1 /* 2 * Based on arch/arm/kernel/process.c 3 * 4 * Original Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <stdarg.h> 22 23 #include <linux/compat.h> 24 #include <linux/efi.h> 25 #include <linux/export.h> 26 #include <linux/sched.h> 27 #include <linux/sched/debug.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/task_stack.h> 30 #include <linux/kernel.h> 31 #include <linux/mm.h> 32 #include <linux/stddef.h> 33 #include <linux/unistd.h> 34 #include <linux/user.h> 35 #include <linux/delay.h> 36 #include <linux/reboot.h> 37 #include <linux/interrupt.h> 38 #include <linux/kallsyms.h> 39 #include <linux/init.h> 40 #include <linux/cpu.h> 41 #include <linux/elfcore.h> 42 #include <linux/pm.h> 43 #include <linux/tick.h> 44 #include <linux/utsname.h> 45 #include <linux/uaccess.h> 46 #include <linux/random.h> 47 #include <linux/hw_breakpoint.h> 48 #include <linux/personality.h> 49 #include <linux/notifier.h> 50 #include <trace/events/power.h> 51 #include <linux/percpu.h> 52 #include <linux/thread_info.h> 53 54 #include <asm/alternative.h> 55 #include <asm/compat.h> 56 #include <asm/cacheflush.h> 57 #include <asm/exec.h> 58 #include <asm/fpsimd.h> 59 #include <asm/mmu_context.h> 60 #include <asm/processor.h> 61 #include <asm/stacktrace.h> 62 63 #ifdef CONFIG_CC_STACKPROTECTOR 64 #include <linux/stackprotector.h> 65 unsigned long __stack_chk_guard __read_mostly; 66 EXPORT_SYMBOL(__stack_chk_guard); 67 #endif 68 69 /* 70 * Function pointers to optional machine specific functions 71 */ 72 void (*pm_power_off)(void); 73 EXPORT_SYMBOL_GPL(pm_power_off); 74 75 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 76 77 /* 78 * This is our default idle handler. 79 */ 80 void arch_cpu_idle(void) 81 { 82 /* 83 * This should do all the clock switching and wait for interrupt 84 * tricks 85 */ 86 trace_cpu_idle_rcuidle(1, smp_processor_id()); 87 cpu_do_idle(); 88 local_irq_enable(); 89 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 90 } 91 92 #ifdef CONFIG_HOTPLUG_CPU 93 void arch_cpu_idle_dead(void) 94 { 95 cpu_die(); 96 } 97 #endif 98 99 /* 100 * Called by kexec, immediately prior to machine_kexec(). 101 * 102 * This must completely disable all secondary CPUs; simply causing those CPUs 103 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 104 * kexec'd kernel to use any and all RAM as it sees fit, without having to 105 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 106 * functionality embodied in disable_nonboot_cpus() to achieve this. 107 */ 108 void machine_shutdown(void) 109 { 110 disable_nonboot_cpus(); 111 } 112 113 /* 114 * Halting simply requires that the secondary CPUs stop performing any 115 * activity (executing tasks, handling interrupts). smp_send_stop() 116 * achieves this. 117 */ 118 void machine_halt(void) 119 { 120 local_irq_disable(); 121 smp_send_stop(); 122 while (1); 123 } 124 125 /* 126 * Power-off simply requires that the secondary CPUs stop performing any 127 * activity (executing tasks, handling interrupts). smp_send_stop() 128 * achieves this. When the system power is turned off, it will take all CPUs 129 * with it. 130 */ 131 void machine_power_off(void) 132 { 133 local_irq_disable(); 134 smp_send_stop(); 135 if (pm_power_off) 136 pm_power_off(); 137 } 138 139 /* 140 * Restart requires that the secondary CPUs stop performing any activity 141 * while the primary CPU resets the system. Systems with multiple CPUs must 142 * provide a HW restart implementation, to ensure that all CPUs reset at once. 143 * This is required so that any code running after reset on the primary CPU 144 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 145 * executing pre-reset code, and using RAM that the primary CPU's code wishes 146 * to use. Implementing such co-ordination would be essentially impossible. 147 */ 148 void machine_restart(char *cmd) 149 { 150 /* Disable interrupts first */ 151 local_irq_disable(); 152 smp_send_stop(); 153 154 /* 155 * UpdateCapsule() depends on the system being reset via 156 * ResetSystem(). 157 */ 158 if (efi_enabled(EFI_RUNTIME_SERVICES)) 159 efi_reboot(reboot_mode, NULL); 160 161 /* Now call the architecture specific reboot code. */ 162 if (arm_pm_restart) 163 arm_pm_restart(reboot_mode, cmd); 164 else 165 do_kernel_restart(cmd); 166 167 /* 168 * Whoops - the architecture was unable to reboot. 