1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <stdarg.h> 11 12 #include <linux/compat.h> 13 #include <linux/efi.h> 14 #include <linux/elf.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/sched/debug.h> 18 #include <linux/sched/task.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/kernel.h> 21 #include <linux/lockdep.h> 22 #include <linux/mman.h> 23 #include <linux/mm.h> 24 #include <linux/stddef.h> 25 #include <linux/sysctl.h> 26 #include <linux/unistd.h> 27 #include <linux/user.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/interrupt.h> 31 #include <linux/init.h> 32 #include <linux/cpu.h> 33 #include <linux/elfcore.h> 34 #include <linux/pm.h> 35 #include <linux/tick.h> 36 #include <linux/utsname.h> 37 #include <linux/uaccess.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/personality.h> 41 #include <linux/notifier.h> 42 #include <trace/events/power.h> 43 #include <linux/percpu.h> 44 #include <linux/thread_info.h> 45 #include <linux/prctl.h> 46 47 #include <asm/alternative.h> 48 #include <asm/arch_gicv3.h> 49 #include <asm/compat.h> 50 #include <asm/cpufeature.h> 51 #include <asm/cacheflush.h> 52 #include <asm/exec.h> 53 #include <asm/fpsimd.h> 54 #include <asm/mmu_context.h> 55 #include <asm/processor.h> 56 #include <asm/pointer_auth.h> 57 #include <asm/stacktrace.h> 58 59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 60 #include <linux/stackprotector.h> 61 unsigned long __stack_chk_guard __read_mostly; 62 EXPORT_SYMBOL(__stack_chk_guard); 63 #endif 64 65 /* 66 * Function pointers to optional machine specific functions 67 */ 68 void (*pm_power_off)(void); 69 EXPORT_SYMBOL_GPL(pm_power_off); 70 71 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 72 73 static void __cpu_do_idle(void) 74 { 75 dsb(sy); 76 wfi(); 77 } 78 79 static void __cpu_do_idle_irqprio(void) 80 { 81 unsigned long pmr; 82 unsigned long daif_bits; 83 84 daif_bits = read_sysreg(daif); 85 write_sysreg(daif_bits | PSR_I_BIT, daif); 86 87 /* 88 * Unmask PMR before going idle to make sure interrupts can 89 * be raised. 90 */ 91 pmr = gic_read_pmr(); 92 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 93 94 __cpu_do_idle(); 95 96 gic_write_pmr(pmr); 97 write_sysreg(daif_bits, daif); 98 } 99 100 /* 101 * cpu_do_idle() 102 * 103 * Idle the processor (wait for interrupt). 104 * 105 * If the CPU supports priority masking we must do additional work to 106 * ensure that interrupts are not masked at the PMR (because the core will 107 * not wake up if we block the wake up signal in the interrupt controller). 108 */ 109 void cpu_do_idle(void) 110 { 111 if (system_uses_irq_prio_masking()) 112 __cpu_do_idle_irqprio(); 113 else 114 __cpu_do_idle(); 115 } 116 117 /* 118 * This is our default idle handler. 119 */ 120 void arch_cpu_idle(void) 121 { 122 /* 123 * This should do all the clock switching and wait for interrupt 124 * tricks 125 */ 126 trace_cpu_idle_rcuidle(1, smp_processor_id()); 127 cpu_do_idle(); 128 local_irq_enable(); 129 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 130 } 131 132 #ifdef CONFIG_HOTPLUG_CPU 133 void arch_cpu_idle_dead(void) 134 { 135 cpu_die(); 136 } 137 #endif 138 139 /* 140 * Called by kexec, immediately prior to machine_kexec(). 