1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/stddef.h> 22 #include <linux/sysctl.h> 23 #include <linux/unistd.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/reboot.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 #include <linux/tick.h> 33 #include <linux/utsname.h> 34 #include <linux/uaccess.h> 35 #include <linux/random.h> 36 #include <linux/hw_breakpoint.h> 37 #include <linux/personality.h> 38 #include <linux/notifier.h> 39 #include <trace/events/power.h> 40 #include <linux/percpu.h> 41 #include <linux/thread_info.h> 42 #include <linux/prctl.h> 43 44 #include <asm/alternative.h> 45 #include <asm/compat.h> 46 #include <asm/cpufeature.h> 47 #include <asm/cacheflush.h> 48 #include <asm/exec.h> 49 #include <asm/fpsimd.h> 50 #include <asm/mmu_context.h> 51 #include <asm/mte.h> 52 #include <asm/processor.h> 53 #include <asm/pointer_auth.h> 54 #include <asm/stacktrace.h> 55 #include <asm/switch_to.h> 56 #include <asm/system_misc.h> 57 58 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 59 #include <linux/stackprotector.h> 60 unsigned long __stack_chk_guard __ro_after_init; 61 EXPORT_SYMBOL(__stack_chk_guard); 62 #endif 63 64 /* 65 * Function pointers to optional machine specific functions 66 */ 67 void (*pm_power_off)(void); 68 EXPORT_SYMBOL_GPL(pm_power_off); 69 70 #ifdef CONFIG_HOTPLUG_CPU 71 void arch_cpu_idle_dead(void) 72 { 73 cpu_die(); 74 } 75 #endif 76 77 /* 78 * Called by kexec, immediately prior to machine_kexec(). 79 * 80 * This must completely disable all secondary CPUs; simply causing those CPUs 81 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 82 * kexec'd kernel to use any and all RAM as it sees fit, without having to 83 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 84 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 85 */ 86 void machine_shutdown(void) 87 { 88 smp_shutdown_nonboot_cpus(reboot_cpu); 89 } 90 91 /* 92 * Halting simply requires that the secondary CPUs stop performing any 93 * activity (executing tasks, handling interrupts). smp_send_stop() 94 * achieves this. 95 */ 96 void machine_halt(void) 97 { 98 local_irq_disable(); 99 smp_send_stop(); 100 while (1); 101 } 102 103 /* 104 * Power-off simply requires that the secondary CPUs stop performing any 105 * activity (executing tasks, handling interrupts). smp_send_stop() 106 * achieves this. When the system power is turned off, it will take all CPUs 107 * with it. 108 */ 109 void machine_power_off(void) 110 { 111 local_irq_disable(); 112 smp_send_stop(); 113 if (pm_power_off) 114 pm_power_off(); 115 } 116 117 /* 118 * Restart requires that the secondary CPUs stop performing any activity 119 * while the primary CPU resets the system. Systems with multiple CPUs must 120 * provide a HW restart implementation, to ensure that all CPUs reset at once. 121 * This is required so that any code running after reset on the primary CPU 122 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 123 * executing pre-reset code, and using RAM that the primary CPU's code wishes 124 * to use. Implementing such co-ordination would be essentially impossible. 125 */ 126 void machine_restart(char *cmd) 127 { 128 /* Disable interrupts first */ 129 local_irq_disable(); 130 smp_send_stop(); 131 132 /* 133 * UpdateCapsule() depends on the system being reset via 134 * ResetSystem(). 135 */ 136 if (efi_enabled(EFI_RUNTIME_SERVICES)) 137 efi_reboot(reboot_mode, NULL); 138 139 /* Now call the architecture specific reboot code. */ 140 do_kernel_restart(cmd); 141 142 /* 143 * Whoops - the architecture was unable to reboot. 