169 */ 170 printk("Reboot failed -- System halted\n"); 171 while (1); 172 } 173 174 static void print_pstate(struct pt_regs *regs) 175 { 176 u64 pstate = regs->pstate; 177 178 if (compat_user_mode(regs)) { 179 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 180 pstate, 181 pstate & COMPAT_PSR_N_BIT ? 'N' : 'n', 182 pstate & COMPAT_PSR_Z_BIT ? 'Z' : 'z', 183 pstate & COMPAT_PSR_C_BIT ? 'C' : 'c', 184 pstate & COMPAT_PSR_V_BIT ? 'V' : 'v', 185 pstate & COMPAT_PSR_Q_BIT ? 'Q' : 'q', 186 pstate & COMPAT_PSR_T_BIT ? "T32" : "A32", 187 pstate & COMPAT_PSR_E_BIT ? "BE" : "LE", 188 pstate & COMPAT_PSR_A_BIT ? 'A' : 'a', 189 pstate & COMPAT_PSR_I_BIT ? 'I' : 'i', 190 pstate & COMPAT_PSR_F_BIT ? 'F' : 'f'); 191 } else { 192 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n", 193 pstate, 194 pstate & PSR_N_BIT ? 'N' : 'n', 195 pstate & PSR_Z_BIT ? 'Z' : 'z', 196 pstate & PSR_C_BIT ? 'C' : 'c', 197 pstate & PSR_V_BIT ? 'V' : 'v', 198 pstate & PSR_D_BIT ? 'D' : 'd', 199 pstate & PSR_A_BIT ? 'A' : 'a', 200 pstate & PSR_I_BIT ? 'I' : 'i', 201 pstate & PSR_F_BIT ? 'F' : 'f', 202 pstate & PSR_PAN_BIT ? '+' : '-', 203 pstate & PSR_UAO_BIT ? '+' : '-'); 204 } 205 } 206 207 void __show_regs(struct pt_regs *regs) 208 { 209 int i, top_reg; 210 u64 lr, sp; 211 212 if (compat_user_mode(regs)) { 213 lr = regs->compat_lr; 214 sp = regs->compat_sp; 215 top_reg = 12; 216 } else { 217 lr = regs->regs[30]; 218 sp = regs->sp; 219 top_reg = 29; 220 } 221 222 show_regs_print_info(KERN_DEFAULT); 223 print_pstate(regs); 224 print_symbol("pc : %s\n", regs->pc); 225 print_symbol("lr : %s\n", lr); 226 printk("sp : %016llx\n", sp); 227 228 i = top_reg; 229 230 while (i >= 0) { 231 printk("x%-2d: %016llx ", i, regs->regs[i]); 232 i--; 233 234 if (i % 2 == 0) { 235 pr_cont("x%-2d: %016llx ", i, regs->regs[i]); 236 i--; 237 } 238 239 pr_cont("\n"); 240 } 241 } 242 243 void show_regs(struct pt_regs * regs) 244 { 245 __show_regs(regs); 246 dump_backtrace(regs, NULL); 247 } 248 249 static void tls_thread_flush(void) 250 { 251 write_sysreg(0, tpidr_el0); 252 253 if (is_compat_task()) { 254 current->thread.tp_value = 0; 255 256 /* 257 * We need to ensure ordering between the shadow state and the 258 * hardware state, so that we don't corrupt the hardware state 259 * with a stale shadow state during context switch. 260 */ 261 barrier(); 262 write_sysreg(0, tpidrro_el0); 263 } 264 } 265 266 void flush_thread(void) 267 { 268 fpsimd_flush_thread(); 269 tls_thread_flush(); 270 flush_ptrace_hw_breakpoint(current); 271 } 272 273 void release_thread(struct task_struct *dead_task) 274 { 275 } 276 277 void arch_release_task_struct(struct task_struct *tsk) 278 { 279 fpsimd_release_task(tsk); 280 } 281 282 /* 283 * src and dst may temporarily have aliased sve_state after task_struct 284 * is copied. We cannot fix this properly here, because src may have 285 * live SVE state and dst's thread_info may not exist yet, so tweaking 286 * either src's or dst's TIF_SVE is not safe. 287 * 288 * The unaliasing is done in copy_thread() instead. This works because 289 * dst is not schedulable or traceable until both of these functions 290 * have been called. 291 */ 292 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 293 { 294 if (current->mm) 295 fpsimd_preserve_current_state(); 296 *dst = *src; 297 298 return 0; 299 } 300 301 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 302 303 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 304 unsigned long stk_sz, struct task_struct *p) 305 { 306 struct pt_regs *childregs = task_pt_regs(p); 307 308 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 309 310 /* 311 * Unalias p->thread.sve_state (if any) from the parent task 312 * and disable discard SVE state for p: 313 */ 314 clear_tsk_thread_flag(p, TIF_SVE); 315 p->thread.sve_state = NULL; 316 317 if (likely(!(p->flags & PF_KTHREAD))) { 318 *childregs = *current_pt_regs(); 319 childregs->regs[0] = 0; 320 321 /* 322 * Read the current TLS pointer from tpidr_el0 as it may be 323 * out-of-sync with the saved value. 