141 * 142 * This must completely disable all secondary CPUs; simply causing those CPUs 143 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 144 * kexec'd kernel to use any and all RAM as it sees fit, without having to 145 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 146 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 147 */ 148 void machine_shutdown(void) 149 { 150 smp_shutdown_nonboot_cpus(reboot_cpu); 151 } 152 153 /* 154 * Halting simply requires that the secondary CPUs stop performing any 155 * activity (executing tasks, handling interrupts). smp_send_stop() 156 * achieves this. 157 */ 158 void machine_halt(void) 159 { 160 local_irq_disable(); 161 smp_send_stop(); 162 while (1); 163 } 164 165 /* 166 * Power-off simply requires that the secondary CPUs stop performing any 167 * activity (executing tasks, handling interrupts). smp_send_stop() 168 * achieves this. When the system power is turned off, it will take all CPUs 169 * with it. 170 */ 171 void machine_power_off(void) 172 { 173 local_irq_disable(); 174 smp_send_stop(); 175 if (pm_power_off) 176 pm_power_off(); 177 } 178 179 /* 180 * Restart requires that the secondary CPUs stop performing any activity 181 * while the primary CPU resets the system. Systems with multiple CPUs must 182 * provide a HW restart implementation, to ensure that all CPUs reset at once. 183 * This is required so that any code running after reset on the primary CPU 184 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 185 * executing pre-reset code, and using RAM that the primary CPU's code wishes 186 * to use. Implementing such co-ordination would be essentially impossible. 187 */ 188 void machine_restart(char *cmd) 189 { 190 /* Disable interrupts first */ 191 local_irq_disable(); 192 smp_send_stop(); 193 194 /* 195 * UpdateCapsule() depends on the system being reset via 196 * ResetSystem(). 197 */ 198 if (efi_enabled(EFI_RUNTIME_SERVICES)) 199 efi_reboot(reboot_mode, NULL); 200 201 /* Now call the architecture specific reboot code. */ 202 if (arm_pm_restart) 203 arm_pm_restart(reboot_mode, cmd); 204 else 205 do_kernel_restart(cmd); 206 207 /* 208 * Whoops - the architecture was unable to reboot. 209 */ 210 printk("Reboot failed -- System halted\n"); 211 while (1); 212 } 213 214 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 215 static const char *const btypes[] = { 216 bstr(NONE, "--"), 217 bstr( JC, "jc"), 218 bstr( C, "-c"), 219 bstr( J , "j-") 220 }; 221 #undef bstr 222 223 static void print_pstate(struct pt_regs *regs) 224 { 225 u64 pstate = regs->pstate; 226 227 if (compat_user_mode(regs)) { 228 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 229 pstate, 230 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 231 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 232 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 233 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 234 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 235 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 236 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 237 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 238 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 239 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 240 } else { 241 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 242 PSR_BTYPE_SHIFT]; 243 244 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO BTYPE=%s)\n", 245 pstate, 246 pstate & PSR_N_BIT ? 'N' : 'n', 247 pstate & PSR_Z_BIT ? 'Z' : 'z', 248 pstate & PSR_C_BIT ? 'C' : 'c', 249 pstate & PSR_V_BIT ? 'V' : 'v', 250 pstate & PSR_D_BIT ? 'D' : 'd', 251 pstate & PSR_A_BIT ? 'A' : 'a', 252 pstate & PSR_I_BIT ? 'I' : 'i', 253 pstate & PSR_F_BIT ? 