1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/sched.h> 22 #include <linux/stddef.h> 23 #include <linux/sysctl.h> 24 #include <linux/unistd.h> 25 #include <linux/user.h> 26 #include <linux/delay.h> 27 #include <linux/reboot.h> 28 #include <linux/interrupt.h> 29 #include <linux/init.h> 30 #include <linux/cpu.h> 31 #include <linux/elfcore.h> 32 #include <linux/pm.h> 33 #include <linux/tick.h> 34 #include <linux/utsname.h> 35 #include <linux/uaccess.h> 36 #include <linux/random.h> 37 #include <linux/hw_breakpoint.h> 38 #include <linux/personality.h> 39 #include <linux/notifier.h> 40 #include <trace/events/power.h> 41 #include <linux/percpu.h> 42 #include <linux/thread_info.h> 43 #include <linux/prctl.h> 44 45 #include <asm/alternative.h> 46 #include <asm/compat.h> 47 #include <asm/cpufeature.h> 48 #include <asm/cacheflush.h> 49 #include <asm/exec.h> 50 #include <asm/fpsimd.h> 51 #include <asm/mmu_context.h> 52 #include <asm/mte.h> 53 #include <asm/processor.h> 54 #include <asm/pointer_auth.h> 55 #include <asm/stacktrace.h> 56 #include <asm/switch_to.h> 57 #include <asm/system_misc.h> 58 59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 60 #include <linux/stackprotector.h> 61 unsigned long __stack_chk_guard __read_mostly; 62 EXPORT_SYMBOL(__stack_chk_guard); 63 #endif 64 65 /* 66 * Function pointers to optional machine specific functions 67 */ 68 void (*pm_power_off)(void); 69 EXPORT_SYMBOL_GPL(pm_power_off); 70 71 #ifdef CONFIG_HOTPLUG_CPU 72 void arch_cpu_idle_dead(void) 73 { 74 cpu_die(); 75 } 76 #endif 77 78 /* 79 * Called by kexec, immediately prior to machine_kexec(). 80 * 81 * This must completely disable all secondary CPUs; simply causing those CPUs 82 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 83 * kexec'd kernel to use any and all RAM as it sees fit, without having to 84 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 85 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 86 */ 87 void machine_shutdown(void) 88 { 89 smp_shutdown_nonboot_cpus(reboot_cpu); 90 } 91 92 /* 93 * Halting simply requires that the secondary CPUs stop performing any 94 * activity (executing tasks, handling interrupts). smp_send_stop() 95 * achieves this. 96 */ 97 void machine_halt(void) 98 { 99 local_irq_disable(); 100 smp_send_stop(); 101 while (1); 102 } 103 104 /* 105 * Power-off simply requires that the secondary CPUs stop performing any 106 * activity (executing tasks, handling interrupts). smp_send_stop() 107 * achieves this. When the system power is turned off, it will take all CPUs 108 * with it. 109 */ 110 void machine_power_off(void) 111 { 112 local_irq_disable(); 113 smp_send_stop(); 114 if (pm_power_off) 115 pm_power_off(); 116 } 117 118 /* 119 * Restart requires that the secondary CPUs stop performing any activity 120 * while the primary CPU resets the system. Systems with multiple CPUs must 121 * provide a HW restart implementation, to ensure that all CPUs reset at once. 122 * This is required so that any code running after reset on the primary CPU 123 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 124 * executing pre-reset code, and using RAM that the primary CPU's code wishes 125 * to use. Implementing such co-ordination would be essentially impossible. 126 */ 127 void machine_restart(char *cmd) 128 { 129 /* Disable interrupts first */ 130 local_irq_disable(); 131 smp_send_stop(); 132 133 /* 134 * UpdateCapsule() depends on the system being reset via 135 * ResetSystem(). 136 */ 137 if (efi_enabled(EFI_RUNTIME_SERVICES)) 138 efi_reboot(reboot_mode, NULL); 139 140 /* Now call the architecture specific reboot code. */ 141 do_kernel_restart(cmd); 142 143 /* 144 * Whoops - the architecture was unable to reboot. 