144 */ 145 printk("Reboot failed -- System halted\n"); 146 while (1); 147 } 148 149 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 150 static const char *const btypes[] = { 151 bstr(NONE, "--"), 152 bstr( JC, "jc"), 153 bstr( C, "-c"), 154 bstr( J , "j-") 155 }; 156 #undef bstr 157 158 static void print_pstate(struct pt_regs *regs) 159 { 160 u64 pstate = regs->pstate; 161 162 if (compat_user_mode(regs)) { 163 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 164 pstate, 165 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 166 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 167 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 168 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 169 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 170 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 171 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 172 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 173 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 174 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 175 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 176 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 177 } else { 178 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 179 PSR_BTYPE_SHIFT]; 180 181 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 182 pstate, 183 pstate & PSR_N_BIT ? 'N' : 'n', 184 pstate & PSR_Z_BIT ? 'Z' : 'z', 185 pstate & PSR_C_BIT ? 'C' : 'c', 186 pstate & PSR_V_BIT ? 'V' : 'v', 187 pstate & PSR_D_BIT ? 'D' : 'd', 188 pstate & PSR_A_BIT ? 'A' : 'a', 189 pstate & PSR_I_BIT ? 'I' : 'i', 190 pstate & PSR_F_BIT ? 'F' : 'f', 191 pstate & PSR_PAN_BIT ? '+' : '-', 192 pstate & PSR_UAO_BIT ? '+' : '-', 193 pstate & PSR_TCO_BIT ? '+' : '-', 194 pstate & PSR_DIT_BIT ? '+' : '-', 195 pstate & PSR_SSBS_BIT ? '+' : '-', 196 btype_str); 197 } 198 } 199 200 void __show_regs(struct pt_regs *regs) 201 { 202 int i, top_reg; 203 u64 lr, sp; 204 205 if (compat_user_mode(regs)) { 206 lr = regs->compat_lr; 207 sp = regs->compat_sp; 208 top_reg = 12; 209 } else { 210 lr = regs->regs[30]; 211 sp = regs->sp; 212 top_reg = 29; 213 } 214 215 show_regs_print_info(KERN_DEFAULT); 216 print_pstate(regs); 217 218 if (!user_mode(regs)) { 219 printk("pc : %pS\n", (void *)regs->pc); 220 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 221 } else { 222 printk("pc : %016llx\n", regs->pc); 223 printk("lr : %016llx\n", lr); 224 } 225 226 printk("sp : %016llx\n", sp); 227 228 if (system_uses_irq_prio_masking()) 229 printk("pmr_save: %08llx\n", regs->pmr_save); 230 231 i = top_reg; 232 233 while (i >= 0) { 234 printk("x%-2d: %016llx", i, regs->regs[i]); 235 236 while (i-- % 3) 237 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 238 239 pr_cont("\n"); 240 } 241 } 242 243 void show_regs(struct pt_regs *regs) 244 { 245 __show_regs(regs); 246 dump_backtrace(regs, NULL, KERN_DEFAULT); 247 } 248 249 static void tls_thread_flush(void) 250 { 251 write_sysreg(0, tpidr_el0); 252 253 if (is_compat_task()) { 254 current->thread.uw.tp_value = 0; 255 256 /* 257 * We need to ensure ordering between the shadow state and the 258 * hardware state, so that we don't corrupt the hardware state 259 * with a stale shadow state during context switch. 260 */ 261 barrier(); 262 write_sysreg(0, tpidrro_el0); 263 } 264 } 265 266 static void flush_tagged_addr_state(void) 267 { 268 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 269 clear_thread_flag(TIF_TAGGED_ADDR); 270 } 271 272 void flush_thread(void) 273 { 274 fpsimd_flush_thread(); 275 tls_thread_flush(); 276 flush_ptrace_hw_breakpoint(current); 277 flush_tagged_addr_state(); 278 } 279 280 void release_thread(struct task_struct *dead_task) 281 { 282 } 283 284 void arch_release_task_struct(struct task_struct *tsk) 285 { 286 fpsimd_release_task(tsk); 287 } 288 289 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 290 { 291 if (current->mm) 292 fpsimd_preserve_current_state(); 293 *dst = *src; 294 295 /* We rely on the above assignment to initialize dst's thread_flags: */ 296 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 297 298 /* 299 * Detach src's sve_state (if any) from dst so that it does not 300 * get erroneously used or freed prematurely. dst's sve_state 301 * will be allocated on demand later on if dst uses SVE. 302 * For consistency, also clear TIF_SVE here: this could be done 303 * later in copy_process(), but to avoid tripping up future 304 * maintainers it is best not to leave TIF_SVE and sve_state in 305 * an inconsistent state, even temporarily. 