'F' : 'f', 254 pstate & PSR_PAN_BIT ? '+' : '-', 255 pstate & PSR_UAO_BIT ? '+' : '-', 256 btype_str); 257 } 258 } 259 260 void __show_regs(struct pt_regs *regs) 261 { 262 int i, top_reg; 263 u64 lr, sp; 264 265 if (compat_user_mode(regs)) { 266 lr = regs->compat_lr; 267 sp = regs->compat_sp; 268 top_reg = 12; 269 } else { 270 lr = regs->regs[30]; 271 sp = regs->sp; 272 top_reg = 29; 273 } 274 275 show_regs_print_info(KERN_DEFAULT); 276 print_pstate(regs); 277 278 if (!user_mode(regs)) { 279 printk("pc : %pS\n", (void *)regs->pc); 280 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 281 } else { 282 printk("pc : %016llx\n", regs->pc); 283 printk("lr : %016llx\n", lr); 284 } 285 286 printk("sp : %016llx\n", sp); 287 288 if (system_uses_irq_prio_masking()) 289 printk("pmr_save: %08llx\n", regs->pmr_save); 290 291 i = top_reg; 292 293 while (i >= 0) { 294 printk("x%-2d: %016llx ", i, regs->regs[i]); 295 i--; 296 297 if (i % 2 == 0) { 298 pr_cont("x%-2d: %016llx ", i, regs->regs[i]); 299 i--; 300 } 301 302 pr_cont("\n"); 303 } 304 } 305 306 void show_regs(struct pt_regs * regs) 307 { 308 __show_regs(regs); 309 dump_backtrace(regs, NULL, KERN_DEFAULT); 310 } 311 312 static void tls_thread_flush(void) 313 { 314 write_sysreg(0, tpidr_el0); 315 316 if (is_compat_task()) { 317 current->thread.uw.tp_value = 0; 318 319 /* 320 * We need to ensure ordering between the shadow state and the 321 * hardware state, so that we don't corrupt the hardware state 322 * with a stale shadow state during context switch. 323 */ 324 barrier(); 325 write_sysreg(0, tpidrro_el0); 326 } 327 } 328 329 static void flush_tagged_addr_state(void) 330 { 331 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 332 clear_thread_flag(TIF_TAGGED_ADDR); 333 } 334 335 void flush_thread(void) 336 { 337 fpsimd_flush_thread(); 338 tls_thread_flush(); 339 flush_ptrace_hw_breakpoint(current); 340 flush_tagged_addr_state(); 341 } 342 343 void release_thread(struct task_struct *dead_task) 344 { 345 } 346 347 void arch_release_task_struct(struct task_struct *tsk) 348 { 349 fpsimd_release_task(tsk); 350 } 351 352 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 353 { 354 if (current->mm) 355 fpsimd_preserve_current_state(); 356 *dst = *src; 357 358 /* We rely on the above assignment to initialize dst's thread_flags: */ 359 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 360 361 /* 362 * Detach src's sve_state (if any) from dst so that it does not 363 * get erroneously used or freed prematurely. dst's sve_state 364 * will be allocated on demand later on if dst uses SVE. 365 * For consistency, also clear TIF_SVE here: this could be done 366 * later in copy_process(), but to avoid tripping up future 367 * maintainers it is best not to leave TIF_SVE and sve_state in 368 * an inconsistent state, even temporarily. 369 */ 370 dst->thread.sve_state = NULL; 371 clear_tsk_thread_flag(dst, TIF_SVE); 372 373 return 0; 374 } 375 376 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 377 378 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 379 unsigned long stk_sz, struct task_struct *p, unsigned long tls) 380 { 381 struct pt_regs *childregs = task_pt_regs(p); 382 383 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 384 385 /* 386 * In case p was allocated the same task_struct pointer as some 387 * other recently-exited task, make sure p is disassociated from 388 * any cpu that may have run that now-exited task recently. 389 * Otherwise we could erroneously skip reloading the FPSIMD 390 * registers for p. 391 */ 392 fpsimd_flush_task_state(p); 393 394 ptrauth_thread_init_kernel(p); 395 396 if (likely(!(p->flags & PF_KTHREAD))) { 397 *childregs = *current_pt_regs(); 398 childregs->regs[0] = 0; 399 400 /* 401 * Read the current TLS pointer from tpidr_el0 as it may be 402 * out-of-sync with the saved value. 403 */ 404 *task_user_tls(p) = read_sysreg(tpidr_el0); 405 406 if (stack_start) { 407 if (is_compat_thread(task_thread_info(p))) 408 childregs->compat_sp = stack_start; 409 else 410 childregs->sp = stack_start; 411 } 412 413 /* 414 * If a TLS pointer was passed to clone, use it for the new 415 * thread. 