145 */ 146 printk("Reboot failed -- System halted\n"); 147 while (1); 148 } 149 150 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 151 static const char *const btypes[] = { 152 bstr(NONE, "--"), 153 bstr( JC, "jc"), 154 bstr( C, "-c"), 155 bstr( J , "j-") 156 }; 157 #undef bstr 158 159 static void print_pstate(struct pt_regs *regs) 160 { 161 u64 pstate = regs->pstate; 162 163 if (compat_user_mode(regs)) { 164 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 165 pstate, 166 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 167 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 168 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 169 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 170 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 171 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 172 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 173 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 174 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 175 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 176 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 177 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 178 } else { 179 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 180 PSR_BTYPE_SHIFT]; 181 182 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 183 pstate, 184 pstate & PSR_N_BIT ? 'N' : 'n', 185 pstate & PSR_Z_BIT ? 'Z' : 'z', 186 pstate & PSR_C_BIT ? 'C' : 'c', 187 pstate & PSR_V_BIT ? 'V' : 'v', 188 pstate & PSR_D_BIT ? 'D' : 'd', 189 pstate & PSR_A_BIT ? 'A' : 'a', 190 pstate & PSR_I_BIT ? 'I' : 'i', 191 pstate & PSR_F_BIT ? 'F' : 'f', 192 pstate & PSR_PAN_BIT ? '+' : '-', 193 pstate & PSR_UAO_BIT ? '+' : '-', 194 pstate & PSR_TCO_BIT ? '+' : '-', 195 pstate & PSR_DIT_BIT ? '+' : '-', 196 pstate & PSR_SSBS_BIT ? '+' : '-', 197 btype_str); 198 } 199 } 200 201 void __show_regs(struct pt_regs *regs) 202 { 203 int i, top_reg; 204 u64 lr, sp; 205 206 if (compat_user_mode(regs)) { 207 lr = regs->compat_lr; 208 sp = regs->compat_sp; 209 top_reg = 12; 210 } else { 211 lr = regs->regs[30]; 212 sp = regs->sp; 213 top_reg = 29; 214 } 215 216 show_regs_print_info(KERN_DEFAULT); 217 print_pstate(regs); 218 219 if (!user_mode(regs)) { 220 printk("pc : %pS\n", (void *)regs->pc); 221 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 222 } else { 223 printk("pc : %016llx\n", regs->pc); 224 printk("lr : %016llx\n", lr); 225 } 226 227 printk("sp : %016llx\n", sp); 228 229 if (system_uses_irq_prio_masking()) 230 printk("pmr_save: %08llx\n", regs->pmr_save); 231 232 i = top_reg; 233 234 while (i >= 0) { 235 printk("x%-2d: %016llx", i, regs->regs[i]); 236 237 while (i-- % 3) 238 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 239 240 pr_cont("\n"); 241 } 242 } 243 244 void show_regs(struct pt_regs *regs) 245 { 246 __show_regs(regs); 247 dump_backtrace(regs, NULL, KERN_DEFAULT); 248 } 249 250 static void tls_thread_flush(void) 251 { 252 write_sysreg(0, tpidr_el0); 253 254 if (is_compat_task()) { 255 current->thread.uw.tp_value = 0; 256 257 /* 258 * We need to ensure ordering between the shadow state and the 259 * hardware state, so that we don't corrupt the hardware state 260 * with a stale shadow state during context switch. 261 */ 262 barrier(); 263 write_sysreg(0, tpidrro_el0); 264 } 265 } 266 267 static void flush_tagged_addr_state(void) 268 { 269 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 270 clear_thread_flag(TIF_TAGGED_ADDR); 271 } 272 273 void flush_thread(void) 274 { 275 fpsimd_flush_thread(); 276 tls_thread_flush(); 277 flush_ptrace_hw_breakpoint(current); 278 flush_tagged_addr_state(); 279 } 280 281 void release_thread(struct task_struct *dead_task) 282 { 283 } 284 285 void arch_release_task_struct(struct task_struct *tsk) 286 { 287 fpsimd_release_task(tsk); 288 } 289 290 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 291 { 292 if (current->mm) 293 fpsimd_preserve_current_state(); 294 *dst = *src; 295 296 /* We rely on the above assignment to initialize dst's thread_flags: */ 297 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 298 299 /* 300 * Detach src's sve_state (if any) from dst so that it does not 301 * get erroneously used or freed prematurely. dst's sve_state 302 * will be allocated on demand later on if dst uses SVE. 303 * For consistency, also clear TIF_SVE here: this could be done 304 * later in copy_process(), but to avoid tripping up future 305 * maintainers it is best not to leave TIF_SVE and sve_state in 306 * an inconsistent state, even temporarily. 