306 */ 307 dst->thread.sve_state = NULL; 308 clear_tsk_thread_flag(dst, TIF_SVE); 309 310 /* clear any pending asynchronous tag fault raised by the parent */ 311 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 312 313 return 0; 314 } 315 316 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 317 318 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 319 unsigned long stk_sz, struct task_struct *p, unsigned long tls) 320 { 321 struct pt_regs *childregs = task_pt_regs(p); 322 323 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 324 325 /* 326 * In case p was allocated the same task_struct pointer as some 327 * other recently-exited task, make sure p is disassociated from 328 * any cpu that may have run that now-exited task recently. 329 * Otherwise we could erroneously skip reloading the FPSIMD 330 * registers for p. 331 */ 332 fpsimd_flush_task_state(p); 333 334 ptrauth_thread_init_kernel(p); 335 336 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) { 337 *childregs = *current_pt_regs(); 338 childregs->regs[0] = 0; 339 340 /* 341 * Read the current TLS pointer from tpidr_el0 as it may be 342 * out-of-sync with the saved value. 343 */ 344 *task_user_tls(p) = read_sysreg(tpidr_el0); 345 346 if (stack_start) { 347 if (is_compat_thread(task_thread_info(p))) 348 childregs->compat_sp = stack_start; 349 else 350 childregs->sp = stack_start; 351 } 352 353 /* 354 * If a TLS pointer was passed to clone, use it for the new 355 * thread. 356 */ 357 if (clone_flags & CLONE_SETTLS) 358 p->thread.uw.tp_value = tls; 359 } else { 360 /* 361 * A kthread has no context to ERET to, so ensure any buggy 362 * ERET is treated as an illegal exception return. 363 * 364 * When a user task is created from a kthread, childregs will 365 * be initialized by start_thread() or start_compat_thread(). 366 */ 367 memset(childregs, 0, sizeof(struct pt_regs)); 368 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 369 370 p->thread.cpu_context.x19 = stack_start; 371 p->thread.cpu_context.x20 = stk_sz; 372 } 373 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 374 p->thread.cpu_context.sp = (unsigned long)childregs; 375 /* 376 * For the benefit of the unwinder, set up childregs->stackframe 377 * as the final frame for the new task. 378 */ 379 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 380 381 ptrace_hw_copy_thread(p); 382 383 return 0; 384 } 385 386 void tls_preserve_current_state(void) 387 { 388 *task_user_tls(current) = read_sysreg(tpidr_el0); 389 } 390 391 static void tls_thread_switch(struct task_struct *next) 392 { 393 tls_preserve_current_state(); 394 395 if (is_compat_thread(task_thread_info(next))) 396 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 397 else if (!arm64_kernel_unmapped_at_el0()) 398 write_sysreg(0, tpidrro_el0); 399 400 write_sysreg(*task_user_tls(next), tpidr_el0); 401 } 402 403 /* 404 * Force SSBS state on context-switch, since it may be lost after migrating 405 * from a CPU which treats the bit as RES0 in a heterogeneous system. 406 */ 407 static void ssbs_thread_switch(struct task_struct *next) 408 { 409 /* 410 * Nothing to do for kernel threads, but 'regs' may be junk 411 * (e.g. idle task) so check the flags and bail early. 412 */ 413 if (unlikely(next->flags & PF_KTHREAD)) 414 return; 415 416 /* 417 * If all CPUs implement the SSBS extension, then we just need to 418 * context-switch the PSTATE field. 419 */ 420 if (cpus_have_const_cap(ARM64_SSBS)) 421 return; 422 423 spectre_v4_enable_task_mitigation(next); 424 } 425 426 /* 427 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 428 * shadow copy so that we can restore this upon entry from userspace. 