "j-") 220 }; 221 #undef bstr 222 223 static void print_pstate(struct pt_regs *regs) 224 { 225 u64 pstate = regs->pstate; 226 227 if (compat_user_mode(regs)) { 228 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 229 pstate, 230 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 231 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 232 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 233 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 234 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 235 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 236 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 237 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 238 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 239 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 240 } else { 241 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 242 PSR_BTYPE_SHIFT]; 243 244 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n", 245 pstate, 246 pstate & PSR_N_BIT ? 'N' : 'n', 247 pstate & PSR_Z_BIT ? 'Z' : 'z', 248 pstate & PSR_C_BIT ? 'C' : 'c', 249 pstate & PSR_V_BIT ? 'V' : 'v', 250 pstate & PSR_D_BIT ? 'D' : 'd', 251 pstate & PSR_A_BIT ? 'A' : 'a', 252 pstate & PSR_I_BIT ? 'I' : 'i', 253 pstate & PSR_F_BIT ? 'F' : 'f', 254 pstate & PSR_PAN_BIT ? '+' : '-', 255 pstate & PSR_UAO_BIT ? '+' : '-', 256 pstate & PSR_TCO_BIT ? '+' : '-', 257 btype_str); 258 } 259 } 260 261 void __show_regs(struct pt_regs *regs) 262 { 263 int i, top_reg; 264 u64 lr, sp; 265 266 if (compat_user_mode(regs)) { 267 lr = regs->compat_lr; 268 sp = regs->compat_sp; 269 top_reg = 12; 270 } else { 271 lr = regs->regs[30]; 272 sp = regs->sp; 273 top_reg = 29; 274 } 275 276 show_regs_print_info(KERN_DEFAULT); 277 print_pstate(regs); 278 279 if (!user_mode(regs)) { 280 printk("pc : %pS\n", (void *)regs->pc); 281 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 282 } else { 283 printk("pc : %016llx\n", regs->pc); 284 printk("lr : %016llx\n", lr); 285 } 286 287 printk("sp : %016llx\n", sp); 288 289 if (system_uses_irq_prio_masking()) 290 printk("pmr_save: %08llx\n", regs->pmr_save); 291 292 i = top_reg; 293 294 while (i >= 0) { 295 printk("x%-2d: %016llx ", i, regs->regs[i]); 296 i--; 297 298 if (i % 2 == 0) { 299 pr_cont("x%-2d: %016llx ", i, regs->regs[i]); 300 i--; 301 } 302 303 pr_cont("\n"); 304 } 305 } 306 307 void show_regs(struct pt_regs * regs) 308 { 309 __show_regs(regs); 310 dump_backtrace(regs, NULL, KERN_DEFAULT); 311 } 312 313 static void tls_thread_flush(void) 314 { 315 write_sysreg(0, tpidr_el0); 316 317 if (is_compat_task()) { 318 current->thread.uw.tp_value = 0; 319 320 /* 321 * We need to ensure ordering between the shadow state and the 322 * hardware state, so that we don't corrupt the hardware state 323 * with a stale shadow state during context switch. 324 */ 325 barrier(); 326 write_sysreg(0, tpidrro_el0); 327 } 328 } 329 330 static void flush_tagged_addr_state(void) 331 { 332 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 333 clear_thread_flag(TIF_TAGGED_ADDR); 334 } 335 336 void flush_thread(void) 337 { 338 fpsimd_flush_thread(); 339 tls_thread_flush(); 340 flush_ptrace_hw_breakpoint(current); 341 flush_tagged_addr_state(); 342 flush_mte_state(); 343 } 344 345 void release_thread(struct task_struct *dead_task) 346 { 347 } 348 349 void arch_release_task_struct(struct task_struct *tsk) 350 { 351 fpsimd_release_task(tsk); 352 } 353 354 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 355 { 356 if (current->mm) 357 fpsimd_preserve_current_state(); 358 *dst = *src; 359 360 /* We rely on the above assignment to initialize dst's thread_flags: */ 361 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 362 363 /* 364 * Detach src's sve_state (if any) from dst so that it does not 365 * get erroneously used or freed prematurely. dst's sve_state 366 * will be allocated on demand later on if dst uses SVE. 367 * For consistency, also clear TIF_SVE here: this could be done 368 * later in copy_process(), but to avoid tripping up future 369 * maintainers it is best not to leave TIF_SVE and sve_state in 370 * an inconsistent state, even temporarily. 371 */ 372 dst->thread.sve_state = NULL; 373 clear_tsk_thread_flag(dst, TIF_SVE); 374 375 /* clear any pending asynchronous tag fault raised by the parent */ 376 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 377 378 return 0; 379 } 380 381 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 382 383 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 384 unsigned long stk_sz, struct task_struct *p, unsigned long tls) 385 { 386 struct pt_regs *childregs = task_pt_regs(p); 387 388 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 389 390 /* 391 * In case p was allocated the same task_struct pointer as some 392 * other recently-exited task, make sure p is disassociated from 393 * any cpu that may have run that now-exited task recently. 