307 */ 308 dst->thread.sve_state = NULL; 309 clear_tsk_thread_flag(dst, TIF_SVE); 310 311 /* clear any pending asynchronous tag fault raised by the parent */ 312 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 313 314 return 0; 315 } 316 317 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 318 319 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 320 unsigned long stk_sz, struct task_struct *p, unsigned long tls) 321 { 322 struct pt_regs *childregs = task_pt_regs(p); 323 324 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 325 326 /* 327 * In case p was allocated the same task_struct pointer as some 328 * other recently-exited task, make sure p is disassociated from 329 * any cpu that may have run that now-exited task recently. 330 * Otherwise we could erroneously skip reloading the FPSIMD 331 * registers for p. 332 */ 333 fpsimd_flush_task_state(p); 334 335 ptrauth_thread_init_kernel(p); 336 337 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) { 338 *childregs = *current_pt_regs(); 339 childregs->regs[0] = 0; 340 341 /* 342 * Read the current TLS pointer from tpidr_el0 as it may be 343 * out-of-sync with the saved value. 344 */ 345 *task_user_tls(p) = read_sysreg(tpidr_el0); 346 347 if (stack_start) { 348 if (is_compat_thread(task_thread_info(p))) 349 childregs->compat_sp = stack_start; 350 else 351 childregs->sp = stack_start; 352 } 353 354 /* 355 * If a TLS pointer was passed to clone, use it for the new 356 * thread. 357 */ 358 if (clone_flags & CLONE_SETTLS) 359 p->thread.uw.tp_value = tls; 360 } else { 361 /* 362 * A kthread has no context to ERET to, so ensure any buggy 363 * ERET is treated as an illegal exception return. 364 * 365 * When a user task is created from a kthread, childregs will 366 * be initialized by start_thread() or start_compat_thread(). 367 */ 368 memset(childregs, 0, sizeof(struct pt_regs)); 369 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 370 371 p->thread.cpu_context.x19 = stack_start; 372 p->thread.cpu_context.x20 = stk_sz; 373 } 374 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 375 p->thread.cpu_context.sp = (unsigned long)childregs; 376 /* 377 * For the benefit of the unwinder, set up childregs->stackframe 378 * as the final frame for the new task. 379 */ 380 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 381 382 ptrace_hw_copy_thread(p); 383 384 return 0; 385 } 386 387 void tls_preserve_current_state(void) 388 { 389 *task_user_tls(current) = read_sysreg(tpidr_el0); 390 } 391 392 static void tls_thread_switch(struct task_struct *next) 393 { 394 tls_preserve_current_state(); 395 396 if (is_compat_thread(task_thread_info(next))) 397 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 398 else if (!arm64_kernel_unmapped_at_el0()) 399 write_sysreg(0, tpidrro_el0); 400 401 write_sysreg(*task_user_tls(next), tpidr_el0); 402 } 403 404 /* 405 * Force SSBS state on context-switch, since it may be lost after migrating 406 * from a CPU which treats the bit as RES0 in a heterogeneous system. 407 */ 408 static void ssbs_thread_switch(struct task_struct *next) 409 { 410 /* 411 * Nothing to do for kernel threads, but 'regs' may be junk 412 * (e.g. idle task) so check the flags and bail early. 413 */ 414 if (unlikely(next->flags & PF_KTHREAD)) 415 return; 416 417 /* 418 * If all CPUs implement the SSBS extension, then we just need to 419 * context-switch the PSTATE field. 420 */ 421 if (cpus_have_const_cap(ARM64_SSBS)) 422 return; 423 424 spectre_v4_enable_task_mitigation(next); 425 } 426 427 /* 428 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 429 * shadow copy so that we can restore this upon entry from userspace. 