324 */ 325 *task_user_tls(p) = read_sysreg(tpidr_el0); 326 327 if (stack_start) { 328 if (is_compat_thread(task_thread_info(p))) 329 childregs->compat_sp = stack_start; 330 else 331 childregs->sp = stack_start; 332 } 333 334 /* 335 * If a TLS pointer was passed to clone (4th argument), use it 336 * for the new thread. 337 */ 338 if (clone_flags & CLONE_SETTLS) 339 p->thread.tp_value = childregs->regs[3]; 340 } else { 341 memset(childregs, 0, sizeof(struct pt_regs)); 342 childregs->pstate = PSR_MODE_EL1h; 343 if (IS_ENABLED(CONFIG_ARM64_UAO) && 344 cpus_have_const_cap(ARM64_HAS_UAO)) 345 childregs->pstate |= PSR_UAO_BIT; 346 p->thread.cpu_context.x19 = stack_start; 347 p->thread.cpu_context.x20 = stk_sz; 348 } 349 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 350 p->thread.cpu_context.sp = (unsigned long)childregs; 351 352 ptrace_hw_copy_thread(p); 353 354 return 0; 355 } 356 357 void tls_preserve_current_state(void) 358 { 359 *task_user_tls(current) = read_sysreg(tpidr_el0); 360 } 361 362 static void tls_thread_switch(struct task_struct *next) 363 { 364 unsigned long tpidr, tpidrro; 365 366 tls_preserve_current_state(); 367 368 tpidr = *task_user_tls(next); 369 tpidrro = is_compat_thread(task_thread_info(next)) ? 370 next->thread.tp_value : 0; 371 372 write_sysreg(tpidr, tpidr_el0); 373 write_sysreg(tpidrro, tpidrro_el0); 374 } 375 376 /* Restore the UAO state depending on next's addr_limit */ 377 void uao_thread_switch(struct task_struct *next) 378 { 379 if (IS_ENABLED(CONFIG_ARM64_UAO)) { 380 if (task_thread_info(next)->addr_limit == KERNEL_DS) 381 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); 382 else 383 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); 384 } 385 } 386 387 /* 388 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 389 * shadow copy so that we can restore this upon entry from userspace. 390 * 391 * This is *only* for exception entry from EL0, and is not valid until we 392 * __switch_to() a user task. 393 */ 394 DEFINE_PER_CPU(struct task_struct *, __entry_task); 395 396 static void entry_task_switch(struct task_struct *next) 397 { 398 __this_cpu_write(__entry_task, next); 399 } 400 401 /* 402 * Thread switching. 403 */ 404 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 405 struct task_struct *next) 406 { 407 struct task_struct *last; 408 409 fpsimd_thread_switch(next); 410 tls_thread_switch(next); 411 hw_breakpoint_thread_switch(next); 412 contextidr_thread_switch(next); 413 entry_task_switch(next); 414 uao_thread_switch(next); 415 416 /* 417 * Complete any pending TLB or cache maintenance on this CPU in case 418 * the thread migrates to a different CPU. 419 * This full barrier is also required by the membarrier system 420 * call. 421 */ 422 dsb(ish); 423 424 /* the actual thread switch */ 425 last = cpu_switch_to(prev, next); 426 427 return last; 428 } 429 430 unsigned long get_wchan(struct task_struct *p) 431 { 432 struct stackframe frame; 433 unsigned long stack_page, ret = 0; 434 int count = 0; 435 if (!p || p == current || p->state == TASK_RUNNING) 436 return 0; 437 438 stack_page = (unsigned long)try_get_task_stack(p); 439 if (!stack_page) 440 return 0; 441 442 frame.fp = thread_saved_fp(p); 443 frame.pc = thread_saved_pc(p); 444 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 445 frame.graph = p->curr_ret_stack; 446 #endif 447 do { 448 if (unwind_frame(p, &frame)) 449 goto out; 450 if (!in_sched_functions(frame.pc)) { 451 ret = frame.pc; 452 goto out; 453 } 454 } while (count ++ < 16); 455 456 out: 457 put_task_stack(p); 458 return ret; 459 } 460 461 unsigned long arch_align_stack(unsigned long sp) 462 { 463 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 464 sp -= get_random_int() & ~PAGE_MASK; 465 return sp & ~0xf; 466 } 467 468 unsigned long arch_randomize_brk(struct mm_struct *mm) 469 { 470 if (is_compat_task()) 471 return randomize_page(mm->brk, SZ_32M); 472 else 473 return randomize_page(mm->brk, SZ_1G); 474 } 475 476 /* 477 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 478 */ 479 void arch_setup_new_exec(void) 480 { 481 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; 482 } 483