394 * Otherwise we could erroneously skip reloading the FPSIMD 395 * registers for p. 396 */ 397 fpsimd_flush_task_state(p); 398 399 ptrauth_thread_init_kernel(p); 400 401 if (likely(!(p->flags & PF_KTHREAD))) { 402 *childregs = *current_pt_regs(); 403 childregs->regs[0] = 0; 404 405 /* 406 * Read the current TLS pointer from tpidr_el0 as it may be 407 * out-of-sync with the saved value. 408 */ 409 *task_user_tls(p) = read_sysreg(tpidr_el0); 410 411 if (stack_start) { 412 if (is_compat_thread(task_thread_info(p))) 413 childregs->compat_sp = stack_start; 414 else 415 childregs->sp = stack_start; 416 } 417 418 /* 419 * If a TLS pointer was passed to clone, use it for the new 420 * thread. 421 */ 422 if (clone_flags & CLONE_SETTLS) 423 p->thread.uw.tp_value = tls; 424 } else { 425 /* 426 * A kthread has no context to ERET to, so ensure any buggy 427 * ERET is treated as an illegal exception return. 428 * 429 * When a user task is created from a kthread, childregs will 430 * be initialized by start_thread() or start_compat_thread(). 431 */ 432 memset(childregs, 0, sizeof(struct pt_regs)); 433 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 434 435 p->thread.cpu_context.x19 = stack_start; 436 p->thread.cpu_context.x20 = stk_sz; 437 } 438 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 439 p->thread.cpu_context.sp = (unsigned long)childregs; 440 441 ptrace_hw_copy_thread(p); 442 443 return 0; 444 } 445 446 void tls_preserve_current_state(void) 447 { 448 *task_user_tls(current) = read_sysreg(tpidr_el0); 449 } 450 451 static void tls_thread_switch(struct task_struct *next) 452 { 453 tls_preserve_current_state(); 454 455 if (is_compat_thread(task_thread_info(next))) 456 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 457 else if (!arm64_kernel_unmapped_at_el0()) 458 write_sysreg(0, tpidrro_el0); 459 460 write_sysreg(*task_user_tls(next), tpidr_el0); 461 } 462 463 /* 464 * Force SSBS state on context-switch, since it may be lost after migrating 465 * from a CPU which treats the bit as RES0 in a heterogeneous system. 466 */ 467 static void ssbs_thread_switch(struct task_struct *next) 468 { 469 /* 470 * Nothing to do for kernel threads, but 'regs' may be junk 471 * (e.g. idle task) so check the flags and bail early. 472 */ 473 if (unlikely(next->flags & PF_KTHREAD)) 474 return; 475 476 /* 477 * If all CPUs implement the SSBS extension, then we just need to 478 * context-switch the PSTATE field. 479 */ 480 if (cpus_have_const_cap(ARM64_SSBS)) 481 return; 482 483 spectre_v4_enable_task_mitigation(next); 484 } 485 486 /* 487 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 488 * shadow copy so that we can restore this upon entry from userspace. 489 * 490 * This is *only* for exception entry from EL0, and is not valid until we 491 * __switch_to() a user task. 492 */ 493 DEFINE_PER_CPU(struct task_struct *, __entry_task); 494 495 static void entry_task_switch(struct task_struct *next) 496 { 497 __this_cpu_write(__entry_task, next); 498 } 499 500 /* 501 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 502 * Assuming the virtual counter is enabled at the beginning of times: 503 * 504 * - disable access when switching from a 64bit task to a 32bit task 505 * - enable access when switching from a 32bit task to a 64bit task 506 */ 507 static void erratum_1418040_thread_switch(struct task_struct *prev, 508 struct task_struct *next) 509 { 510 bool prev32, next32; 511 u64 val; 512 513 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040)) 514 return; 515 516 prev32 = is_compat_thread(task_thread_info(prev)); 517 next32 = is_compat_thread(task_thread_info(next)); 518 519 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 520 return; 521 522 val = read_sysreg(cntkctl_el1); 523 524 if (!next32) 525 val |= ARCH_TIMER_USR_VCT_ACCESS_EN; 526 else 527 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN; 528 529 write_sysreg(val, cntkctl_el1); 530 } 531 532 /* 533 * Thread switching. 534 */ 535 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 536 struct task_struct *next) 537 { 538 struct task_struct *last; 539 540 fpsimd_thread_switch(next); 541 tls_thread_switch(next); 542 hw_breakpoint_thread_switch(next); 543 contextidr_thread_switch(next); 544 entry_task_switch(next); 545 ssbs_thread_switch(next); 546 erratum_1418040_thread_switch(prev, next); 547 548 /* 549 * Complete any pending TLB or cache maintenance on this CPU in case 550 * the thread migrates to a different CPU. 551 * This full barrier is also required by the membarrier system 552 * call. 553 */ 554 dsb(ish); 555 556 /* 557 * MTE thread switching must happen after the DSB above to ensure that 558 * any asynchronous tag check faults have been logged in the TFSR*_EL1 559 * registers. 