430 * 431 * This is *only* for exception entry from EL0, and is not valid until we 432 * __switch_to() a user task. 433 */ 434 DEFINE_PER_CPU(struct task_struct *, __entry_task); 435 436 static void entry_task_switch(struct task_struct *next) 437 { 438 __this_cpu_write(__entry_task, next); 439 } 440 441 /* 442 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 443 * Assuming the virtual counter is enabled at the beginning of times: 444 * 445 * - disable access when switching from a 64bit task to a 32bit task 446 * - enable access when switching from a 32bit task to a 64bit task 447 */ 448 static void erratum_1418040_thread_switch(struct task_struct *prev, 449 struct task_struct *next) 450 { 451 bool prev32, next32; 452 u64 val; 453 454 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040)) 455 return; 456 457 prev32 = is_compat_thread(task_thread_info(prev)); 458 next32 = is_compat_thread(task_thread_info(next)); 459 460 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 461 return; 462 463 val = read_sysreg(cntkctl_el1); 464 465 if (!next32) 466 val |= ARCH_TIMER_USR_VCT_ACCESS_EN; 467 else 468 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN; 469 470 write_sysreg(val, cntkctl_el1); 471 } 472 473 /* 474 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 475 * this function must be called with preemption disabled and the update to 476 * sctlr_user must be made in the same preemption disabled block so that 477 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 478 */ 479 void update_sctlr_el1(u64 sctlr) 480 { 481 /* 482 * EnIA must not be cleared while in the kernel as this is necessary for 483 * in-kernel PAC. It will be cleared on kernel exit if needed. 484 */ 485 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 486 487 /* ISB required for the kernel uaccess routines when setting TCF0. */ 488 isb(); 489 } 490 491 /* 492 * Thread switching. 493 */ 494 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 495 struct task_struct *next) 496 { 497 struct task_struct *last; 498 499 fpsimd_thread_switch(next); 500 tls_thread_switch(next); 501 hw_breakpoint_thread_switch(next); 502 contextidr_thread_switch(next); 503 entry_task_switch(next); 504 ssbs_thread_switch(next); 505 erratum_1418040_thread_switch(prev, next); 506 ptrauth_thread_switch_user(next); 507 508 /* 509 * Complete any pending TLB or cache maintenance on this CPU in case 510 * the thread migrates to a different CPU. 511 * This full barrier is also required by the membarrier system 512 * call. 513 */ 514 dsb(ish); 515 516 /* 517 * MTE thread switching must happen after the DSB above to ensure that 518 * any asynchronous tag check faults have been logged in the TFSR*_EL1 519 * registers. 520 */ 521 mte_thread_switch(next); 522 /* avoid expensive SCTLR_EL1 accesses if no change */ 523 if (prev->thread.sctlr_user != next->thread.sctlr_user) 524 update_sctlr_el1(next->thread.sctlr_user); 525 526 /* the actual thread switch */ 527 last = cpu_switch_to(prev, next); 528 529 return last; 530 } 531 532 unsigned long get_wchan(struct task_struct *p) 533 { 534 struct stackframe frame; 535 unsigned long stack_page, ret = 0; 536 int count = 0; 537 if (!p || p == current || task_is_running(p)) 538 return 0; 539 540 stack_page = (unsigned long)try_get_task_stack(p); 541 if (!stack_page) 542 return 0; 543 544 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 545 546 do { 547 if (unwind_frame(p, &frame)) 548 goto out; 549 if (!in_sched_functions(frame.pc)) { 550 ret = frame.pc; 551 goto out; 552 } 553 } while (count++ < 16); 554 555 out: 556 put_task_stack(p); 557 return ret; 558 } 559 560 unsigned long arch_align_stack(unsigned long sp) 561 { 562 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 563 sp -= get_random_int() & ~PAGE_MASK; 564 return sp & ~0xf; 565 } 566 567 #ifdef CONFIG_COMPAT 568 int compat_elf_check_arch(const struct elf32_hdr *hdr) 569 { 570 if (!system_supports_32bit_el0()) 571 return false; 572 573 if ((hdr)->e_machine != EM_ARM) 574 return false; 575 576 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 577 return false; 578 579 /* 580 * Prevent execve() of a 32-bit program from a deadline task 581 * if the restricted affinity mask would be inadmissible on an 582 * asymmetric system. 