416 */ 417 if (clone_flags & CLONE_SETTLS) 418 p->thread.uw.tp_value = tls; 419 } else { 420 memset(childregs, 0, sizeof(struct pt_regs)); 421 childregs->pstate = PSR_MODE_EL1h; 422 if (IS_ENABLED(CONFIG_ARM64_UAO) && 423 cpus_have_const_cap(ARM64_HAS_UAO)) 424 childregs->pstate |= PSR_UAO_BIT; 425 426 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) 427 set_ssbs_bit(childregs); 428 429 if (system_uses_irq_prio_masking()) 430 childregs->pmr_save = GIC_PRIO_IRQON; 431 432 p->thread.cpu_context.x19 = stack_start; 433 p->thread.cpu_context.x20 = stk_sz; 434 } 435 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 436 p->thread.cpu_context.sp = (unsigned long)childregs; 437 438 ptrace_hw_copy_thread(p); 439 440 return 0; 441 } 442 443 void tls_preserve_current_state(void) 444 { 445 *task_user_tls(current) = read_sysreg(tpidr_el0); 446 } 447 448 static void tls_thread_switch(struct task_struct *next) 449 { 450 tls_preserve_current_state(); 451 452 if (is_compat_thread(task_thread_info(next))) 453 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 454 else if (!arm64_kernel_unmapped_at_el0()) 455 write_sysreg(0, tpidrro_el0); 456 457 write_sysreg(*task_user_tls(next), tpidr_el0); 458 } 459 460 /* Restore the UAO state depending on next's addr_limit */ 461 void uao_thread_switch(struct task_struct *next) 462 { 463 if (IS_ENABLED(CONFIG_ARM64_UAO)) { 464 if (task_thread_info(next)->addr_limit == KERNEL_DS) 465 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); 466 else 467 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); 468 } 469 } 470 471 /* 472 * Force SSBS state on context-switch, since it may be lost after migrating 473 * from a CPU which treats the bit as RES0 in a heterogeneous system. 474 */ 475 static void ssbs_thread_switch(struct task_struct *next) 476 { 477 struct pt_regs *regs = task_pt_regs(next); 478 479 /* 480 * Nothing to do for kernel threads, but 'regs' may be junk 481 * (e.g. idle task) so check the flags and bail early. 482 */ 483 if (unlikely(next->flags & PF_KTHREAD)) 484 return; 485 486 /* 487 * If all CPUs implement the SSBS extension, then we just need to 488 * context-switch the PSTATE field. 489 */ 490 if (cpu_have_feature(cpu_feature(SSBS))) 491 return; 492 493 /* If the mitigation is enabled, then we leave SSBS clear. */ 494 if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) || 495 test_tsk_thread_flag(next, TIF_SSBD)) 496 return; 497 498 if (compat_user_mode(regs)) 499 set_compat_ssbs_bit(regs); 500 else if (user_mode(regs)) 501 set_ssbs_bit(regs); 502 } 503 504 /* 505 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 506 * shadow copy so that we can restore this upon entry from userspace. 507 * 508 * This is *only* for exception entry from EL0, and is not valid until we 509 * __switch_to() a user task. 510 */ 511 DEFINE_PER_CPU(struct task_struct *, __entry_task); 512 513 static void entry_task_switch(struct task_struct *next) 514 { 515 __this_cpu_write(__entry_task, next); 516 } 517 518 /* 519 * Thread switching. 520 */ 521 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 522 struct task_struct *next) 523 { 524 struct task_struct *last; 525 526 fpsimd_thread_switch(next); 527 tls_thread_switch(next); 528 hw_breakpoint_thread_switch(next); 529 contextidr_thread_switch(next); 530 entry_task_switch(next); 531 uao_thread_switch(next); 532 ssbs_thread_switch(next); 533 534 /* 535 * Complete any pending TLB or cache maintenance on this CPU in case 536 * the thread migrates to a different CPU. 537 * This full barrier is also required by the membarrier system 538 * call. 539 */ 540 dsb(ish); 541 542 /* the actual thread switch */ 543 last = cpu_switch_to(prev, next); 544 