429 * 430 * This is *only* for exception entry from EL0, and is not valid until we 431 * __switch_to() a user task. 432 */ 433 DEFINE_PER_CPU(struct task_struct *, __entry_task); 434 435 static void entry_task_switch(struct task_struct *next) 436 { 437 __this_cpu_write(__entry_task, next); 438 } 439 440 /* 441 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 442 * Assuming the virtual counter is enabled at the beginning of times: 443 * 444 * - disable access when switching from a 64bit task to a 32bit task 445 * - enable access when switching from a 32bit task to a 64bit task 446 */ 447 static void erratum_1418040_thread_switch(struct task_struct *prev, 448 struct task_struct *next) 449 { 450 bool prev32, next32; 451 u64 val; 452 453 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040)) 454 return; 455 456 prev32 = is_compat_thread(task_thread_info(prev)); 457 next32 = is_compat_thread(task_thread_info(next)); 458 459 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 460 return; 461 462 val = read_sysreg(cntkctl_el1); 463 464 if (!next32) 465 val |= ARCH_TIMER_USR_VCT_ACCESS_EN; 466 else 467 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN; 468 469 write_sysreg(val, cntkctl_el1); 470 } 471 472 /* 473 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 474 * this function must be called with preemption disabled and the update to 475 * sctlr_user must be made in the same preemption disabled block so that 476 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 477 */ 478 void update_sctlr_el1(u64 sctlr) 479 { 480 /* 481 * EnIA must not be cleared while in the kernel as this is necessary for 482 * in-kernel PAC. It will be cleared on kernel exit if needed. 483 */ 484 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 485 486 /* ISB required for the kernel uaccess routines when setting TCF0. */ 487 isb(); 488 } 489 490 /* 491 * Thread switching. 492 */ 493 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 494 struct task_struct *next) 495 { 496 struct task_struct *last; 497 498 fpsimd_thread_switch(next); 499 tls_thread_switch(next); 500 hw_breakpoint_thread_switch(next); 501 contextidr_thread_switch(next); 502 entry_task_switch(next); 503 ssbs_thread_switch(next); 504 erratum_1418040_thread_switch(prev, next); 505 ptrauth_thread_switch_user(next); 506 507 /* 508 * Complete any pending TLB or cache maintenance on this CPU in case 509 * the thread migrates to a different CPU. 510 * This full barrier is also required by the membarrier system 511 * call. 512 */ 513 dsb(ish); 514 515 /* 516 * MTE thread switching must happen after the DSB above to ensure that 517 * any asynchronous tag check faults have been logged in the TFSR*_EL1 518 * registers. 519 */ 520 mte_thread_switch(next); 521 /* avoid expensive SCTLR_EL1 accesses if no change */ 522 if (prev->thread.sctlr_user != next->thread.sctlr_user) 523 update_sctlr_el1(next->thread.sctlr_user); 524 525 /* the actual thread switch */ 526 last = cpu_switch_to(prev, next); 527 528 return last; 529 } 530 531 unsigned long __get_wchan(struct task_struct *p) 532 { 533 struct stackframe frame; 534 unsigned long stack_page, ret = 0; 535 int count = 0; 536 537 stack_page = (unsigned long)try_get_task_stack(p); 538 if (!stack_page) 539 return 0; 540 541 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 542 543 do { 544 if (unwind_frame(p, &frame)) 545 goto out; 546 if (!in_sched_functions(frame.pc)) { 547 ret = frame.pc; 548 goto out; 549 } 550 } while (count++ < 16); 551 552 out: 553 put_task_stack(p); 554 return ret; 555 } 556 557 unsigned long arch_align_stack(unsigned long sp) 558 { 559 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 560 sp -= get_random_int() & ~PAGE_MASK; 561 return sp & ~0xf; 562 } 563 564 #ifdef CONFIG_COMPAT 565 int compat_elf_check_arch(const struct elf32_hdr *hdr) 566 { 567 if (!system_supports_32bit_el0()) 568 return false; 569 570 if ((hdr)->e_machine != EM_ARM) 571 return false; 572 573 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 574 return false; 575 576 /* 577 * Prevent execve() of a 32-bit program from a deadline task 578 * if the restricted affinity mask would be inadmissible on an 579 * asymmetric system. 