583 */ 584 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 585 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 586 } 587 #endif 588 589 /* 590 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 591 */ 592 void arch_setup_new_exec(void) 593 { 594 unsigned long mmflags = 0; 595 596 if (is_compat_task()) { 597 mmflags = MMCF_AARCH32; 598 599 /* 600 * Restrict the CPU affinity mask for a 32-bit task so that 601 * it contains only 32-bit-capable CPUs. 602 * 603 * From the perspective of the task, this looks similar to 604 * what would happen if the 64-bit-only CPUs were hot-unplugged 605 * at the point of execve(), although we try a bit harder to 606 * honour the cpuset hierarchy. 607 */ 608 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 609 force_compatible_cpus_allowed_ptr(current); 610 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 611 relax_compatible_cpus_allowed_ptr(current); 612 } 613 614 current->mm->context.flags = mmflags; 615 ptrauth_thread_init_user(); 616 mte_thread_init_user(); 617 618 if (task_spec_ssb_noexec(current)) { 619 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 620 PR_SPEC_ENABLE); 621 } 622 } 623 624 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 625 /* 626 * Control the relaxed ABI allowing tagged user addresses into the kernel. 627 */ 628 static unsigned int tagged_addr_disabled; 629 630 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 631 { 632 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 633 struct thread_info *ti = task_thread_info(task); 634 635 if (is_compat_thread(ti)) 636 return -EINVAL; 637 638 if (system_supports_mte()) 639 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK; 640 641 if (arg & ~valid_mask) 642 return -EINVAL; 643 644 /* 645 * Do not allow the enabling of the tagged address ABI if globally 646 * disabled via sysctl abi.tagged_addr_disabled. 647 */ 648 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 649 return -EINVAL; 650 651 if (set_mte_ctrl(task, arg) != 0) 652 return -EINVAL; 653 654 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 655 656 return 0; 657 } 658 659 long get_tagged_addr_ctrl(struct task_struct *task) 660 { 661 long ret = 0; 662 struct thread_info *ti = task_thread_info(task); 663 664 if (is_compat_thread(ti)) 665 return -EINVAL; 666 667 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 668 ret = PR_TAGGED_ADDR_ENABLE; 669 670 ret |= get_mte_ctrl(task); 671 672 return ret; 673 } 674 675 /* 676 * Global sysctl to disable the tagged user addresses support. This control 677 * only prevents the tagged address ABI enabling via prctl() and does not 678 * disable it for tasks that already opted in to the relaxed ABI. 679 */ 680 681 static struct ctl_table tagged_addr_sysctl_table[] = { 682 { 683 .procname = "tagged_addr_disabled", 684 .mode = 0644, 685 .data = &tagged_addr_disabled, 686 .maxlen = sizeof(int), 687 .proc_handler = proc_dointvec_minmax, 688 .extra1 = SYSCTL_ZERO, 689 .extra2 = SYSCTL_ONE, 690 }, 691 { } 692 }; 693 694 static int __init tagged_addr_init(void) 695 { 696 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 697 return -EINVAL; 698 return 0; 699 } 700 701 core_initcall(tagged_addr_init); 702 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 703 704 #ifdef CONFIG_BINFMT_ELF 705 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 706 bool has_interp, bool is_interp) 707 { 708 /* 709 * For dynamically linked executables the interpreter is 710 * responsible for setting PROT_BTI on everything except 711 * itself. 712 */ 713 if (is_interp != has_interp) 714 return prot; 715 716 if (!(state->flags & ARM64_ELF_BTI)) 717 return prot; 718 719 if (prot & PROT_EXEC) 720 prot |= PROT_BTI; 721 722 return prot; 723 } 724 #endif 725