545 return last; 546 } 547 548 unsigned long get_wchan(struct task_struct *p) 549 { 550 struct stackframe frame; 551 unsigned long stack_page, ret = 0; 552 int count = 0; 553 if (!p || p == current || p->state == TASK_RUNNING) 554 return 0; 555 556 stack_page = (unsigned long)try_get_task_stack(p); 557 if (!stack_page) 558 return 0; 559 560 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 561 562 do { 563 if (unwind_frame(p, &frame)) 564 goto out; 565 if (!in_sched_functions(frame.pc)) { 566 ret = frame.pc; 567 goto out; 568 } 569 } while (count ++ < 16); 570 571 out: 572 put_task_stack(p); 573 return ret; 574 } 575 576 unsigned long arch_align_stack(unsigned long sp) 577 { 578 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 579 sp -= get_random_int() & ~PAGE_MASK; 580 return sp & ~0xf; 581 } 582 583 /* 584 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 585 */ 586 void arch_setup_new_exec(void) 587 { 588 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; 589 590 ptrauth_thread_init_user(current); 591 } 592 593 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 594 /* 595 * Control the relaxed ABI allowing tagged user addresses into the kernel. 596 */ 597 static unsigned int tagged_addr_disabled; 598 599 long set_tagged_addr_ctrl(unsigned long arg) 600 { 601 if (is_compat_task()) 602 return -EINVAL; 603 if (arg & ~PR_TAGGED_ADDR_ENABLE) 604 return -EINVAL; 605 606 /* 607 * Do not allow the enabling of the tagged address ABI if globally 608 * disabled via sysctl abi.tagged_addr_disabled. 609 */ 610 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 611 return -EINVAL; 612 613 update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 614 615 return 0; 616 } 617 618 long get_tagged_addr_ctrl(void) 619 { 620 if (is_compat_task()) 621 return -EINVAL; 622 623 if (test_thread_flag(TIF_TAGGED_ADDR)) 624 return PR_TAGGED_ADDR_ENABLE; 625 626 return 0; 627 } 628 629 /* 630 * Global sysctl to disable the tagged user addresses support. This control 631 * only prevents the tagged address ABI enabling via prctl() and does not 632 * disable it for tasks that already opted in to the relaxed ABI. 633 */ 634 635 static struct ctl_table tagged_addr_sysctl_table[] = { 636 { 637 .procname = "tagged_addr_disabled", 638 .mode = 0644, 639 .data = &tagged_addr_disabled, 640 .maxlen = sizeof(int), 641 .proc_handler = proc_dointvec_minmax, 642 .extra1 = SYSCTL_ZERO, 643 .extra2 = SYSCTL_ONE, 644 }, 645 { } 646 }; 647 648 static int __init tagged_addr_init(void) 649 { 650 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 651 return -EINVAL; 652 return 0; 653 } 654 655 core_initcall(tagged_addr_init); 656 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 657 658 asmlinkage void __sched arm64_preempt_schedule_irq(void) 659 { 660 lockdep_assert_irqs_disabled(); 661 662 /* 663 * Preempting a task from an IRQ means we leave copies of PSTATE 664 * on the stack. cpufeature's enable calls may modify PSTATE, but 665 * resuming one of these preempted tasks would undo those changes. 666 * 667 * Only allow a task to be preempted once cpufeatures have been 668 * enabled. 669 */ 670 if (system_capabilities_finalized()) 671 preempt_schedule_irq(); 672 } 673 674 #ifdef CONFIG_BINFMT_ELF 675 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 676 bool has_interp, bool is_interp) 677 { 678 /* 679 * For dynamically linked executables the interpreter is 680 * responsible for setting PROT_BTI on everything except 681 * itself. 682 */ 683 if (is_interp != has_interp) 684 return prot; 685 686 if (!(state->flags & ARM64_ELF_BTI)) 687 return prot; 688 689 if (prot & PROT_EXEC) 690 prot |= PROT_BTI; 691 692 return prot; 693 } 694 #endif 695