580 */ 581 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 582 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 583 } 584 #endif 585 586 /* 587 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 588 */ 589 void arch_setup_new_exec(void) 590 { 591 unsigned long mmflags = 0; 592 593 if (is_compat_task()) { 594 mmflags = MMCF_AARCH32; 595 596 /* 597 * Restrict the CPU affinity mask for a 32-bit task so that 598 * it contains only 32-bit-capable CPUs. 599 * 600 * From the perspective of the task, this looks similar to 601 * what would happen if the 64-bit-only CPUs were hot-unplugged 602 * at the point of execve(), although we try a bit harder to 603 * honour the cpuset hierarchy. 604 */ 605 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 606 force_compatible_cpus_allowed_ptr(current); 607 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 608 relax_compatible_cpus_allowed_ptr(current); 609 } 610 611 current->mm->context.flags = mmflags; 612 ptrauth_thread_init_user(); 613 mte_thread_init_user(); 614 615 if (task_spec_ssb_noexec(current)) { 616 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 617 PR_SPEC_ENABLE); 618 } 619 } 620 621 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 622 /* 623 * Control the relaxed ABI allowing tagged user addresses into the kernel. 624 */ 625 static unsigned int tagged_addr_disabled; 626 627 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 628 { 629 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 630 struct thread_info *ti = task_thread_info(task); 631 632 if (is_compat_thread(ti)) 633 return -EINVAL; 634 635 if (system_supports_mte()) 636 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK; 637 638 if (arg & ~valid_mask) 639 return -EINVAL; 640 641 /* 642 * Do not allow the enabling of the tagged address ABI if globally 643 * disabled via sysctl abi.tagged_addr_disabled. 644 */ 645 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 646 return -EINVAL; 647 648 if (set_mte_ctrl(task, arg) != 0) 649 return -EINVAL; 650 651 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 652 653 return 0; 654 } 655 656 long get_tagged_addr_ctrl(struct task_struct *task) 657 { 658 long ret = 0; 659 struct thread_info *ti = task_thread_info(task); 660 661 if (is_compat_thread(ti)) 662 return -EINVAL; 663 664 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 665 ret = PR_TAGGED_ADDR_ENABLE; 666 667 ret |= get_mte_ctrl(task); 668 669 return ret; 670 } 671 672 /* 673 * Global sysctl to disable the tagged user addresses support. This control 674 * only prevents the tagged address ABI enabling via prctl() and does not 675 * disable it for tasks that already opted in to the relaxed ABI. 676 */ 677 678 static struct ctl_table tagged_addr_sysctl_table[] = { 679 { 680 .procname = "tagged_addr_disabled", 681 .mode = 0644, 682 .data = &tagged_addr_disabled, 683 .maxlen = sizeof(int), 684 .proc_handler = proc_dointvec_minmax, 685 .extra1 = SYSCTL_ZERO, 686 .extra2 = SYSCTL_ONE, 687 }, 688 { } 689 }; 690 691 static int __init tagged_addr_init(void) 692 { 693 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 694 return -EINVAL; 695 return 0; 696 } 697 698 core_initcall(tagged_addr_init); 699 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 700 701 #ifdef CONFIG_BINFMT_ELF 702 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 703 bool has_interp, bool is_interp) 704 { 705 /* 706 * For dynamically linked executables the interpreter is 707 * responsible for setting PROT_BTI on everything except 708 * itself. 709 */ 710 if (is_interp != has_interp) 711 return prot; 712 713 if (!(state->flags & ARM64_ELF_BTI)) 714 return prot; 715 716 if (prot & PROT_EXEC) 717 prot |= PROT_BTI; 718 719 return prot; 720 } 721 #endif 722