560 */ 561 mte_thread_switch(next); 562 563 /* the actual thread switch */ 564 last = cpu_switch_to(prev, next); 565 566 return last; 567 } 568 569 unsigned long get_wchan(struct task_struct *p) 570 { 571 struct stackframe frame; 572 unsigned long stack_page, ret = 0; 573 int count = 0; 574 if (!p || p == current || p->state == TASK_RUNNING) 575 return 0; 576 577 stack_page = (unsigned long)try_get_task_stack(p); 578 if (!stack_page) 579 return 0; 580 581 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 582 583 do { 584 if (unwind_frame(p, &frame)) 585 goto out; 586 if (!in_sched_functions(frame.pc)) { 587 ret = frame.pc; 588 goto out; 589 } 590 } while (count ++ < 16); 591 592 out: 593 put_task_stack(p); 594 return ret; 595 } 596 597 unsigned long arch_align_stack(unsigned long sp) 598 { 599 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 600 sp -= get_random_int() & ~PAGE_MASK; 601 return sp & ~0xf; 602 } 603 604 /* 605 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 606 */ 607 void arch_setup_new_exec(void) 608 { 609 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; 610 611 ptrauth_thread_init_user(current); 612 613 if (task_spec_ssb_noexec(current)) { 614 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 615 PR_SPEC_ENABLE); 616 } 617 } 618 619 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 620 /* 621 * Control the relaxed ABI allowing tagged user addresses into the kernel. 622 */ 623 static unsigned int tagged_addr_disabled; 624 625 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 626 { 627 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 628 struct thread_info *ti = task_thread_info(task); 629 630 if (is_compat_thread(ti)) 631 return -EINVAL; 632 633 if (system_supports_mte()) 634 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK; 635 636 if (arg & ~valid_mask) 637 return -EINVAL; 638 639 /* 640 * Do not allow the enabling of the tagged address ABI if globally 641 * disabled via sysctl abi.tagged_addr_disabled. 642 */ 643 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 644 return -EINVAL; 645 646 if (set_mte_ctrl(task, arg) != 0) 647 return -EINVAL; 648 649 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 650 651 return 0; 652 } 653 654 long get_tagged_addr_ctrl(struct task_struct *task) 655 { 656 long ret = 0; 657 struct thread_info *ti = task_thread_info(task); 658 659 if (is_compat_thread(ti)) 660 return -EINVAL; 661 662 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 663 ret = PR_TAGGED_ADDR_ENABLE; 664 665 ret |= get_mte_ctrl(task); 666 667 return ret; 668 } 669 670 /* 671 * Global sysctl to disable the tagged user addresses support. This control 672 * only prevents the tagged address ABI enabling via prctl() and does not 673 * disable it for tasks that already opted in to the relaxed ABI. 674 */ 675 676 static struct ctl_table tagged_addr_sysctl_table[] = { 677 { 678 .procname = "tagged_addr_disabled", 679 .mode = 0644, 680 .data = &tagged_addr_disabled, 681 .maxlen = sizeof(int), 682 .proc_handler = proc_dointvec_minmax, 683 .extra1 = SYSCTL_ZERO, 684 .extra2 = SYSCTL_ONE, 685 }, 686 { } 687 }; 688 689 static int __init tagged_addr_init(void) 690 { 691 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 692 return -EINVAL; 693 return 0; 694 } 695 696 core_initcall(tagged_addr_init); 697 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 698 699 asmlinkage void __sched arm64_preempt_schedule_irq(void) 700 { 701 lockdep_assert_irqs_disabled(); 702 703 /* 704 * Preempting a task from an IRQ means we leave copies of PSTATE 705 * on the stack. cpufeature's enable calls may modify PSTATE, but 706 * resuming one of these preempted tasks would undo those changes. 707 * 708 * Only allow a task to be preempted once cpufeatures have been 709 * enabled. 710 */ 711 if (system_capabilities_finalized()) 712 preempt_schedule_irq(); 713 } 714 715 #ifdef CONFIG_BINFMT_ELF 716 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 717 bool has_interp, bool is_interp) 718 { 719 /* 720 * For dynamically linked executables the interpreter is 721 * responsible for setting PROT_BTI on everything except 722 * itself. 723 */ 724 if (is_interp != has_interp) 725 return prot; 726 727 if (!(state->flags & ARM64_ELF_BTI)) 728 return prot; 729 730 if (prot & PROT_EXEC) 731 prot |= PROT_BTI; 732 733 return prot; 734 } 735 #endif 736